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Signal transducer and activator of transcription 3 (STAT3) is a transcription factor which can be activated
by cytokines, growth factor receptors, and nonreceptor-like tyrosine kinase. An activated STAT3 translo-
cates into the nucleus and combines with DNA to regulate the expression of target genes involved in
cell proliferation, differentiation, apoptosis and metastasis. Recent studies have shown that STAT3 plays
important roles in viral infection and pathogenesis. STAT3 exhibits a proviral function in several viral infec-
tions, including those of HBV, HCV, HSV-1, varicella zoster virus, human CMV and measles virus. However,
in some circumstances, STAT3 has an antiviral function in other viral infections, such as enterovirus 71, se-
vere acute respiratory syndrome coronavirus and human metapneumovirus. This review summarizes the
roles of STAT3 in viral infection and pathogenesis, and briefly discusses the molecular mechanisms involved
in these processes.
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Signal transducer and activator of transcription factors (STATs) are a family of transcription factors that regulate
cell proliferation, differentiation, apoptosis, inflammation and oncogenesis [1–3]. Seven STAT proteins (STAT1–4,
STAT5a, STAT5b and STAT6) have been discovered in mammals [2]. When activated by cytokines and growth
factors, STATs become phosphorylated on specific tyrosine residues by Janus kinases (JAKs) and form homodimers
or heterodimers and then translocate to the nucleus where they regulate the transcription of target genes [3]. Each
STAT protein contains six conservative domains; however, upon activated by the specific stimulators, the STATs
are phosphorylated in a STAT-specific manner at distinct residues in the C-terminal domain by different JAK
members. Therefore, STATs play different roles in the multiple biological processes [4,5]. Specifically, STAT3 plays
a central role in the development, immunity and carcinogenesis, since it critically regulates the transcription of
multiple key genes involved in cell proliferation, differentiation, apoptosis, immune responses, angiogenesis and
metastasis [5].

STAT3 is first identified as a DNA-binding factor that selectively attaches to the IL-6-responsive elements in the
promoter region of the IL-6-stimulated hepatocytes under the acute phase [6]. As a central axis signal transduction
molecule, STAT3 plays an important regulatory role in the process of cellular immune responses, antagonizes the
release of cytokines, such as IL-12 and IFN-γ, from Th1 cell, and regulates the development and differentiation of
T helper cells, such as Treg, Th1 and Th17 [7–9]. Furthermore, it can regulate cell apoptosis through the Fas, BCL-XL,
and BCL-2 genes [10]. Recently, the role of STAT3 in viral infection has been attracting research interest. Several
studies showed that STAT3 affects many kinds of viral infections and pathogeneses, including those of HBV, HCV,
varicella zoster virus (VZV), and severe acute respiratory syndrome coronavirus (SARS-CoV) [11–14]. The present
review summarizes the roles of STAT3 in these viral infections and pathogeneses, and simply discusses the molecular
mechanisms by which STAT3 functions, specifically in the virus life cycles and related disease development.
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Figure 1. Schematic structure of STAT3. STAT3 has two isoforms, STAT3α and STAT3β. STAT3α protein is composed of
ND, CCD, DBD, linker domain, SH2 domain and a C-terminal TAD. However, the transactivation domain is absent in
the alternative splicing variant, STAT3β.
CCD: Coiled-coil domain; DBD: DNA binding domain; ND: N-terminal domain; TAD: Transcriptional activation domain.

Structure of STAT3 protein
The human gene that encodes STAT3 is located on chromosome 17q21. The STAT3 protein is 84–113 kDa and
contains 750–795 amino acids [15]. Like other STATs, The STAT3 protein comprises six functional regions, namely,
N-terminal domain, coiled-coil domain, DNA binding domain, linker domain, SH2 domain and a C-terminal
transcriptional activation domain (TAD) (Figure 1). N-terminal domain is involved in STAT3 dimerization, and
coiled-coil domain is associated with important regulatory modifiers. DNA binding domain forms complexes
between STAT3 and DNA, and the SH2 domain recruits two activated STATs to form dimers. TAD, which
communicates with transcriptional complexes, contains a tyrosine residue at position 705 and a serine residue at
position 727, both of which can be phosphorylated after activation [16]. STAT3 possesses two isoforms, namely,
STAT3α and STAT3β (Figure 1). STAT3α is the main isoform expressed in cells. In contrast to STAT3α, STAT3β is
truncated in TAD by alternative splicing. STAT3β can inhibit the transactivation effects of STAT3α by competitively
binding to the promoter of STAT3α target genes [17].

Activation of STAT3 signaling
The STAT3 protein exists in an inactive form in the cytoplasm. STAT3 is activated by several cytokines including
the IL-6 family, cardiotrophin-1, ciliary neurotrophic factor (CNTF), IL-5, IL-9, IL-10, IL-11, IL-12, IL-21,
IL-22, IL-27, LIGHT, MCP-1, TNF-α and IFN-γ [10]. These cytokines bind to their specific receptors to form
oligomerized receptor complexes, alter the cytoplasmic domain and activate the corresponding JAK. The JAKs,
in turn, phosphorylate the specific tyrosines in the intracellular domains of the receptors, while recruiting and
phosphorylating STAT3. The activated STAT3 separates from the receptor to form homodimers or heterodimers
with other STAT proteins through SH2 domain interaction. Dimerized STAT3 is then translocated from the
cytoplasm to the nucleus to bind to the target gene promoter region and induces gene expression (Figure 2) [18].

STAT3 can also be activated by various growth factor receptors, including EGF receptors (EGFRs), HGF
receptors, FGF receptors, PDGF receptors, and IGF receptors (IGFRs) [19] and by hormones and oncogenes
through receptor tyrosine kinases (Figure 2) [20].

STAT3 signaling is activated by phosphorylation in the C-terminal domain. Tyr705 phosphorylation is mainly
induced and required for dimerization to activate STAT3 signaling. The phosphorylation of STAT3 at serine 727 is
mediated by serine kinases as observed in the mTOR and MAPKs including ERK, p38 and JNK, and leads to the
upregulation of the transcriptional activity [21]. Unphosphorylated STAT3 (U-STAT3) can also communicate with
NF-κB to form a complex, which then translocates into the nucleus and activates the expression of NF-κB-regulating
genes [22].

Besides being phosphorylated at tyrosine 705 and serine 727, STAT3 is also acetylated at lysine residue 685 by
histone acetyltransferase p300 [23]. The process is inhibited by histone deacetylases (HDACs). Acetylated STAT3
(Ac-STAT3) participates in forming stable dimmers [23].

