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Abstract

Photoperiod plays an important role in individual growth, development, and metabolism in

crustaceans. The growth and reproduction of crabs are closely related to the photoperiod.

However, as of yet, there are still no transcriptomic reports of eyestalk ganglions treated

under different photoperiods in the Chinese mitten crab (Eriocheir sinensis), which is a ben-

thonic crab with high commercial value in Asia. In this study, we collected the eyestalk gan-

glions of crabs that were reared under different photoperiods, including a control group (L:

D = 12 h: 12 h, named CC), a constant light group (L: D = 24 h: 0 h, named LL) and a con-

stant darkness group (L: D = 0 h: 24 h, named DD). RNA sequencing was performed on

these tissues in order to examine the effects of different photoperiods. The total numbers of

clean reads from the CC, LL and DD groups were 48,772,584 bp, 53,943,281 bp and

53,815,178 bp, respectively. After de novo assembly, 161,380 unigenes were obtained and

were matched with different databases. The DEGs were significantly enriched in phototrans-

duction and energy metabolism pathways. Results from RT-qPCR showed that TRP chan-

nel protein (TRP) in the phototransduction pathway had a significantly higher level of

expression in LL and DD groups than in the CC group. We found that the downregulation of

the pyruvate dehydrogenase complex (PDC) gene and the upregulation phosphoenolpyr-

uvate carboxykinase (PPC) gene were involved in energy metabolism processes in LL or

DD. In addition, we also found that the upregulation of the expression level of the genes

Gαq, pyruvate kinase (PK), NADH peroxidase (NADH) and ATPase is involved in photo-

transduction and energy metabolism. These results may shed some light on the molecular

mechanism underlying the effect of photoperiod in physiological activity of E. sinensis.
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Introduction

Photoperiod is important to individual growth, development, reproduction and energy metabo-

lism [1–3]. Researchers have found that the survival was high when combined with longer photo-

period, and weight gain and specific growth rate were higher at shorter photoperiods of crayfish

(Astacus leptodactylus) [4]. There were also low hatching rates and population numbers when

calanoid copepods (Acartia grani) were kept under constant light conditions [5]. The photope-

riod also affects molting and influences the sexual maturation of crustaceans [6–9]. For example,

a long photoperiod can accelerate the rate of metamorphosis in the lobster (Panulirus japonicus)
[10]. The effects of photoperiod on energy metabolism have also been reported in crustaceans.

For example, the digestive enzymatic activity of the general proteases trypsin and chymotrypsin

were affected by the photoperiod in the prawn (Macrobrachium tenellum) [7]. Similarly, reactive

oxygen species and lipid peroxidation are regulated by the glutathione system, which is influenced

by photoperiods in crayfish (Procambarus clarkii)[11]. In addition, changes in energy metabolism

due to the photoperiod have been reported in adult krill (Euphausia superba) and Arctic copepod

(Calanus glacialis) [12, 13]. However, the study of the effects of photoperiod on E. sinensis, which

is an economically important aquaculture freshwater species in China, is still sparse.

Eyestalks are an important phototransduction organ that can receive light signals through

photoreceptors [14–16]. Eyestalk ganglions, located in eyestalk, play an important role in photo-

transduction, energy metabolism, and endocrine regulation. A previous study showed that dam-

aged eyestalk ganglion can lead to a destruction of the phototransduction pathway [17].

Moreover, some studies have found that eyestalks are involved in hatchability of embryos and

gonadal development, such as in the crab (Dyspanopeus sayi) [18] and the mud crab (Scylla para-
mamosain)[19]. It was previously known that levels of the crustacean hyperglycemic hormone

(CHH) in eyestalks are important for energy metabolism via the regulation glucose levels [20, 21],

and these levels were controlled by photoperiods in the crayfish (P. clarkii) [22]. In our previous

studies, we found that the eyestalks of E. sinensis express the DA2 receptor which participates in

light adaptation during the dark hours [23]. However, there still lack information about the influ-

ence of photoperiods on the gene expression of eyestalk ganglion in E. sinensis.
The TRP channel protein (TRP) is a transient receptor potential cation channel with very

diverse permeation and gating properties and participates in sensory and motile regulation

process [24]. It is a vital gene in the phototransduction pathway [25]. Previous studies have

shown that photoperiods can affect the TRP expression level in mice, TRP is involved in clock

gene oscillations and energy balance control [26]. TRP can also change the osmolarity and

fluid flow of individual cells in different environments [27]. For example, TRP can induce the

increased levels of Ca2+, which further reduces the photoreceptor sensitivity of crayfish [28].

