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Abstract

Microbial organisms inhabit virtually all environments and encompass a vast biological diversity. The pangenome concept
aims to facilitate an understanding of diversity within defined phylogenetic groups. Hence, pangenomes are increasingly
used to characterize the strain diversity of prokaryotic species. To understand the interdependence of pangenome features
(such as the number of core and accessory genes) and to study the impact of environmental and phylogenetic constraints on
the evolution of conspecific strains, we computed pangenomes for 155 phylogenetically diverse species (from ten phyla)
using 7,000 high-quality genomes to each of which the respective habitats were assigned. Species habitat ubiquity was
associated with several pangenome features. In particular, core-genome size was more important for ubiquity than accessory
genome size. In general, environmental preferences had a stronger impact on pangenome evolution than phylogenetic inertia.
Environmental preferences explained up to 49% of the variance for pangenome features, compared with 18% by
phylogenetic inertia. This observation was robust when the dataset was extended to 10,100 species (59 phyla). The
importance of environmental preferences was further accentuated by convergent evolution of pangenome features in a given
habitat type across different phylogenetic clades. For example, the soil environment promotes expansion of pangenome size,
while host-associated habitats lead to its reduction. Taken together, we explored the global principles of pangenome
evolution, quantified the influence of habitat, and phylogenetic inertia on the evolution of pangenomes and identified criteria
governing species ubiquity and habitat specificity.

Introduction

Prokaryotic species vary ~100-fold in genome size and gene
content [1]. The gene content of bacterial and archaeal
genomes is mainly shaped by gene duplication, neo-/sub-
functionalization, and losses. Other sources of functional
innovation include the de novo emergence of genes and
horizontal transfer, all leading to a vast prokaryotic genomic
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diversity [2-4]. In order to characterize strain diversity
within a species, pangenome analyses have proven useful
[5]. The pangenome is the non-redundant set of all genes
(gene clusters or homologous groups) found in all genomes
of a taxon [6, 7]. A species pangenome contains core genes
(that are present in almost all isolates) and accessory genes,
which can be further subdivided based on their prevalence.
Each newly sequenced genome of a conspecific strain can
contribute anywhere between 0 and more than 300 new
genes to the pangenome of a species [8]. This potentially
infinite addition of new genes due to horizontal gene
transfer and other mechanisms means that the accessory
gene repertoire of a species can theoretically increase with
no emerging upper boundary, making pangenomes appear
open [6, 9].

The pangenome of a given species is potentially shaped
by its respective habitat(s) (via selection and drift) and
phylogeny (inherited gene content after speciation). For
example, previous studies have observed a relationship
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between habitat and genome size (as a proxy for gene
content): free-living soil bacteria tend to have the largest
described genomes [10, 11] while marine free-living and
intracellular symbionts harbor the smallest ones [12—15].
Obligate symbiotic species tend to have small pangenomes
—almost equal to the genome size, while soil-associated
and some highly abundant free-living marine bacteria tend
to have the largest pangenomes [16]. However, it is not well
understood which aspects of a species’ pangenome are
influenced by environmental factors and phylogenetic
inertia. The overall architecture of a pangenome can be
described from various angles, using the established quan-
titative measures of individual pangenome features, such as
pan/core-genome sizes, genome fluidity, and average
nucleotide identity/diversity (see Supplementary Table 1 for
definitions of all metrics used in the present study). Many
pangenome features describe the size of certain categories
of genes, while others focus on a description of within-
species diversity.

Pangenome features are generally expected to be phy-
logenetically conserved as a result of the evolutionary his-
tory of a given species (phylogenetic inertia), and
predefined by past exposures to different environments. A
prominent example of phylogenetic inertia is the observa-
tion that closely related species tend to share more genes,
i.e., gene content similarity follows phylogeny [2, 17].
Further, habitat preferences are also phylogenetically pre-
determined [18] and dispersal capability varies across dif-
ferent taxa [19, 20]. On the other hand, environmental
factors shape genome architecture and the pangenome in
general [21]. A (pan)genome’s functional potential mirrors
both niche and phylogenetic signals [22] and consequently,
phylogenetic relatedness and genome functionality are
thought to be mildly predictive of species ubiquity and
genome size [23-25]. Thus, it is expected that variation
among pangenome features is associated with both phylo-
genetic inertia and environmental preferences. Yet, as
phylogeny and habitat preferences are themselves corre-
lated, their interactions need to be considered (Fig. 1).