Regulation of STAT3 signaling
STAT3 activation of is generally rapid and transient and plays a key role in the physiological function of normal
cells. STAT3 activation is regulated by mechanisms involving suppressor of cytokine signaling (SOCS), protein
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Figure 2. STAT3 activation and signaling regulation. In response to some cytokines, growth factors and other
triggers, STAT3 is phosphorylated by receptor-associated kinases and then forms homo- or heterodimers. STAT3
dimers then translocate to the nucleus where they act as a transcription activator and mediate the expression of a
variety of genes. These genes play important roles in inflammation, oncogenesis, cell survival and angiogenesis. It
should be noticeable that some key components for STAT3 signaling are regulated by several phosphatases and
suppressors. Please see the detail in the text. Arrows indicated the increase, whereas T-line means the blockage.
PIAS: Protein inhibitor of activated STAT; SOCS: Suppressor of cytokine signaling.

inhibitor of activated STAT (PIAS), protein tyrosine phosphatases and genes associated with the retinoid-IFN-
induced mortality (GRIM-19) [13,14,18]. The SOCS3 can inhibit STAT3 phosphorylation by binding to the SH2
domain of JAKs and consequently blocks the subsequent phosphorylation of STAT3 [13], and PIAS-3 inhibits the
DNA-binding of STAT3 by binding to the STAT3 dimer (Figure 2) [14].

Function of STAT3
STAT3 is widely expressed in various tissues and involved in cell proliferation, differentiation, apoptosis and
oncogenesis (Figure 2). STAT3-knockout mice are embryonic lethal [24], and STAT3 maintains the self-renewal
of embryonic stem cells [25]. In the immune system, STAT3 affects T- and B-cell maturation, differentiation
and function. The differentiation of CD4+ T cells (including Th17 and Th2 cells) is dependent on STAT3 [26–

29]. In brain cells, STAT3 can be activated by CNTF receptor and leptin. CNTF is incapable of inducing the
phosphorylation of protein kinase B (Akt and PKB) in STAT3-deficient neurons, indicating that STAT3 has a direct
effect on Akt activation [30]. Furthermore, STAT3 activation is critical to the differentiation of keratinocytes [31].
Mice lacking STAT3 activity in keratinocytes showed significantly disrupted regrowth and wound repair [32].
Additionally, STAT3 is specifically activated during mammary gland cell degeneration, and the absence of STAT3
in mammary cells causes a delayed involution of the mammary glands [33]. Given the diversity of STAT3 functions,
many viral infections are associated with the STAT3 signaling.
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Figure 3. STAT3 signaling pathway modulated by the virus infections. The viruses mainly modulate STAT3 signaling through the
IL-6/IL-6R/gp130/JAKs cascade. STAT3 signaling, sometimes triggered by other cytokines, growth factor and tyrosine kinase, are also
modified by several viruses. Furthermore, the downstream components of the IL-6/STAT3 cascade can interact with the
Ras/Raf/MEK/MAPKs and PI3K/Akt/mTOR pathways. The details about how the viruses regulate STAT3 signaling can be seen in the main
text. Main pathways modified by the viruses are indicated with the bold arrow; the broken line indicates that the effects are mainly
mediated by in an indirect way. The HBV- and HCV-induced effects on STAT3 signaling are specifically indicated in the red and orange
colors, respectively.
ER: Endoplasmic reticulum; Mt: Mitochondria; RABV: Rabies virus; ROS: Reactive oxygen species; RSV: Reproductive and respiratory
syndrome virus; SOCS: Suppressor of cytokine signaling; TF: Transcription factor; TMEV: Theiler’s murine encephalomyelitis virus.

Role of STAT3 in viral infection
STAT3 can be activated by IL-6 and IL-10 family cytokines and growth factors [10]. Thus, STAT3 plays a key role
in the pathogenesis of many cancers [34], lymphocyte differentiation and innate immune response [35,36]. However,
the role of STAT3 in viral infection is complicated, and various viruses cause differences in the host cell STAT3
activation (Table 1 & Figure 3). STAT3 participates not only in host antiviral immune response, but also in the
inflammatory responses induced by viruses. Thus, the role of STAT3 in virus replication is uncertain and seems to
function as a proviral or antiviral factor in a virus-specific manner (Table 1).

STAT3 in hepatitis B & C virus infection
STAT3 can be activated by HBV, HCV and several oncogenes [37,44,46]. HBV or HCV infection is the major risk
factor of hepatocellular carcinoma (HCC) [94]. The constitutive activation of STAT3 has been detected in HCC
tissue [36].

Role of STAT3 in HBV infection

HBV infection is an important cause of hepatitis, cirrhosis and liver cancer. HBV-induced primary liver cancer,
advanced liver cancer recurrence and metastasis are associated with persistent inflammation accompanying the
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Table 1. Dual role of STAT3 in viral infection.
Roles in viral
infection

Research models Molecular mechanism Ref.

Proviral activity or promote the virus-induced pathogenesis

HBV HepG2 cells HBx activates STAT3 signaling through oxidative stress [37]

Human hepatoma cell lines (Hep3B and
PLC/PRF/5) and nontumourigenic hepatocyte cells
(MIHA and L02)

HBx upregulates miR-21 mediated by IL-6/STAT3 pathway [38]

HBV transgenic mice HBsAg impairs T-cell activation by polarizing monocytes toward mMDSCs in an
ERK/IL-6/STAT3 signaling-dependent manner

[39]

Clinical HCC specimens and cell lines (HepG2,
HepG2.2.15, HuH7)

HBV downregulates miR-340-5p to induce STAT3 and promote the migration of liver
cancer cells

[40]

HepG 2.2.15 STAT-3 and HNF-3 binding cooperatively stimulates the HBV enhancer I function in
response to IL-6 and EGF

[14]

HBV transgenic mice and HepG 2.2.15 RT and IL-6 induced HBV reactivation through STAT3 signaling [41]

The human HCC cell lines Bel-7402 and
SMMC-7721

HBx-� C1 enhances liver cancer stem cells properties through Stat3/Nanog cascade [42]

Patients with HBVGN and HK-2 cells HBx upregulates the Bax/Bcl-2 ratio by activating JAK2/STAT3 to cause renal
tubular epithelial cell apoptosis

[43]

HCV Huh 7 cells NS5A induces oxidative stress and activates STAT3 and NF-�B [44]

Huh-7 and FCA4 cells and liver biopsy specimens HCV activates STAT3 through oxidative stress and induces the activation of tyrosine
and MAP kinases

[45]

Purified monocytes from healthy donors Extracellular HCV core protein activates STAT3 through PI3K/Akt and IL-6 pathway,
which impairs T-cell response