Additionally, both the pyruvate dehydrogenase complex (PDC) gene and the phosphoenolpyr-

uvate carboxykinase (PPC) gene are related to energy metabolism [29, 30], and their activity

can be influenced by photoperiods in mammals [31, 32].

The current study, the first to our knowledge, analyzes eyestalks ganglion transcriptomes of

E. sinensis in all bright (LL), all dark (DD) and normal light (CC) conditions using Illumina

HiSeqTM2000 technology. We attempt to identify important pathways and genes involved in

photoperiod regulation. This study also provides a basis for further research.

Materials and methods

Experimental animals and sampling

Chinese mitten crabs (E. sinensis) were obtained from the Shuxin crab base in Chongming

Island (121˚300~121˚400 E, 31˚340~31˚370 N), Shanghai (China) with body weights of
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17.18 ± 2.2 g. They were stocked in clear glass aquaria (Length: Width: Height = 130: 60: 40

cm, Water depth = 25 cm) for 1 week, with a circulating system containing thoroughly aerated

freshwater and UV-treated PVC tubes as shelter. The crabs were fed a basal diet once daily at

20:00 and were kept under a natural photoperiod of 12L: 12D. During the experiment, crabs

were kept in a temperature of 19~22˚C, a pH of 7.6~7.8, a dissolved oxygen concentration of

at least 6.0 mg/L.

This study investigated whether different photoperiods affected the nervous system of E. sinen-
sis. Crabs were exposed to one of three photoperiods including control (L: D = 12 h: 12 h, named

CC), constant light (L: D = 24 h: 0 h, named LL) or constant darkness (L: D = 0 h: 24 h, named

DD). Within the tank (Length: Width: Height = 37: 24.5: 11 cm) 10 crabs were randomly placed

as a group, a light intensity of 100 lux was used, and treatments continued for 7 d. Then, crabs

were frozen on ice, and the eyestalks were harvested and stored at -80˚C until RNA isolation.

RNA extracted, read alignment and RNA-seq analysis

Total RNA was extracted using RNAisoTMPlus (TaKaRa) according to manufacturer’s instruc-

tions. Qualified total RNA was further purified with a RNeasy micro kit (Cat#74004, QIAGEN,

GmBH, Germany) and RNase-Free DNase Set (Cat#79254, QIAGEN, GmBH, Germany). The

RNA concentration and purity were determined using a Nanodrop2000, and RNA quantity

was measured by denaturing formaldehyde agarose gel electrophoresis to examine integrity

and measured with an Agilent Bioanalyzer 2100 (Agilent Technologies). Only high-quality

eyestalk RNA samples were used for cDNA synthesis, so in the end, there were two qualified

samples in each group for cDNA synthesis.

The RNA integrity numbers (RINs) of samples was required to be more than 7.0 when

RNA-seq transcriptome libraries were prepared. Poly-T oligo-linked magnetic beads were

used to purify PolyA mRNA from total RNA, and the intact mRNA was broken into fragments

with bead washing buffer and metal bath. Aforementioned mRNAs were used as templates to

synthesize first-strand complementary DNA (cDNA). Then, second-strand cDNA was synthe-

sized using Resuspension Buffer, EtOH and Buffer. Next, cDNA, was end-repaired, a base was

added to the 3’ end, and the cDNA was amplified with PCR. Finally, the constructed cDNA

libraries were sequenced with Illumina HiSeqTM2000.

De novo assembly and annotation of the transcriptome

Raw reads from Illumina HiSeqTM2000 may contain sequencing primers and low-quality

sequence, which can affect analytical quality. Therefore, the raw reads were cleaned through

three steps: (a) linger sequences were discarded; (b) Q < 20 (Q = -10log10E) bases were

removed; and (c) reads length shorter than 25 bp also discarded. Then, the clean reads were

used for de novo assembly with Trinity (Minimum contig length> = 400 bp).

For annotation, the assembled final unigenes with screening condition (E-value<1e-5)

were annotated using the NCBI protein nonredundant (Nr) and UniProt database. The top

five unigenes that were compared with the CDD database by rpstblastn (http://www.

biomedcentral.com/content/supplementary/1471-2105-13-42-s1/Cloud-BioLinux-Package-

Documentation/docs/rpstblastn.html) were annotated using COG (Cluster of Orthologous

Groups of proteins) classification. The unigenes were also classified with the GO (Gene Ontol-

ogy) and KEGG (Kyoto Encyclopedia of Genes and Genomes) databases.