The pangenome concept and its derivative measures
(features) have been used extensively in the field of com-
parative genomics of prokaryotes to: (i) define species
boundaries [26, 27], (ii) describe the genomic diversity of
species [28], (iii) reveal origins of mutualistic and patho-
genic strains [16] and (iv) characterize evolutionary and
ecological mechanisms that shape genome architecture
[8, 29, 30]. Here, to explore the general principles of pan-
genome evolution and to disentangle the differential impact
of environment and phylogeny, we performed an analysis of
over 7,000 high-quality genomes, encompassing 155 pro-
karyotic species from 10 phyla and 83 environments
(Fig. 1). We computed 21 established pangenome features.
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Fig. 1 Study design. We used the proGenomes database version 1
[32] of high-quality genomes to compute pangenomes (using the
Roary pipeline) and pangenome features. Species were assigned to
their preferred habitats using three databases: PATRIC, Microbe
Atlas Project, and Global Microbial Gene Catalog (see Methods). As
many pangenome features are interdependent (covariates) or affected
by sampling bias, we used a multivariate analysis framework to
disentangle habitat properties from phylogenetic inertia. This allows
for the quantification of environmental and phylogenetic factors that
impact diversity within species. To construct the phylogenetic tree,
we used the concatenated protein sequences of 40 conserved uni-
versal marker genes which were aligned using the ClustalOmega
aligner (default parameters). The tree was constructed using Fas-
tTree2 (JTT model) [52].

The variation across these features was explored with
respect to phylogenetic inertia and environmental con-
straints/preferences (characterized by 83 habitat descriptors)
of the studied species. Using this framework, we quantified
interdependencies of pangenome features, identified novel
relationships among them, and estimated how habitat and
phylogeny shape pangenome architecture. Within our
dataset we could attribute up to 67% of the variation of
pangenome features to habitat and phylogeny, which holds
when scaling up to 10,100 species.

Methods
Genomic data

In this study we used 7,104 genomes from 155 consistently
defined species (defined using 40 universal marker genes—
specl clusters [31]) obtained from the proGenomes database
[32] (see Supplementary Table 2). This removes biases
resulting from differing species definitions in distinct
research areas. To further increase the reliability of further
analysis, we included only high-quality genomes with 300 or
fewer contigs. Only one genome from any pair of genomes
was retained for downstream analysis when pairwise
nucleotide identity in the core-genome was 100% and
pairwise gene content overlap (Jaccard index) >99%. We
used only species that contained at least ten high-quality
genomes in the proGenomes database [32]. Further, we
compiled two confirmatory datasets that included species for
which less than ten genomes were sequenced. The first
confirmatory set represents the full proGenomes database
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(the same database underlying the pangenome dataset)
consisting of 4,582 species (24,223 high-quality genomes).
The second dataset represents the full proGenomes2 data-
base (a recent update of proGenomes) of 84,022 high-quality
genomes from 10,100 species [33]. For our confirmatory
analyses, we computed the average genome size for each
species within each of the datasets.

Habitat annotation

Habitat metadata for isolates/strains were obtained from the
PATRIC database [34], the Microbe Atlas Project database
(https://microbeatlas.org) and Global Microbial Gene Cat-
alog (http://gmgc.embl.de), resulting in the reliable anno-
tation of species to one or more habitats (83 total habitats,
see Supplementary Table 3). PATRIC annotations were
manually curated by searching for a predefined list of
keywords (Supplementary Table 1). Any given species was
considered present in the habitat from Global Microbial
Gene Catalog if at least ten genes of a pangenome where
present in a sample from that habitat. To annotate envir-
onmental preferences using the Microbe Atlas Project
dataset we extracted 16S rRNA genes (at least 50% of the
entire gene length) from the original genbank files or, if
these annotations were missing in the genbank file, we re-
annotated the genomes rRNA genes using barrnap [35].
Extracted 16S rRNA sequences were then mapped to the
Microbe Atlas Project reference database using MAPseq
[36] to link species clusters to Operational Taxonomic
Units at 98% sequence similarity. Associations between
each species and their potential habitats from the Microbe
Atlas Project where tested for significance using Fisher’s
Exact Tests (Benjamini-Hochberg correction, p <0.05).
Ubiquity was estimated as the sum of all positive asso-
ciations across all habitats in the Microbe Atlas Project
dataset. The final annotation is available as Supplementary
Table 3.