[46]

Mice expressing HCV core and Causes ROS and lowers mitochondrial transmembrane potential, leads to DNA
damage and activation of STAT3

[47]

TRNS3/4A cell

Huh-7, Huh-7.5, NNeoC5B and NNeo3-5B cells Activation of STAT3, and which positively regulates MT dynamics to increase HCV
replication

[11]

Huh7 STAT3 upregulates lnc-IGF2-AS and lnc-7SK through PI4P to promote HCV replication [48]

Huh7 HCV upregulates STAT3 by sponging miR-122 and inhibits the expression of IFN-�
and IFN-�

[49]

Purified monocytes from healthy donors HCV core induces MDSC-like monocytes via TLR/PI3K/AKT/STAT3 signaling to
inhibit CD4+ T-cell activation

[50]

HepG2 and NIH 3T3 cells Activation of STAT3 results in rapid proliferation and upregulation of Bcl-XL and
cylin-D1

[51]

HepG2 and Huh7 NS5A activates STAT3 signaling through Jak1, and then upregulates the STAT3
downstream molecules Bcl-xL and p21

[52]

HepG2 HCV core induced STAT3 phosphorylation and upregulates NANOG [53]

Huh-7, Huh7.5.1, and PHHs NS4B activates STAT3, which stimulates cancer-related target genes expression [54]

VZV HELF and human skin xenograft in SCID mice Activation of STAT3, by which to increase the expression of survivin [13]

MeWo and HELF cells Increases in miR-21 and activation of the STAT3 signaling [55]

HCMV MRC-5, ARPE19 and U373 cells HCMV utilizes unphosphorylated STAT3 to promote HCMV DNA replication, IE1 as a
regulator of STAT3 intracellular localization and IL-6 signaling

[56]

HepG2 and PHH cells Activation of IL-6/JAK/STAT3, which enhances the rumor sphere formation [57]

EBV NPC cell line (CNE1) LMP1 stimulated STAT3 via JAK3 and ERK [58]

Cervical carcinoma cell line C33A cells LMP1-CTAR1 activates STAT3, which increase Bcl-3 to regulate EGFR [59]

Cervical carcinoma cell line C33A cells, Rat-1 cells
and 293T cells

LMP1 activates EGFR, STAT3 and ERK via PKC� [60]

HeLa and HEK 293T EBNA2 augments STAT3-DNA binding ability [61]

B-cell lines LMP2A activates STAT3 via PI3K/BTK pathway [62]

NPC cell lines, HONE-1 and CNE-2 Activation of STAT3 directly contributes to the intrinsic invasiveness of NPC cells [63]

Human NPC cell line CNE1 LMP1 activates STAT3 contributes to the invasion of NPC [64]

BL: Burkitt lymphoma; CVB3: Coxsackie virus B 3; DC: Dendritic cell; DV: Dengue virus; EGFR: EGF receptor; EV71: Enterovirus 71; HBsAg: Hepatitis B surface antigen; HBVGN: HBV-
associated glomerulonephritis; HCC: Hepatocellular carcinoma; HCMV: Human cytomegalovirus; HELF: Human embryonic lung fibroblast; hMPV: Human metapneumovirus; HTLV-1:
Human T-cell leukemia virus type-1; IAV: Influenza A virus; KO: Knock-out; KSHV: Kaposi’s sarcoma herpesvirus; LCL: Lymphoblastoid cell lines; MDDC: Monocyte-derived DC; mMDSC:
Monocyte toward myeloid-derived suppressor cell; MT: Microtubule; NPC: Nasopharyngeal carcinoma; PHH: Primary human hepatocyte; PRRSV: Porcine reproductive and respiratory
syndrome virus; RABV: Rabies virus; RD: Rhabdomyosarcoma cell; ROS: Reactive oxygen species; RRSV: Reproductive and respiratory syndrome virus; RSV: Reproductive and respiratory
syndrome virus; RT: Radiotherapy; SARS-CoV: Severe acute respiratory syndrome coronavirus; SCID: Severe combined immune deficiency; TMEV: Theiler’s murine encephalomyelitis
virus; VZV: Varicella zoster virus.
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Table 1. Dual role of STAT3 in viral infection (cont.).
Roles in viral
infection

Research models Molecular mechanism Ref.

CNE1 LMP1-activated EGFR and STAT3 promote cyclin D1 [65]

Patient samples, NPC cell lines (HNE-1, 5-8F,
HONE-1, C666-1)

LMP-1 suppressed miR-204 expression by activating STAT3 [66]

P3J-HR1K BL cells (HH514-16) STAT3 presents high level in the refractory state [67]

Patients and EBV-infected HH514-16 cell line STAT3 upregulates KRAB-ZFPs, and limits lytic activation to favor the persistence of
tumor cells

[68]

EBV lymphoblastoid cell lines (EBV-LCLs) STAT3 regulates the lytic susceptibility via cellular PCBP2 [69]

KSHV TIME cells, hDMVEC cells, BCBL-1 and BJAB cells Activation of STAT3 by gp130 and JAK2 [70]

RRSV A549, HEP-2 cells Activation of STAT3 via IL-6 [71]

HIV Immature DCs Nef activates STAT3 [72]

Primary human monocyte/macrophages Nef activates STAT3 through the release of soluble factors [73]

Immature MDDCs Gp120 activates IL/STAT3 pathway [74]

HTLV-1 T-cell lines Tax activates sIL-6R/STAT3, which enhanced proliferation of HTLV-I-infected T cells [75]

HTLV-1-infected patients sample and T-cell lines IL-10 mediates lymphoproliferation by STAT3 and IRF4 pathways [76]

DV DCs, HepG2 Activation of JAK2/STAT3 induces chemokine production [77,78]

TMEV Female C57BL/6 (B6) mice, IL-6 KO mice
Human IL-6 Tg mice

Increased IL-6 promotes IL-17, they activate STAT3 and NF-� B to promote viral
persistence

[79]

Antiviral activity or inhibits the virus-induced pathogenesis

HSV Murine model Phosphorylated STAT3 activates genes including Bcl-2, Bcl-XL, IAP2, Pim-1,
neurodegenerative GAP-43 and neuronal development GFPAF, to maintain the
latent state of HSV

[80]

C57BL/6 mice IL-6-induced STAT3 cascade prevents the loss of neuronal precursors induced by
HSV-1

[81]

STAT3-knockout mice and Vero cells STAT3-knockout cells were more susceptible to HSV-1 [82]

IAV HeLa H5N1 NS1 reduce IFN-induced STAT3 [83]

Huh7 and A549 STAT3 induce ISGs to inhibit IAV replication [84]