Analysis of differentially expressed genes

The clean reads were mapped per sample to the corresponding gene for read counts. The

expression levels of genes were determined by using Express software and the FPKM
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(fragments per kilobase of exon model per million mapped reads) method. Analysis of differ-

ential expression levels across samples was performed in edgeR, and significantly differentially

expressed genes (DEGs) were calculated (q-value <= 0.05, Fold-change>=2). Significantly

enriched terms were obtained by mapping DEGs to the corresponding GO term. Similarly, sig-

nificantly enriched KEGG pathways were obtained.

Quantitative real-time PCR verification

Three DEGs were randomly chosen for quantitative real-time PCR (RT-qPCR) to validate the

accuracy of the RNA-seq results. The total RNA which was returned after sequencing (three

samples in each group) was used as template to synthesize first-strand cDNA with PrimeScript

RT Master Mix (Cat. No. RR036A, TaKaRa). Primers were designed based on the DEGs with

Primer Premier 5.0 (Table 1).

The reaction system of RT-qPCR contained 5 μl of 2×SYBR Premix Ex TaqTM (TaKaRa,

Japan), 1 μl of diluted first-strand cDNA, 3.4 μl of PCR-grade water, 0.2 μl of ROX Reference

Dye II, and 0.2 μl of each primer [33]. The mixtures were run under the following conditions:

95˚C for 30 s; followed by 40 cycles of 95˚C for 5 s, and 60˚C for 34 s; in addition, 95˚C for 15

s, 60˚C for 1 min, and 95˚C for 15 s using the ABI 7500 Real-Time PCR System (Life Technol-

ogy, USA). We used 18S ribosome RNA (18S) as a reference gene. The DEGs expression levels

were calculated using the 2-ΔΔCt method [23].

Statistical analysis

The data were expressed as mean ± S.D. values, and One-way analysis of variance was used for

comparisons among the groups. A P value <0.05 indicated statistically significant difference.

Results

Transcriptome sequencing and reads assembly

We obtained 51,786,884 bp raw reads from CC, 58,383,804 bp raw reads from LL, and

59,026,446bp raw reads from DD. Clean reads were selected by excluding reads that did not

conform to the requirements. Thus, the clean reads of CC, LL and DD were 48,772,584 bp,

53,943,281bp and 53,815,178 bp, respectively, (Table 2) and they were used for de novo assem-

bly. Using this, we obtained 330,686 unigenes that contained the 161,380 unigenes that were

200–400 bp, 70,473 unigenes that were 400-600bp and 22,260 unigenes that were more than

2000 bp in length (Fig 1). Unigenes were used for further functional analysis.

Unigenes functional annotation

COG classification was used to analyze unigenes function, and 184,664 unigenes were classi-

fied into 25 COG clusters, which were mainly enriched in signal transduction mechanisms

Table 1. Primers were selected for RNA-seq validation by RT-qPCR. Three genes were named that TRP channel protein (TRP), pyruvate dehydrogenase complex

(PDC), Phosphoenolpyruvate carboxykinase (PPC).

Gene Forward primer (5’-3’) Reverse primer (5’-3’)

18S TCCAGTTCGCAGCTTCTTCTT AACATCTAAGGGCATCACAGA

TRP GTGTGGGTGTGACGAGTGCG TCCTTGGAGGAGAGGGCGAT

PDC CCGAGCGTCTTCATCTGCGA ACACTGGTGCCCATGCCATA

PPC CCAACAAAAACACCGTGTCG GTTCCGCTGATTTACGAATC

https://doi.org/10.1371/journal.pone.0210414.t001
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(14.65%), general function prediction only (11.93%), cytoskeleton (10.16%), RNA processing

and modification (9.11%) and transcription (6.86%) (Fig 2).

A total of 74,804 unigenes were obtained by GO annotation, which were assigned to three

groups: molecular function, cellular component and biological process, and further divided

into 57 categories. Most of them were concentrated to metabolic process, organelle and cata-

lytic activity, etc. (Fig 3).