Pangenome reconstruction

Pangenomes for the 155 species studied were constructed
using the Roary pipeline [37]. Input genomes for pangen-
ome construction were first annotated using Prokka [38].
We identified homologous gene clusters at an amino acid
identity threshold of 80% [39—42]. Pan and core-genome
curves were generated via 30 input order permutations
(similar to the approach in the GET_HOMOLOGUES
pangenome pipeline [43]). Fitting of non-linear regressions
was performed in R v.3.3.2 [44] using the “nls package”
[45]. The total number of genes in the pangenome of a
given species, the number of new genes added per genome
and the total number of core genes were modeled using

Egs. (1, 2, and 3) respectively to estimate the openness of
pangenomes [6, 7].

G = kN + c, (1)
G = kNC, 2)
G = ke™ 4 ¢, (3)

where G—number of genes; N—genome number that is
added to analysis; k, c,—constants; @ and y—saturation
coefficients. When y <0 in Eq. (1)—pangenome is closed
(saturated) (Fig. 2a); 0O<y<l—pangenome is open
(Fig. 2a). When a <1 in Eq. 2—pangenome is open, a> 1
—pangenome is closed.

Classification thresholds for pangenome subcomponents
were defined as follows: core genes—present in all strains;
extended core—present in >90% of genomes; cloud genes
—present in <15% (includes unique genes in pangenome);
the remaining part of pangenome was considered ‘“‘shell”
genes (Supplementary Fig. 1). These thresholds are based
on default parameters of the Roary pipeline [37], although
we readjusted the extended core threshold to 90%, as sug-
gested by the distribution frequency of genes within the
pangenomes in our dataset (Supplementary Fig. 2). The R
package “micropan” [46] was used to compute genomic
fluidity [47], Chao’s lower bound for gene content in the
pangenome [48] and Heaps’ alpha Eq. (2) [6]. Functional
distance between strains within each pangenome was esti-
mated as Jaccard distance based on eggNog v4.5 annota-
tions [49] of pangenome gene clusters. Twenty-three
parameters (21 pangenome features, plus the number of
conspecific isolates and species ubiquity) were compared
using Spearman’s rank correlation to investigate the rela-
tionship between sample sizes, subcomponents of pangen-
ome, saturation parameters (y and a) from Egs. (1, 2, and 3),
genome fluidity functional distance and core-genome
nucleotide identity (see Supplementary Table 1 for defini-
tions of pangenome features). To obtain unbiased estimates
of core and pangenome sizes we calculated average core
and pangenome sizes across 30 random combination of nine
genomes for each species (also see Supplementary Table 1
and Supplementary Fig. 1). Hierarchical clustering of a
subset of pangenome features was performed on absolute
values of pairwise Spearman Rho values as displayed in
Fig. 2a.

Phylogenetic signal and phylogenetic generalized
least squares

An approximate maximum likelihood phylogenetic tree
of all 155 species was generated using the ete-build
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Fig. 2 Relationship between
different pangenome features.
a Correlation matrix between (I)
the number of conspecific
genomes used to estimate
pangenome features, (II) 21
pangenome features, (III) the
ubiquity of species as an
environmental feature computed
from habitat preference of
strains, and (IV) major habitat
groups from the Microbial Atlas
project. The heatmap visualizes
Spearman Rho values for
correlations between sample size
(), 21 pangenome features (1),
and species ubiquity (III). Four
major habitats (aquatic, animal
host, plant host, soil (IV)) were
correlated to the (I) number of
conspecific genomes, (II)
pangenome features, and (III)
ubiquity via point-biserial
correlation. Statistical
significance of correlations was
determined using adjusted

p values (using Benjamin-
Hochberg correction) <0.05.

b Clustering of a subset of nine
pangenome features based on
their pairwise correlation
strengths. Horizontal stacked
charts present amount of
variance explained by various
predictors (number of genomes,
phylogeny, and habitat
represented by their principal
components (PCs), and genome
size or diversity). The first set of
stacked charts (“no correction’)
shows variance explained in
pangenome features by the
number of genomes used to
compute pangenome features as
well as species’ phylogeny and
habitat preferences; the second
and the third sets of stacked
charts represent the amount of
variance explained (see
“Methods”) by the same set of
predictors when correcting for
genome size or nucleotide
diversity in core-genome
respectively. Size and diversity
estimates form distinct feature
groups.
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concatenation workflow “clustalo_default-trimalO1-none-
none” and “sptree-fasttree-all” from ETE Toolkit v3.1.1
[50], using protein sequences of 40 conserved universal
marker genes [31, 51, 52] and default parameters for the
ClustalOmega aligner [53] and FastTree2 [54] with the JTT
model [55].