Human type I-like alveolar epithelial cells H5N1 and H1N1 inhibit the activation of STAT3 [85]

Mumps virus Human 2FTGH, 293T, NIH 3T3, 3T3/v-Src, U3A and
U6A cell lines

V protein causes STAT3 degradation and prevents responses to IL-6 and v-Src [86]

Measles virus Human 2fTGH, 293T and 293 Tet-On cell lines, and
murine NIH 3T3 cells

V causes a defect in IFN-induced STAT nuclear accumulation, including STAT3, to
prevent responses to IL-6 and v-Src

[87]

SARS-CoV Vero E6 cells Activation of p38 MAPK pathway induces STAT3 dephosphorylation to promote
replication

[88]

hMPV A549 and monkey kidney cells Attenuates the IL-6-mediated JAK/STAT3 signaling cascade [89]

PRRSV MARC-145, HEK-293, HeLa Nsp5 induces STAT3 degradation [90]

CVB3 Mice with the cardiomyocyte-restricted STAT3
deletion

STAT3 in cardiomyocytes protects the CVB3-induced myocarditis by increasing the
expression of collagen I and decreasing matrix degradation

[91]

EV71 RD and SH-SY5Y EV71 increases miR-124 to inhibit IL-6R and STAT3 [92]

RABV COS-7 RABV P protein inhibits STAT3 nuclear accumulation and gp130-dependen signaling [93]

BL: Burkitt lymphoma; CVB3: Coxsackie virus B 3; DC: Dendritic cell; DV: Dengue virus; EGFR: EGF receptor; EV71: Enterovirus 71; HBsAg: Hepatitis B surface antigen; HBVGN: HBV-
associated glomerulonephritis; HCC: Hepatocellular carcinoma; HCMV: Human cytomegalovirus; HELF: Human embryonic lung fibroblast; hMPV: Human metapneumovirus; HTLV-1:
Human T-cell leukemia virus type-1; IAV: Influenza A virus; KO: Knock-out; KSHV: Kaposi’s sarcoma herpesvirus; LCL: Lymphoblastoid cell lines; MDDC: Monocyte-derived DC; mMDSC:
Monocyte toward myeloid-derived suppressor cell; MT: Microtubule; NPC: Nasopharyngeal carcinoma; PHH: Primary human hepatocyte; PRRSV: Porcine reproductive and respiratory
syndrome virus; RABV: Rabies virus; RD: Rhabdomyosarcoma cell; ROS: Reactive oxygen species; RRSV: Reproductive and respiratory syndrome virus; RSV: Reproductive and respiratory
syndrome virus; RT: Radiotherapy; SARS-CoV: Severe acute respiratory syndrome coronavirus; SCID: Severe combined immune deficiency; TMEV: Theiler’s murine encephalomyelitis
virus; VZV: Varicella zoster virus.

expression of STAT3. HBV infection activates STAT3 through the HBV X protein (HBx) and hepatitis B surface
antigen (HBsAg), and the activated STAT3 interacts with different target genes, causing numerous effects on host
antiviral immunity, viral replication and HCC [37,39].

HBx is a multifunctional protein that regulates gene transcription, signal transduction, cell cycle, cell proliferation
and apoptosis [37]. HBx may exert these effects directly or indirectly and result in HCC. It also induces oxidative
stress in the mitochondria, thereby increasing the reactive oxygen species (ROS) levels and inducing the activation
of STAT3 and NF-κB [37]. Furthermore, HBx promotes the phosphorylation of STAT3 by activating the IL-
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6 signaling [38]. HBx induces IL-6 to activate STAT3, and the activated STAT3 cooperatively interacts with
hepatocyte nuclear factor 3 (HNF-3) and promotes HBV replication [14]. HBV reactivation can occur after
radiotherapy for hepatobiliary malignancies [95], it was observed that IL-6 and radiotherapy synergistically promote
the phosphorylation of STAT3, and the phosphorylated STAT3 subsequently forms HNF-3-p-STAT3 heteromeric
complexes to its cognate sequence within HBV enhancer 1 [41]. miR-21 is overexpressed in the majority of
cancer types and is involved in approximately all tumorigenic processes [96]. miR-21 is upregulated in HCC [97].
HBx activates IL-6 to promote the phosphorylation of STAT3 and upregulate miR-21 expression that leads to
the transformation of nontumor hepatocytes [38]. Furthermore, the blockage of STAT3 signaling by shRNAs
can promote the cell apoptosis of HBV-positive HCCs and induce cell cycle arrest; HCC cell growth is then
inhibited in vitro [98]. Using Tet-On inducible cell models, Ching et al. [42] discovered that STAT3/NANOG
signaling plays a crucial role in enhancing the stemness properties, including self-renewal, tumorigenicity and drug
resistance, mediated by C-terminally truncated HBx (HBx-�C1). HBx-�C1 contributes to the intensification
of the aggressive behavior of HCC [99]. NANOG maintains the pluripotency of embryonic stem cells [100] and is
identified as an oncogene [101].

Glomerulonephritis, also called HBV-associated glomerulonephritis (HBVGN), is recognized as the most com-
mon extrahepatic damage caused by HBV infection. It was found that HBx activates the JAK2/STAT3 signaling
pathway and increases the p-STAT3 expression in renal tubular epithelial cells [43]. Subsequently, the activated
JAK2/STAT3 signaling increases the ratio between Bax and Bcl-2, which are involved in cell apoptosis [102]. These
findings suggest that the JAK2/STAT3 signaling pathway is involved in the process of renal tubular epithelial cell
apoptosis in HBVGN caused by HBx [43].

HBsAg, secreted by HBV infected hepatocytes, is the most abundant HBV protein in the peripheral blood of
patients with chronic HBV infection (CHB) [103]. A weak HBV-specific T-cell response is usually associated with
CHB [104]. It was observed that STAT3 phosphorylation was mediated in an autocrine manner by HBsAg-induced
IL-6 in monocytes [39]. HBsAg activates the ERK/IL-6/STAT3 pathway to polarize monocytes toward myeloid-
derived suppressor cells (mMDSCs) and impair T cell activation in patients with CHB; mMDSCs can suppress
host immune response [105].

In addition, miR-340 expression is downregulated in several types of cancer [106], and this occurrence represses
the proliferation, migration and invasion of HCC cells by targeting JAK1 [107]. However, HBV can downregulate
the expression of miR-340 to induce STAT3 overexpression [40]. Conclusively, HBV infection activates STAT3
signaling, which benefits HBV replication and promotes the process of HBV-induced HCC.