Finally, we analyzed the signaling pathways of unigenes with a KEGG KAAS online pathway

analysis tool (http://www.kegg.jp/blastkoala/), a total of 3412 unigenes were mapped to five pro-

cesses: metabolism (48.1%), environmental information processing (18.4%), genetic information

Table 2. Summary of the RNA-Seq reads production after quality trimming and adapter clipping of CC, DD and LL groups.

Sample Clean reads Clean ratio(%) rRNA trimed rRNA ratio(%) GC(%)

CC 49,383,049 95.36 48,772,584 1.24 45

DD 55,481,901 95.03 53,943,281 2.77 47

LL 56,185,316 95.19 53,815,178 4.22 47

https://doi.org/10.1371/journal.pone.0210414.t002

Fig 1. Unigenes distribution.

https://doi.org/10.1371/journal.pone.0210414.g001
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processing (13.6%), cellular processes (13.1%), and organismal systems (6.8%). The maximum

concentration of unigenes in metabolism was in the global and overview maps pathways, followed

by carbohydrate metabolism, amino acid metabolism and lipid metabolism pathway. The path-

ways which contained the most unigenes of the other four processes were signal transduction,

translation, transport and catabolism, and endocrine system, respectively (Fig 4).

DEGs analysis

To analyze the DEGs among the different samples, we found that the number of up-regulated

DEGs between the LL vs. CC was 6,008, and down-regulated DEGs were 2,064. The up-regu-

lated DEGs in DD vs. CC were 4,704 and down-regulated DEGs were 2,210. Between the LL

vs. DD, the up-regulated and down-regulated DEGs were 2,817 and 4,341, respectively (Fig 5).

The significant DEGs were assigned to 196, 180 and 212 KEGG pathways for LL vs. CC, LL vs.

DD and DD vs. CC, respectively. The significantly enriched pathways (q-value<0.05) are shown in

Table 3. We found that the phototransduction (Fig 6) and glycolysis / gluconeogenesis (Fig 7) path-

ways were only included in the DD vs. CC comparison; oxidative phosphorylation (Fig 8) pathway

was included only in the LL vs. CC comparison, but no significantly enriched pathway was found

in the LL vs. DD comparison. We also found that the TRP has a significant upregulation in the

phototransduction pathway. The PDC and PPC genes were found in glycolysis/ gluconeogenesis

pathway, but PDC was significantly down-regulated and PPC was significantly up-regulated. Next,

Fig 2. Unigene COG annotation.

https://doi.org/10.1371/journal.pone.0210414.g002
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we obtained the significantly enriched GO terms from the DEGs with a p-value<0.05. There we

had 23, 16 and 42 significantly enriched terms in LL vs. CC, LL vs. DD and DD vs. CC, respectively.

The terms of ‘metabolic process’, ‘cell’, and ‘catalytic activity’ were the most highly enriched in the

three groups (S1, S2 and S3 Figs). Some of the DEGs clustered in ‘developmental process’ and

‘growth’ in the LL vs. CC and DD vs. CC comparisons (S1 and S3 Figs).

RT-qPCR identified DEGs expression

Three DEGs were selected to verify the RNA-Seq results. The results of RT-qPCR confirmed

that TRP was significantly up-regulated in the constant light and constant darkness groups

Fig 3. Unigene GO annotation.

https://doi.org/10.1371/journal.pone.0210414.g003
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when compared with the control group (Fig 9A). Additionally, PDC was significantly down-

regulated in the LL and DD groups (Fig 9B). We also found that PPC had no expression in CC

group, but significant expression levels in the LL and DD groups, confirming the results from

the RNA-Seq (Fig 9C).

Discussion

This is the first report on the transcriptome of eyestalks ganglion in E. sinensis that were

obtained with Illumina HiSeqTM2000 after exposure to different photoperiods. From the

results we obtained, unigenes found to be primarily enriched in signal transduction mecha-

nisms and metabolism with COG, GO and KEGG annotation analysis These results indicate

that photoperiod conditions can also affect signal transduction and energy metabolism in E.

sinensis as in other animals, such as E. superba, C. glacialis and P. clarkii [12, 13, 22].