To estimate the phylogenetic signal of genomic traits, we
used the R package “phylosignal” [56] with Pagel’s
Lambda [57], following guidelines for phylogenetic signal
analysis [58, 59] (Supplementary Fig. 3). The “Caper” R
package was used for phylogenetic generalized least squares
regression [60].

Quantification of explained variance in pangenome
features

The cophenetic distance matrix obtained from the phylo-
genetic tree and the binary habitat association matrix (83
habitats in total) were each decomposed using the “Facto-
MineR” R package [61]. The first five phylogenetic prin-
cipal components (PCs) (accounting for ~80% of
phylogenetic variance) and ten habitat PCs (accounting for
~50% of habitat variance) were used for variance parti-
tioning. PCs were selected using the “broken stick” model
[62]. The first two PCs for phylogenetic and habitat matri-
ces decompositions are visualized in Supplementary Figs. 4
and 5. In order to minimize the impact of differential
sampling size, the number of genomes used for each species
was included as an additional variable. The fraction of the
variance explained by habitat and phylogeny were esti-
mated using the CAR metric which performs a decorrelation
of predictors [63] implemented in the “car” R package with
the following models:

Pangenome feature = number of genomes in each species
+ 5 phylogenetic PCs + 10 habitat PCs

(4)
Pangenome feature = number of genomes in each species
+ genome size + 5 phylogenetic PCs + 10 habitat PCs

(5)
Pangenome feature = number of genomes in each species

+ core genome nucleotide diversity
+ 5 phylogenetic PCs + 10 habitat PCs.

(6)

We also performed the model-fitting procedure (Eq. 4)
on 1,000 permutations of the first five phylogenetic PCs
and first ten habitat PCs to ensure that the actual habitats
and phylogeny data explained a higher fraction of
the variance than randomized models (Supplementary
Fig. 6).

Results
Delineation of pangenomes and habitats descriptors

The basis of this study is a large collection of pangenomes
from a diverse set of prokaryotic species. To establish this
collection, we filtered the proGenomes database of anno-
tated prokaryotic genomes [32] to select consistently
defined species (see “Methods”, also [31]) for which at least
ten high-quality genomes (conspecific isolates/strains/gen-
omes; further referenced as strains or genomes) were
available (Fig. 1, also see “Methods”). For each of the
resulting 155 species, we computed 21 pangenome features
(ranging from pangenome saturation to functional distance,
see Fig. 2a and Supplementary Table 1). These features
have been shown to characterize different aspects of the
pangenome structure and have been previously used in
pangenome analyses of individual microbial species [6, 47].
Partitioning the pangenome into subcomponents (“‘core”,
“shell”, “cloud”; see “Methods”) enabled us to relate the
evolutionary adaptations of core and accessory genome
features to environmental pressures separately. Pangenome
subcomponents varied in size, for example, average core-
genome size was in the range of 443-5,964 genes; average
pangenome size—959-17,739 genes; average shell
18-2,409; average cloud—5-839 genes. We further anno-
tated all genomes and species with regards to their habitat
preferences. Yet, environmental metadata for many isolates
and prokaryotic species are incomplete and biased towards
clinically relevant host-associated annotations, leaving the
ecological niches of many species under-characterized. To
improve habitat assignments, we used multiple, con-
ceptually different habitat databases. More specifically, we
merged the information obtained from the PATRIC data-
base [34], the Microbial Atlas Project database (http://devel.
microbeatlas.org/) and the Global Microbial Gene Catalog
(http://gmgc.embl.de). This resulted in detailed and accurate
habitat annotations using 83 habitat descriptors (see
“Methods” and Supplementary Table 3). On average, each
species was present in 16.5+7.8 (out of 62 possible)
habitats in Microbial Atlas Project; 2.4+ 1.1 (out of 5
possible) from manually curated PATRIC habitat annota-
tions; and 3.6+2.8 (out of 16 possible) in the Global
Microbial Gene Catalog (Supplementary Table 3).