Role of STAT3 in HCV infection

HCV is a leading cause of chronic liver disease. Persistent HCV infection often results in an increased risk of
end-stage cirrhosis and HCC [108]. HCV nonstructural proteins, which are localized in the endoplasmic reticulum
(ER) membrane, induce ER stress, which leads to the generation of ROS [44]. HCV NS5A protein induces oxidative
stress and activates STAT3 and NF-κB [44]. It was also found that HCV RNA activates STAT3 through oxidative
stress and induces the activation of tyrosine (JAK and Src) and MAP kinases (JNK and p38 MAPK). Activated
STAT3 holds the potential to promote HCV replication [45]. Machida et al. [47] further observed that HCV activates
STAT3 and DNA damage via ROS.

The HCV core protein also activates STAT3 through the PI3K/Akt and IL-6 pathways [46]. STAT3 activation in
the APCs (including monocytes, macrophages and dendritic cells [DCs]) by extracellular HCV core is dependent
on the PI3K/Akt pathway and requires newly synthesized IL-6. The activated STAT3 in the APCs may alter
APC differentiation, thereby impairing antiviral T-cell response during HCV infection [46]. MDSCs can increase
indoleamine 2,3-dioxygenase (IDO) activity to suppress T-cell function [109], and the HCV core protein can
induce monocytes to differentiate into MDSCs [110]. Zhai et al. [50] found that HCV employed the HCV core to
induce MDSC-like monocytes via the TLR/PI3K/AKT/STAT3 signaling pathway. These MDSC-like monocytes
inhibits CD4+ T-cell activation and expand CD4+CD25+Foxp3+Tregs by IDO1-induced Trp degradation and
accumulation.

HCV infection activates STAT3, which sends a positive feedback to regulate microtubule dynamics. Such
regulation in a replicon-based model occurs via a direct sequestration of the microtubule depolymerizing protein
STEMN1 to enhance intracellular trafficking of the virus and increase HCV replication [11]. In Huh7 cells,
STAT3 promotes HCV replication by upregulating long noncoding RNAs lnc-75K and lnc-IGF2-AS through the
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augmentation of phosphatidylinositol 4-phosphate (PI4P) expression [48]. Furthermore, HCV RNA could function
as miR-122-sponge to upregulate STAT3 expression and inhibit the expression of IFN-α and IFN-β [49].

STAT3 activation by the HCV core in NIH-3T3 cells results in the rapid proliferation and upregulation of
Bcl-XL and cylin-D1 [51], while that by HCV NS5A through JAK1-modulated downstream molecules Bcl-XL
and p21 expression contributes to HCV-mediated pathogenesis [52]. The HCV core proteins activate NANOG via
STAT3 to upregulate cylin-D1 expression and enhance cell proliferation [53]. HCV NS4B induces STAT3 activation
through the ER overload response. The activated STAT3 then stimulates the expression of cancer-related target
genes, including VEGF, c-myc, MMP-9 and Mcl-1, and promotes human hepatocyte viability [54].

In conclusion, STAT3 can be activated by HCV core, NS4B, NS5B and HCV RNA. Activated STAT3 then
contributes to HCV replication by inhibiting host antiviral immune responses and regulating the antiapoptosis
and cancer-related genes that may promote the HCV-induced HCC.

STAT3 in herpesvirus infection
Herpesviruses include α-herpesvirus (HSV and VZV), β-herpesvirus (HCMV, HHV-6 and HHV-7) and γ-
herpesvirus (EBV and Kaposi’s sarcoma herpesvirus [KSHV]). Meanwhile, some herpesvirus infections are associated
with STAT3.

Role of STAT3 in HSV infection

HSV infection induces local skin or mucosa membrane lesions, these usually resolve within a few days to several
weeks. After being triggered by stress or some stimulators, the virus retreats from neurons where it establishes latency,
and is reactivated into the lytic infection. [111]. The latent infection occurs in the sensory or autonomic ganglia and
reactivates under physical, hormonal or emotional stress. In the microenvironment of the ganglion, this virus is
rapidly activated in the presence of antibody against growth factor (NGF) but not in the concomitant presence of
NGF and EGF [112]. Recent studies demonstrated that STAT3 is inhibited in the ganglion culture simultaneously
containing NGF and EGF, and the virus can be reactivated. This result indicated that STAT3 plays an essential role
in the maintenance of HSV latency, whereas histone acyltransferase (p300/CBP) exerts the opposite effect. Given
the lack of direct evidence of blockage of latent virus activation by activated STAT3, Du and colleagues speculate that
STAT3 inhibits HSV replication through its own phosphorylation, phosphorylated STAT3 then translocates into
the nucleus, interacts with p300/CBP, and then activates certain genes, such as the neuroprotective-related genes
Bcl-2, Bcl-XL, IAP2, Pim-1, neurodegenerative gene GAP-43, and neurodevelopmental gene GFPAF, to maintain
the latent state of HSV [80]. Another study reported that the HSV-1 infection of neural progenitor cells results in
the loss of neuronal precursors, although this loss can be prevented by the addition of microglia or conditioned
media from neural progenitor cells/microglia co-cultures through the IL-6- induced STAT3 cascade [81].

To identify how STAT3 regulates the innate immune responses during the early phase of HSV-1 lytic infection,
Hisa et al. [82] utilized the myeloid-specific STAT3-knockout mice. They found that STAT3-knockout bone
marrow-derived macrophages (BMMs) decreased the levels of IFN-α and interferon-stimulated genes (ISGs) in
vivo upon HSV-1 infection. The STAT3-knockout mice were more susceptible to HSV-1 than the wild-type mice
and failed to expand the CD8+ conventional DC population upon HSV-1 infection accompanied by the impaired
NK and CD8+ T-cell activation. This report demonstrated that myeloid-specific STAT3 deletion causes defects in
multiple aspects of the immune system in response to HSV-1. These findings suggested that STAT3 has a protective
role at the early stage of systemic HSV-1 infection [82].

Role of STAT3 in VZV infection

VZV causes varicella during primary infection and zoster upon reactivation. VZV triggers STAT3 phosphorylation
in infected cells in vitro and in human skin xenografts in SCID mice in vivo. STAT3 activation induces the
antiapoptotic protein survivin and promotes VZV infection via increasing the survivin expression and inhibition
of apoptosis [13]. Another work demonstrated that VZV infection can upregulate miR-21 to activate the STAT3
pathway and promote VZV replication in MeWo and human embryonic lung fibroblast cell lines [55].