Further analysis of DEGs, we found that the phototransduction pathway was significantly

enriched in DEGs (Fig 6). In the phototransduction pathway, the gene TRP has a significant

upregulation (Fig 6A) in LL vs. CC and in DD vs. CC. Researchers had previously confirmed

Fig 4. Unigene KEGG pathway annotation.

https://doi.org/10.1371/journal.pone.0210414.g004
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that TRP was involved in phototransduction [28], energy balance control [26], and sensory

functions [24]. In mammalian, the intrinsically photosensitive ganglion cells (ipRGCs) and

melanopsin can be photoactivated, and then triggers G protein signaling pathway which can

activate phospholipase C (PLC) and subsequent opening TRP [34]. As same time, TRP can be

activated after light stimulus in Drosophila [35]. These studies indicated that TRP channel

involved the light signal transduction in both vertebrates and invertebrates. So, when crabs

were treated with different photoperiod, the expression level of TRP gene may be affected.

However, the mechanism of how photoperiods affect TRP level is not clear. Some studies have

proven that photoperiods can influence the Ca2+ concentration [36], and thereby influence the

Fig 5. Numbers of DEGs in LL vs. CC, LL vs. DD, and DD vs. CC.

https://doi.org/10.1371/journal.pone.0210414.g005

Table 3. Results of KEGG Pathway of Chinese mitten crab kept in LL vs. CC, LL vs. DD and DD vs. CC.

pathway DEGs with pathway pathway ID

LL vs. CC DD vs. CC LL vs. DD

Ribosome 107 77 — ko03010

Oxidative phosphorylation 38 37 — ko00190

Phototransduction — 21 — ko04745

Glycolysis / Gluconeogenesis — 25 — ko00010

Carbon fixation in photosynthetic organisms 12 14 — ko00710

Fluid shear stress and atherosclerosis 28 30 — ko05418

Cutin, suberine and wax biosynthesis — 2 — ko00073

Phagosome 38 — — ko04145

Apoptosis 30 — — ko04210

https://doi.org/10.1371/journal.pone.0210414.t003
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growth and survival of cells [37]. In crayfish, Ca2+ is related to photoreceptor sensitivity has

been confirmed [15]. And TRP can be activated by Ca2+, to further participate in the process

of phototransduction [38, 39]. In this study, we found that the expression level of TRP was

Fig 6. Phototransduction pathway (DD vs. CC).

https://doi.org/10.1371/journal.pone.0210414.g006
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Fig 7. Glycolysis / Gluconeogenesis pathway (DD vs. CC).

https://doi.org/10.1371/journal.pone.0210414.g007
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changed by constant light or constant darkness. The above statement may provide an idea to

explain how photoperiods affect TRP level. But the effects of TRP are on survival and growth

in E. sinensis needs further research.

Additionally, we also found that guanine nucleotide–binding proteins (G proteins) gene

had significant expression from the phototransduction pathway. G proteins which are made

up of Gαq, Gβe and Gγe can be activated by the light rhodopsin [40–42]. As mentioned earlier,

G protein can stimulate PLC activity and further mediated phototransduction[34, 42]. In fact,

light signal transduction is a complex process, which can be regulated by a variety of substance

interactions including G proteins, cGMP, and K+ exchanger [43]. In this study, the Gαq gene

is significantly upregulated in the phototransduction pathway when crabs were placed in con-

stant darkness seven days (Fig 6). Given this, we can predict that a condition of constant dark-

ness may improve the Gαq expression in eyestalks and therefore influence the

phototransduction pathway.

As mentioned previously, photoperiod can affect energy metabolism. We also found that

the glycogenolysis and glycolysis pathways in E. sinensis eyestalk ganglion were significantly

enriched for DEGs, and the PDC and PPC genes were involved in these pathways (Fig 7). PDC

is an abbreviation for pyruvate dehydrogenase complex, as controlled by the pyruvate

Fig 8. Oxidative phosphorylation pathway (LL vs. CC).

https://doi.org/10.1371/journal.pone.0210414.g008
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dehydrogenase kinase (PDK). It catalyses the oxidative decarboxylation of pyruvate to the ace-

tyl coenzymeA (acetyl-CoA) which produced from the glycogenolysis and glycolysis pathways

[44]. And acetyl-CoA plays an important role in the tricarboxylic acid (TCA) cycle which pro-

duce chemical energy in the form of ATP [45]. Therefore, PDC is indispensable in the meta-

bolic process. On the other hand, researchers have found PDC E1 subunit deficiency in

zebrafish visual mutants, and visual defect can affect energy metabolism [46]. Moreover, PDC

subunits participate in severe neurological dysfunctions, including optokinetic response [47].