Interdependencies of pangenome features

The relationships between different pangenomes features
can be an indication of similar evolutionary pressures acting
on the related features. Further, correlations between dif-
ferent features can decrease the accuracy of analyses when
not considered. The number of genomes used to infer a
species’ pangenome needs to be accounted for as it can
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potentially influence the calculation of some of these fea-
tures. Hence, we estimated interdependencies for (i) the
number of conspecific strains (the number of genomes per
pangenome), (ii) the 21 computed pangenome features, (iii)
species ubiquity, and (iv) habitat preference (see Supple-
mentary Table 3 for estimates of pangenome features,
Supplementary Table 1 for definition and Supplementary
Table 4 for correlation summary) (Fig. 2a). Estimates of
pangenome size and the size of its components (core, shell,
and cloud) are strongly correlated with each other (Fig. 2a).
As expected, mean genome size strongly correlated with
several features, including core-genome size (Spearman
Rho =0.955, p<0.00001), pangenome size (0.963, p<
0.00001), and core-genome nucleotide diversity (0.373,
p =0.00003), indicating that a species’ average genome
size is highly predictive of its pangenome features, espe-
cially pangenome size. While these results confirm the
accuracy of our methodology, we found some pangenome
features to be unreliable due to their observed associations
with sample size (number of conspecific strains). Significant
correlations were found for core-genome saturation, core-
genome size, total pangenome size, as well as the sizes of
“cloud” and “unique genes”, indicating that sampling biases
might affect these features. Hence, we excluded these fea-
tures from our in-depth analyses. For pangenome and core-
genome sizes, we used average normalized size features
instead (average of 30 random combinations of nine gen-
omes per species, see Supplementary Table 1 and Supple-
mentary Fig. 1).

Among the reliable features, we unexpectedly found the
several pairs of conceptually related pangenome features,
which were not correlated. For example, the relationship
between genome fluidity [47] and pangenome saturation
was not significant (Spearman Rho =0.15, p=0.72),
despite the fact that both measures are commonly used to
estimate the openness of pangenomes [8, 47] (Supplemen-
tary Table 1). This might indicate that these two measures
characterize different aspects of pangenome openness.
Previous studies have hypothesized an implicit sampling
bias as a possible explanation for this observation [47], but
we did not detect a significant relationship with the number
of sampled genomes in our large dataset for either of the
two features.

Furthermore, the average pairwise functional distance
(average Jaccard distance based on orthologous groups)
between conspecific strains positively correlated to the vast
majority of pangenome features (Fig. 2a). Only three pan-
genome features were not significantly correlated to the
average pairwise functional distance, namely the size of the
extended core, the number of conspecific strains (number of
conspecific genomes used to compute pangenome features)
and ubiquity (see Supplementary Table 4 for Spearman Rho
and p values). We further found that species with larger
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genomes tend to have a higher functional diversity
(Spearman Rho =0.48, 6.5e-9), mainly driven by changes
in the size of the pangenome shell. This seems to imply that
functional diversity is maintained within a substantial
fraction of organisms in species with larger genomes.

To study which factors shape pangenome features, we
performed variance partitioning on 9 out of 21 features
representing qualitatively different pangenome properties
that are practically unaffected by sample size (non-
significant correlations with Spearman Rho close to 0, see
Fig. 2a). We explored the interdependencies of these nine
pangenome features by clustering them according to their
correlation strengths and identified two subgroups (Fig. 2b,
see also Supplementary Table 5). These subgroups split the
features into diversity estimates (core-genome nucleotide
diversity, functional distance, and genome fluidity) and size
estimates (average genome, pangenome, core, shell, and
cloud) implying differing evolutionary dynamics for these
feature groups. Specifically, size-related pangenome fea-
tures were better explained by phylogenetic and environ-
mental preference compared with diversity estimates
(Fig. 2b). We also show that, after correcting for within-
species diversity, a substantial amount of variance is still
explained by environmental preferences and phylogeny
(Fig. 2b). These observations are highly relevant for
understanding the adaptiveness and evolution of pangen-
omes, which have been under ongoing discussion [8].