Role of STAT3 in HCMV infection

HCMV causes an asymptomatic latent infection in healthy individuals. However, HCMV infection sometime leads
to severe diseases involved in immune deficiency, especially in patients with AIDS and in immunocompromised
solid organ and bone marrow allograft recipients. HCMV primarily utilizes unphosphorylated STAT3 to promote
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HCMV DNA replication [56]. HCMV infection disrupts the IL-6-induced phosphorylation of STAT3 and inhibi-
tion of a subset of IL-6/STAT3-regulated gene expression, including SOCS3. A 72 kDa immediate early1 (IE1)
protein of HCMV associated with STAT3 is necessary to localize STAT3 to the nucleus during infection; this
protein diminishes HCMV genome replication [56]. The HCMV infection of HepG2 and primary human hepa-
tocyte cells results in the activation of the IL-6/JAK/STAT3 pathway, which enhances the HepG2 tumor sphere
formation and the transformation of primary human hepatocyte cells. HCMV infection appears to be involved in
the genesis of HCC [57].

Role of STAT3 in EBV infection

EBV mainly invades B lymphocytes and exhibits an affinity to pharyngeal and glandular cells, which are closely
correlated to Burkitt’s lymphoma, Hodgkin’s lymphoma, NK/T-cell lymphoma, post-transplant lymphoprolifer-
ative diseases and nasopharyngeal cancer (NPC). EBV LMP1 stimulated STAT3 signaling in a human NPC cell
line. LMP1 can phosphorylate STAT3 at Tyr705 by activating JAK3 and phosphorylate STAT3 at Ser727 by
activating ERK. STAT3-p705 is correlated with NPC stages III and IV; this observation suggests that STAT3
plays an important role in NPC invasion and metastasis [58]. EBV LMP1 C-terminal-activating region 1 (CTAR1)
specifically induces EGFR expression, which occurs at high levels in NPC. This induction requires NF-κB medi-
ated by the TRAF signaling pathway [59]. In the study of Kung et al. [59], LMP1-CTAR1 expression increased the
phosphorylation of STAT3 at serine and tyrosine. The serine-phosphorylated STAT3 binds to sites within the Bcl-3
promoter and intron 2, thus increasing the nuclear Bcl-3 levels. Binding with p50 homodimer, the increased Bcl-3
forms a unique complex of NF-κB that positively regulates EGFR expression. The researchers further studied the
effects of LMP1 on EGFR and STAT3 activation and found that LMP1–CTAR1 activates STAT3 and EGFR in a
serum-independent manner with the constitutive serine phosphorylation of STAT3. PKCδ is the kinase responsible
for activating STAT3. Inhibition of PKCδ also inhibited the constitutive phosphorylation of EGFR and ERK [60].
Apart from LMP1, Epstein–Barr nuclear antigen 2 (EBNA2) also augmented the transcriptional activity of STAT3
by enhancing the STAT3–DNA binding ability. EBNA2 synergistically acted on STAT3 activation with LMP1 [61].
In addition, EBV LMP2A activates the PI3K/BTK pathway to phosphorylate STAT3 in B-cell tumors and increases
IL-10 expression [62].

Constitutive STAT3 activation is reportedly correlated with advanced clinical staging in NPC [58]. Lui et al. [63]

demonstrated that EBV-induced STAT3 activation directly contributes to the intrinsic invasiveness of NPC cells.
STAT3–Tyr705 is mainly detected in NPC tumors. They utilized the NPC cell line model HONE-1 and found
that EBV induced a high level of STAT3–Tyr705. SiRNA targeting STAT3 inhibited the invasion and cell growth.
Conversely, the activation of STAT3 enhanced the invasiveness and proliferation, as well as increased the expression
of markers of mesenchymal status, proliferation and invasion. Wang et al. [64] found that LMP1 activates STAT3
through the JAK3/STAT3 and MEK1/ERK1/2 pathways, and the activation of STAT3 induces VEGF, and finally
enhances NPC cell migration. LMP1-activated EGFR and STAT3 directly targets the cyclinD1 promoter and
upregulates the cyclin D1 promoter activity and mRNA level in CNE 1 cells [65]. Meanwhile, LMP1 downregulates
miR-204, which functions as a tumor suppressor by activating STAT3 to promote EBV-positive C666-1 cell
invasion and metastasis [66].

EBV persists as a lifelong infection by maintaining the latent phase of its life cycle within B lymphocytes. Upon
infecting primary B cells, EBV must initially drive cell proliferation to establish latency. The exposure of healthy
subject-derived B cells to EBV early resulted in the activation of STAT3, and the activation is necessary for the
subsequent survival and proliferation of EBV-infected cells past the S phase of the cell cycle. However, B cells derived
from patients with autosomal dominant hyper-IgE syndrome (AD-HIES) are impaired in their susceptibility to
EBV-driven growth transformation. Patients with AD-HIES harbor a dominant negative mutation in their STAT3
gene [113].

The lytic activation of EBV is essential to the life cycle of the virus and to most EBV-related diseases. Antiviral
agents that eliminate EBV-positive tumor cells induce the viral lytic cycle. In cell culture, HDAC inhibitors can
induce EBV to enter the lytic cycle. However, only a fraction of cells enter the lytic cycle; the remainder of the
population is refractory in this process. Daigle and his colleagues separated the lytic cells from refractory Burkitt
lymphoma-derived HH514-16 cells after treatment with an HDAC inhibitor. They found that STAT3, Fos and
IL-8 were upregulated in the refractory cell population, whereas IL-6 was upregulated in the lytic population.
Examination of single cells revealed that high levels of STAT3 are strongly associated with the refractory state [67].
The group further investigated whether STAT3 controls the susceptibility to EBV lytic activation and found that
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the levels of activated STAT3 regulated the susceptibility to EBV lytic activation. Further experiments confirmed
that the increased expression of three KRAB-ZFPs and a histone methyltransferase were likely transcriptionally
upregulated by STAT3 in refractory cells. The link between STAT3 and lytic susceptibility shows that STAT3 may
favor the persistence of tumor cells by limiting lytic activation in EBV-induced tumors [68]. Koganti et al. [69] further
observed that STAT3 functions via cellular PCBP2 to regulate the lytic susceptibility.

Role of STAT3 in KSHV infection

KSHV is the infectious cause of Kaposi’s sarcoma, primary effusion lymphoma and multicentric Castleman’s disease.
STAT3 is activated in KSHV-infected endothelial cells by activating gp130 and JAK2. The activation persists for
as long as the latent infection is maintained. The persistent activation of STAT3 may play a critical role in the viral
pathogenesis of Kaposi’s sarcoma, as well as primary effusion lymphoma [70]. Muromoto et al. [114] discovered that
KSHV-encoded latency-associated nuclear antigen induces the activation of STAT3.