Meanwhile, in this study, we also found that photoperiods can affect PDC gene expression of

E. sinensis eyestalk ganglion. Therefore, this study suggests that photoperiod possibly regulates

the PDC activity by eyestalk ganglion, and then affects the energy metabolism process.

PPC is the only enzyme that can catalyze the conversion of oxaloacetate to the intermediate

phosphoenolpyruvate in the glycogenolysis/glycolysis progress [48]. From our RNA-Seq

results, we found the upregulation of PPC gene expression in the glycogenolysis/glycolysis

KEGG pathway (Fig 8). In mammalian, hepatic glucose production is controlled by the gluco-

neogenic enzyme activity in the liver, PPC [49]. And PPC can be regulated by the forkhead

transcription factor (Foxo1) which is a member of a highly-conserved DNA binding motif

protein family and plays an important role in insulin signaling transduction [50]. There was

reported that Foxo 1 mRNA level can be affected on different photoperiod and subsequent reg-

ulating PPC level in rats [32]. In a short, photoperiods regulated the PPC expression level

which was possibly controlled by Foxo 1 expression. But, there was no research on the effect of

Fig 9. RT-qPCR analysis of 3 selected DEGs. Relative expression levels are shown for (A) TRP; (B) PDC; (C) PPC. Asterisks above the bars indicates significant

differences (P< 0.05) between control (CC) and LL or DD group. ——indicates that PPC had no expression in CC group.

https://doi.org/10.1371/journal.pone.0210414.g009
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photoperiod on PPC activity in crustaceans. This study provides new evidence for the effects

of photoperiod on PPC gene expression in E. sinensis. In addition, we found that the pyruvate

kinase (PK) gene was up-regulated in the glycogenolysis/glycolysis pathway. PK can catalyze

phosphate group transfer and phosphoenolpyruvate conversion to adenosine diphosphate [51,

52]. PK not only takes part in carbohydrate metabolism [53–55] but is also involved in immu-

nological reaction progress in crustaceans [56, 57]. A study on Drosophila suzukii found that

photoperiod could regulate the PK levels, and then mediate the adult reproductive diapause

[58]. Currently, there are few reports about the effects of different photoperiods on PK activity

in crustaceans [59]. From our discoveries however, we found that different photoperiods regu-

late the expression of PK, and PK as an important enzyme, participates in energy metabolism.

Therefore, photoperiod could affect energy metabolism progress though PK in crabs.

In the transcriptome, the oxidative phosphorylation pathway was significantly enriched in

DEGs. The NADH peroxidase (NADH) and ATPase were included in this pathway (Fig 9).

NADH, as a part of the pyridine nucleotide, can decompose hydrogen peroxide [60], which

covers the cellular metabolism process [61]. For example, a study showed that temperature

reduction could drop the oxidation matrix volume of NADH, and then decrease the oxidative

phosphorylation capacity of mitochondria [62]. Another study also showed that radiation

affected the oxidative phosphorylation process by oxidizing NADH to NAD+ [63]. However,

NADH is important to mitochondrial metabolism in animals. There have been few reports

about the effects of photoperiod on NADH activity [64]. In this study, constant light and dark-

ness had upregulated the NADH peroxidase gene, which indicates that photoperiods affected

metabolism activity of crabs. There was also a significant upregulation of ATPase gene activity

in the LL and DD groups. ATPase is generated in the mitochondria and participates in oxida-

tive phosphorylation in order to produce ATP [65, 66]. It is well known that ATP decomposi-

tion releases energy to promote cell growth, cell division and other vital movements [67].

Recently, research has shown that photoperiod significantly influences the Na+/K+-ATPase

activity of gills of animals [68, 69]. The vacuolar H+- ATPase (V-ATPase) daily rhythm was

also controlled by photoperiod in insects [70]. Together, these studies indicate that photope-

riod may affect energy metabolism through affecting the activity of ATP enzyme.

In conclusion, photoperiod is important for animals, and man-made changes in photoperi-

ods are bound to influence the physiological activity of animals. Among these physiological

activities, the phototransduction and metabolism processes are significantly enriched in

DEGs. Though RT-qPCR, we verified the upregulation of TRP in the phototransduction path-

way and the downregulation of PDC and upregulation PPC in energy metabolism processes.

Additionally, we also found that there is significantly increased gene expression of cGMP, PK,

NADH peroxidase gene and ATPase genes in different pathways.
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