Species ubiquity is related to core-genome size

All surveyed species are present in multiple habitats (Sup-
plementary Table 3) and the transition between free-living
and host-associated lifestyles were observed frequently on
both micro- and macro-evolutionary (and ecological and
evolutionary) timescales, imposing multidirectional pressures
on the evolution of their genome architecture [64]. Species
ubiquity is a potentially important factor contributing to the
evolution of specific pangenome features that needs to be
considered, because species with broad ecological niche are
likely to have different evolutionary constraints compared
with specialists [65]. We operationally defined species ubi-
quity as the sum of all positive associations with each habitat
in the Microbe Atlas Project dataset (see “Methods”), which
provides the most comprehensive habitat annotations for our
datasets. Broader ecological niches and higher ubiquity have
been suggested to be associated with larger and more func-
tionally versatile genomes [66]. Therefore, we investigated
the relationship between the ubiquity of each species with its
pangenome features in depth and found several associations
(Fig. 2a). We observed a moderate, but significant association
of species ubiquity (Fig. 3a) with average normalized core-
genome size (average core-genome size of random combi-
nations of nine genomes, Supplementary Fig. 1) and
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a 80
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Aquatic

Other

Core genome size (square root transformed)

0 10 20 30
Ubiquity (number of habitats)

Fig. 3 Effect of ubiquity on core-genome size and functional con-
tent. a Species ubiquity (number of habitats a species was assigned
to), a habitat feature, is linked to core-genome sizes after correction for
phylogenetic effect (Phylogenetic generalized least squares, p value =
0.00005, 1=0.98 (95% CI 0.957, 0.992), partial R-square (for ubi-
quity coefficient) 0.09, see also Supplementary Table 6). b Correlation

pangenome saturation. Other pangenome features were not
correlated with ubiquity after correcting for phylogenetic
effects (Fig. 3a, Supplementary Table 6). This suggests that a
larger core-genome may be important to facilitate persistence
and proliferation in multiple habitats. The core-genome of
highly ubiquitous species was enriched in genes coding for
proteins involved in lipid metabolism and secondary meta-
bolite biosynthesis (COG categories I and Q in Fig. 3b,
respectively). This is congruent with earlier studies, sug-
gesting that secondary metabolite biosynthesis might be
implicated in adaptation to multiple environments [66].

Dissecting the impact of phylogenetic inertia and
environment on pangenome features

Phylogenetic inertia and habitat are thought to have a sub-
stantial impact on genome evolution [67, 68], yet to which
degree different aspects or features of pangenomes are
affected is unknown. Our analysis framework allows us to
study these associations in depth. Hence, we quantified
differential contributions of phylogenetic and environ-
mental factors to pangenome architecture. Pangenome fea-
tures were modeled as combinations of the number of
conspecific genomes considered, phylogenetic placement,
and habitat preference. For this we used an abstract repre-
sentation of phylogeny and habitats as PCs, accounting for
dimensionality, collinearity, and redundancy within these
data. The respective relationships were approximated using
a linear model (see “Methods”), which allowed us to

@ Plant host and soil

@
@ Aquatic, plant host and soil
@© Animal host

(@)

’ Generalized least squares 0.00
.

Phylogenetic
generalized least squares

b Information storage and processing
- -J Translation, ribosomal structure and biogenesis
-A RNA processing and modification
-K Transcription
- -L Replication, recombination and repair

B Chromatin structure and dynamics
Cellular processes and signaling
D cell cycle control

-V Defense mechanisms
-T Signal transduction mechanisms

Spearman Rho -M Cell wall/membrane/envelope biogenesis

- -N Cell motility
BH correction
BB 050 -Z Cytoskeleton
025 -W Extracellular structures
-U Intracellular trafficking, secretion and vesicular transport
025 - Posttranslational modification, protein turnover, chaperones
| ] Metabolism

-C Energy production and conversion
-G Carbohydrate transport and metabolism

-E Amino acid transport and metabolism

- -F Nucleotide transport and metabolism
-H Coenzyme transport and metabolism
- -1 Lipid transport and metabolism

P Inorganic transport and metabolism
-- -Q Secondary metabolites biosynthesis, transport and catabolism
-8 Function unknown

Co;’e Aclcessory
of ubiquity with the relative frequency of functional categories (COG
categories assigned by eggNog v4.5 [47]) in core and accessory
genomes. Species of high ubiquity tend to encode more proteins

involved in lipid metabolism (I) and secondary metabolite
biosynthesis (Q).

estimate the variance of pangenome features between spe-
cies explained by phylogenetic effect and habitat pre-
ferences:

Pangenome feature = Number of genomes
+ [Genome size or diversity] + 5 phylogenetic PCs
+ 10 habitat PCs.