STAT3 in respiratory virus infection
Respiratory viruses mainly cause respiratory tract lesions and other organ lesions. Research has shown that IL-6 is
an important factor regulating host susceptibility to respiratory tract infection. IL-6 plays an important role in host
defense and the prevention of lung injury against pathogens. Given that IL-6 activates the JAK/STAT3 signaling
cascade, STAT3 contributes to the pathogenic process of respiratory viruses.

Role of STAT3 in Influenza A virus infection

Influenza A virus (IAV) is a highly contagious single-stranded RNA virus that infects both the upper and lower
respiratory tracts of humans and is considered a major worldwide public health problem. Although seasonal
infections with the most common influenza virus strains (e.g., H3N2) can be resolved typically, infection continues
to cause a high rate of mortality [115]. IAV H5N1 and H1N1 nonstructural protein 1 (NS1) can disrupt IFN
signaling by inhibiting IFNAR expression and upregulating the levels of the JAK/STAT inhibitors SOCS1 and
SOCS3. This process leads to a notable reduction of IFN-inducible STAT3 phosphorylation and DNA binding [83].
Mahony and colleagues found that STAT3 is required to inhibit IAV replication. STAT3 is specifically required for
inducing a subset of IFN-α-driven ISGs, including PKR, OAS2, MxB and ISG15 [84]. Another research reported
that highly pathogenic avian influenza, H5N1 delays apoptotic responses by activating STAT3. H5N1 and H1N1
inhibit the activation of STAT3, but H5N1 infection leads to the further activation of STAT3, which probably
contributes to the pathogenesis of severe influenza disease [85]. However, the detailed mechanism about how STAT3
regulates the induction of apoptosis in influenza virus requires further investigation.

Role of STAT3 in mumps virus & measles virus infections

Mumps virus infection causes parotitis, meningitis and orchitis. Mumps virus encodes a V protein that can assemble
into an ubiquitin ligase complex that causes the polyubiquitylation and proteasome-mediated degradation of cellular
STAT1 and STAT3 proteins, to modulate host innate and adaptive antiviral responses [86,116]. Furthermore, the
mumps virus V protein prevents responses to IL-6 and v-Src, both of which are STAT3 signaling triggers [86].

Measles virus infection is characterized by the virus-induced immune suppression that increases the susceptibility
to opportunistic infections. Similarly, the measles virus V protein also interferes with STAT3 activation and provides
several general or tissue-specific replication advantages to the virus [87].

Role of STAT3 in other respiratory infection

SARS-CoV infection causes SARS, which may be mediated by the viral replication in target cells and immune
responses. SARS-CoV infection can activate p38 MAPK, ERK1/2 and JNK pathways in Vero E6 cells, and the
p38 MAPK pathway induces STAT3 dephosphorylation at Tyr705 to promote SARS-CoV replication [88].

Human metapneumovirus (hMPV) infection can result in bronchiolitis or pneumonia and can exacerbate
chronic obstructive pulmonary disease. hMPV can attenuate the IL-6-mediated JAK/STAT3 signaling cascade in
lung epithelial cells. It also interrupts the IL-6-induced activation and nuclear translocation of STAT3 by inhibiting
the phosphorylation of JAK2, and further regulates the STAT3 downstream genes for apoptosis, cell proliferation
and differentiation [89]. However, the identity of the cellular target for the hMPV inhibition of the IL-6 signaling
pathway remains unknown; the target may be the IL-6 receptor complex.
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Reproductive and respiratory syncytial virus (RSV) infection causes airway inflammation and exacerbates asthma.
Respiratory syncytial virus can activate STAT3 via IL-6, and the activation is necessary for the viral early gene
activation and successful infection of epithelial cells [71]. Porcine reproductive and respiratory syndrome virus is an
economically important viral disease in the swine industry. The viral nonstructural protein 5 C-terminal domain
induces STAT3 degradation by increasing its polyubiquitination level and shortening the half-life [90], which could
lead to the suppression of a broad spectrum of cytokines and growth factors to thwart host antiviral responses and
allow virus replication.

STAT3 in enterovirus infection
Coxsackievirus B3 infection induces a severe inflammation during the acute phase of the resultant viral myocarditis.
STAT3 signaling plays a protective function in Coxsackievirus B3-induced myocarditis [91]. We also observed that
enterovirus 71 infection decreases STAT3 phosphorylation but increases miR-124 expression, which inhibits STAT3
signaling by directly targeting STAT3 mRNA or indirectly via targeting the upstream IL-6R [92]. These findings
suggested that STAT3 has antiviral activity against EV 71 infection. However, EV 71 could dysregulate miR-124
to evade the host immune response.

STAT3 in retrovirus infection
HIV infection induces AIDS. HIV-1 Nef mediates STAT3 activation in immature DCs [117]. Percario et al. [72]

found that Nef C-terminal flexible loop activates STAT3 through the release of soluble factor(s), including NF-κB,
MIP-1α and IL-6. In gastric epithelial cells, HIV also activates STAT3, RelA and IL-6 [73]. HIV-1 gp120 resulted
in the production of IL-6 via MAPK/NF-κB pathway; IL-6 in turn activated STAT3. Concomitantly, gp120
promoted an early activation of STAT3 that further contributed to IL-6 induction in immature monocyte-derived
DCs. HIV-1 gp120-induced dysregulation of IL-6/STAT3 may account for the impairment of DC function
observed upon HIV exposure [74].

Human T-cell leukemia virus type-1 (HTLV-1) predominantly infects T lymphocytes, causing two distinct
diseases, adult T-cell leukemia/lymphoma and HTLV-1 associated myelopathy/tropical spastic paraparesis. HTLV
Tax protein upregulates IL-6R and sIL-6R, which may contribute to the proliferation of HTLV-1-infected T
cells through the activation of STAT3 and affect the malignant growth and transformation of T cells induced by
HTLV-1 [75]. IL-10-mediated signals promote the proliferation of HTLV-1-infected cell through STAT3 and IRF4
pathway [76].