Together, habitat and phylogenetic effects explained the
large parts of the variance (up to 49% by habitat and 18%
by phylogenetic effect) in all selected features (Fig. 2b,
Supplementary Table 5). This remained true, even when
controlling for genome size or core-genome diversity (as
evident when these were included in the model as predictors
as in the second and third set of stacked charts of Fig. 2b)
(Supplementary Table 6). Habitat and phylogeny have
considerable independent effects on pangenome features,
although the impact of habitat preferences was consistently
stronger (Fig. 4). Diversity estimates, in contrast, were
explained to a lesser degree by habitat preferences of
species and phylogenetic inertia, as they likely reflect
spatio-temporal (microevolutionary) variation of subpopu-
lations within-species due to local adaptation and/or genetic
drift [28, 69]. For example, a higher fraction of core-
genome size (and genome size) variance was explained by
species habitat preference than any other pangenome feature
(including accessory genome size when considered sepa-
rately), implying that core-genome size might be linked to a
species’ ecology while the accessory genome might often
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various pangenome features (Fig. 2). In consistence with the
204  Total variance pangenome dataset, habitat preference had a much greater

explained, %
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Fig. 4 Partitioning of variance in pangenome features explained by
phylogenetic inertia and habitat preferences (R-square (car score))
based on model {1} from Fig. 2b.

be more affected by random gene acquisition via horizontal
gene transfer and loss [70-73]. The observed signals were
robust to technical and annotation noise, as random
permutations of habitat and phylogenetic PCs did not
exceed the observed data in variance explained (except for
genome fluidity (Supplementary Fig. 6)). The strongest
phylogenetic effects were observed for average core,
pangenome, and genome sizes (confirmed using Pagel’s
Lambda estimate to test the strength of the phylogenetic
signal [57] (Supplementary Fig. 3). Overall, up to 67% of
the variance of different pangenome features was explained
by habitat and phylogeny (Figs. 2b and 4). Notably, habitat
preferences and phylogenetic inertia affected diversity- and
size-based pangenome features differentially (Fig. 2b).
Due to the required number of genomes of computing
pangenomes, species from just ten phyla were part of the
pangenome study. To confirm our results on the impact of
phylogenetic inertia and habitat preferences on bacterial
evolution across a larger phylogenetic range, we used the
full proGenomes dataset (4,582 species, ca. 24,000 gen-
omes from 59 phyla, see “Methods” and Supplementary
Table 7) and the even larger proGenomes2 dataset
(10,100 species, ca. 84,000 genomes from 59 phyla, see
“Methods” and Supplementary Table §). For most species
in these datasets only one or a few genomes were available,
which did not allow for the computation of pangenomes.
Hence, we leveraged our observation that the average
genome size of prokaryotic species is strongly correlated to
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effect (Fig. 4; proGenomes: 34.6% variance explained;
proGenomes2: 26.7%) than phylogeny (Fig. 4; proGen-
omes: 9.8% variance explained; proGenomes2: 10.8%). The
slightly lower amount of variance explained in the larger
datasets might be due to habitat annotation ambiguity and
phylogenetic uncertainty. Yet, it confirms that habitat has a
larger impact than phylogeny on pangenome architecture
(Fig. 3a).

Environment-driven, convergent evolution of
pangenome features

To investigate how habitat preferences and phylogenetic
inertia impact bacterial evolution in more details, we next
analyzed the effects of selected major habitat groups (soil-
associated, aquatic, animal-host-associated, and plant-host-
associated habitats) on the sizes of genomes/pangenomes
and within-species diversity, accounting for their phyloge-
netic background (Fig. 2a). As expected, soil and plant-host
habitats were associated with larger pan and core genomes,
while animal host habitats were associated with smaller
ones [16, 74]. Aquatic habitats were not a good predictor for
size-related pangenome features, which might be indicative
of their heterogeneous nature [21, 75]. The distribution of
core-genome sizes across the phylogenetic tree of species
studied showed that large core genomes have independently
evolved (Kruskal-Wallis test, chi-squared = 32.194, df =1,
p value = 1.395e-08) in soil-inhabiting species from at least
four (out of ten analyzed) phyla (Proteobacteria, Actino-
bacteria, Spirochaetes, and Firmicutes, Fig. 5). Small core-
genome sizes independently evolved at least three times
(Proteobacteria, Actinobacteria, and Firmicutes) in our
dataset. Nucleotide diversity of the core-genome was, in
contrast to size, less affected by habitat and phylogenetic
signals (Fig. 4, Supplementary Fig. 3). Nevertheless, spe-
cies with a higher nucleotide diversity within their core-
genome were positively associated with aquatic habitats
(Fig. 5) (Kruskal-Wallis test, chi-squared = 25.69, df =1,
p value =4.01e—07), in line with earlier observations from
metagenomics [18]. In conclusion, core-genome sizes and
(to a lesser degree) diversity in prokaryotic species depend
on broad habitat type(s) and range, implying that adaptation
to a given habitat range might lead to convergent evolution
towards habitat-specific core-genome sizes (e.g., soil-
associated species have larger genomes, Fig. 5).

Discussion

The question of how environments shape biological diver-
sity is central to modern biology, extending beyond
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evolutionary biology. Microbial evolution is particularly
affected by ecological constraints due to the broad dis-
tribution of microbial life across virtually all environments
on Earth. Our understanding of microbial species and their

1]
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Kruskal-Wallis
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diverse (marked in blue in right scatter plot). Tree labels and back-
ground of scatter plots are colored by their taxonomic annotations
(phylum). Bottom panel: Relationships between habitats and core-
genome size and average nucleotide diversity of core genomes.

evolution has been extended by the pangenome concept
[5, 6]. By analyzing microbial pangenomes in the context of
their environmental preferences and phylogeny, we were
able to dissect major forces that shape microbial genomes.
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Our results suggest that habitat and phylogeny explain the
majority of variation of pangenome features across different
species, with differential contributions to size and
population-level diversity measures. These results are
highly important for an ecological understanding of pro-
karyotic evolution and this represents the first time that
these factors are quantified in a natural setting. Nonetheless,
different theories and concepts have been postulated to
explain microbial evolution in response to the environment
[8, 76]. For example, it has long been thought that a large
pool of accessory genes would be beneficial in certain
habitats (and habitat combinations). On the other side, the
role of the pangenome as an adaptive evolutionary entity
has been recently disputed. In the respective debate [8, 77—
82], analyses of pangenome size estimates (Fig. 2b) have
led to the conclusion that pangenomes are adaptive [8],
while studies focusing on diversity measures such as gen-
ome fluidity led to the conclusion that pangenome evolution
is predominantly neutral [77]. Our analysis shows that
environmental conditions and phylogenetic inertia affect
size-related pangenome features to a higher degree (than
diversity features), suggesting that the adaptiveness of
pangenomes is at least partially explained by environmental
preferences of species and their phylogenetic inertia
(Fig. 2b). Mechanistically, it is likely that ecological con-
straints imposed by habitats drive pangenome evolution,
through natural selection, genetic drift, and/or both and
most likely in dependence on the species’ effective popu-
lation size [83]. Yet, pangenome size and other features are
also partially determined by phylogenetic inertia: we
observed that core-genome size and average genome size
(number of protein-coding genes) were most affected by
phylogenetic position (Figs. 2b, 4). The conservation of the
core-genome in a given clade is likely due to the fact that it
consists of essential genes that are under strong negative
selection pressure [73, 84, 85], which leads to vertical
“heritability” of its content and size from ancestral species
to descendants during speciation events.

Building on a previous study, which showed a weak
positive relationship between the ubiquity of species and
overall genome size [66], we found that the strongest (albeit
still moderate) correlation was with core-genome size
though a larger accessory genome had been thought to be
instrumental for species ubiquity [66, 76]. Our more
detailed observations suggest that genes that facilitate ubi-
quity (i.e., species presence across many habitats) are
usually present in the core-genome, which is further sup-
ported by the absence of a significant correlation between
average intra-species pairwise functional distance and ubi-
quity (Fig. 2a). If functional diversity of accessory genome
was highly important for ubiquity, we would expect a
positive correlation between intra-species pairwise func-
tional distance and ubiquity. In other words, the expansion
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of a species into additional habitats requires almost all
strains to have genes that facilitate survival and proliferation
in all or most species habitats.

Overall, our results indicate important relationships
between the environment, macro- and micro-evolutionary
patterns in pangenome features, exemplified by the asso-
ciation between ubiquity and core-genome size. Hence,
multifeature predictive modeling is able to predict the ubi-
quity and environmental preferences of microbial species
from pangenome information and phylogenetic placement,
whereby accuracy will increase as more (pan)genomes
become available. Functional knowledge of the genes within
the pangenome will also help to predict habitat ranges as
well as required or desired environmental conditions, in the
context of the respective phylogenetic placements.
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