STAT3 in other virus infection
In DCs, Dengue virus type 2 nonstructural 1 (NS1) protein interacts with STAT3β protein, which may influence
the pathological changes observed in dengue fever, dengue hemorrhagic fever and dengue shock syndrome [77].
Dengue virus infection induces chemokine production by activating the JAK/STAT3 signaling pathway in HepG2
cells [78]. Theiler’s murine encephalomyelitis virus results in the vigorous production of IL-6, which promotes the
generation of Th17 cells. IL-6 and IL-17 synergistically promote viral persistence by protecting virus-infected cells
from apoptosis and CD8+ T cell-mediated target destruction by activating STAT3 and NF-κB [79]. Rabies virus P
protein interacts with STAT3 and inhibits the STAT3 nuclear accumulation and gp130-dependent signaling [93].
Simian virus 40 large tumor antigen (TAg) increases STAT3 tyrosine phosphorylation, DNA binding and the
transcriptional activity. STAT3 is required for TAg-mediated neoplastic transformation [118]. STAT3 is also required
for the Epo-independent growth of Friend erythroleukemia virus-infected cells. The activation of STAT3 by Stk
receptor tyrosine kinase is mediated by a novel STAT3 binding site in Gab2 [119].

Conclusion
STAT3 plays an important role in viral infection. It can be activated by virus-encoded proteins, such as HBx
protein, HCV core protein, NS5A, EBV LMP1 and HIV Nef. However, STAT3 activation can also be inhibited by
some viruses or viral proteins including IAV NS-1, hMPV and SARS-CoV (Table 1 & Figure 3). The dysregulation
of STAT3 by these viruses can cause activation or inhibition of downstream signaling, and results in pathogenesis.
STAT3 signaling also interacts with other host factors in a transcriptional activity-independent way to regulate
antiviral and inflammatory responses. The role of STAT3 is well documented in several oncoviruses, but its function
in other viruses remains unclear. However, on the basis of the present data, we conclude that the host STAT3 signaling
responses to virus infections are complicated and it would be regulated in a virus-specific manner and even with a
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stage-specific characteristic in the virus life cycle. Given that STAT3 activation could be triggered by different virus
proteins or virus-induced host factors, and specific kinase members would be recruited to activate STAT3 after
different virus infection, the downstream target genes regulated by STAT3 must be distinctive. Therefore, STAT3
has the virus-specific effects on the virus life cycle and contributes to the viral pathogenesis.

Future perspective
From the literature collected in this review, it clearly shows that STAT3 plays an important role in the virus life
cycle and in viral pathogenesis. However, the key viral and host factors that promote the activation or inhibition
of STAT3 signaling after viral infection are largely unknown except several viruses listed in Table 1. If more viruses
were identified to trigger or inhibit STAT3 activation by their viral proteins or their genomes, it would be helpful to
understand the molecular mechanism of interaction between virus and host STAT3 signaling. Specifically, viruses
with a close relation in taxonomy might provide the general conception.

Further in depth studies are necessary to determine the mechanisms by which viruses exploit STAT3 for their life
cycle. In the early and late stage of virus replication, when and how viruses activate STAT3 signaling by different
viral proteins or genome? For examples, HBV activated STAT3 could be induced by HBx and HBsAg, and HCV
activated STAT3 could be triggered by HCV core, NS4B, NS5B and HCV RNA (Table 1). When and where would
the activation of STAT3 be induced by the viral proteins or their genomes? Is it a viral replication stage-specific or
tissue specific event?

Moreover, STAT3 exerts the contradictory effects on the viral infection, antiviral to some virus and proviral to
others. What is key factor to determine the switch between the proviral and antiviral function of STAT3? Further
study is needed for the identification of the factors that drive STAT3 signaling to play antiviral or proviral role.

Furthermore, in the viral pathogenesis, further studies are also needed for the identification of the mechanisms
underlying host STAT3 function in an immune-protective or proinflammatory response. On this issue, many
questions need to be resolved. For example, how viruses regulate STAT3 to respond to IFN? STAT3 negatively
or positively regulates type 1 IFN response depending on the virus type involved? How viruses regulate STAT3

Executive summary

• As a STATs family member, STAT3 plays a central regulatory role in cell proliferation, differentiation, apoptosis
and oncogenesis, and is also involved in the process of cellular immune responses and inflammation.

• STAT3 signaling is mainly activated by the IL-6 and IL-10 family cytokines and growth factor receptors. STAT3
phosphorylated at Tyr705 is required for dimerization to activate STAT3 signaling, which would be inhibited by
suppressor of cytokine signaling, protein inhibitor of activated STAT and protein tyrosine phosphatase.

• STAT3 has a proviral function in several viral infections. However, in some circumstances, STAT3 has an antiviral
activity in other viral infections. The activation or inhibition of STAT3 signaling is a virus-specific event.

• HBV infection activates STAT3 through HBx and hepatitis B surface antigen. HBx increases reactive oxygen
species, induces IL-6/STAT3/NANOG signaling, and regulates some miRNAs to promote the HBV-induced
hepatocellular carcinoma. hepatitis B surface antigen activates the ERK/IL-6/STAT3 pathway to regulate
monocyte toward myeloid-derived suppressor cells and T-cell activation.

• HCV NS4B, NS5B and HCV RNA activate STAT3 signaling through reactive oxygen species; HCV core activates
STAT3 through the PI3K/Akt and IL-6 pathways. STAT3 activation contributes to HCV replication by inhibiting host
antiviral immune responses and regulating the antiapoptosis and cancer-related genes that may promote the
HCV-induced hepatocellular carcinoma.

• STAT3 plays a protective role in the early stage of HSV-1 infection. However, STAT3 activation contributes to
maintain HSV-1 latency by inhibiting p300/CBP activity.

• EBV activates STAT3 signaling to inhibit lytic activation through PCBP2, and upregulates EGF receptor, JAK3 and
STAT3 pathways for cancer cell proliferation, invasion and metastasis by LMP1, LMP2A and EBNA2.

• STAT3 increases HCMV replication and promotes HCMV-infected cell transformation. Varicella zoster virus
activates STAT3 for its replication dependent on the increase of survivin, this occurrence also required for Kaposi’s
sarcoma herpesvirus-induced malignant transformation.

• Activation of STAT3 signaling shows antiviral activity against most of respiratory viruses, including influenza virus,
measles virus, mumps virus, severe acute respiratory syndrome coronavirus, human metapneumovirus and
porcine reproductive and respiratory syndrome virus, but reproductive and respiratory syndrome virus.

• STAT3 signaling responses to virus infection are complicated in a virus-specific manner and even in a
stage-specific manner in the virus life cycle. It needs further investigation why STAT3 has been distinctively
regulated by the different viruses. Specifically, to some viruses within a close branch in taxonomy.

568 Future Virol. (2018) 13(08) future science group



STAT3 roles in viral infection: antiviral or proviral? Review

response to different cytokines, such as IL-6, IL-10 and IFNs, especially, when these cytokines induced by the virus
in different tissues?

Conclusively, a comprehensive analysis to dissect the role of STAT3 in viral infections in the future can provide
valuable insights into the viral pathogenesis and development of novel antiviral therapies.
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