
W28–W32 Nucleic Acids Research, 2009, Vol. 37, Web Server issue Published online 11 May 2009
doi:10.1093/nar/gkp354

BioBIKE: A Web-based, programmable, integrated
biological knowledge base
Jeff Elhai1, Arnaud Taton1, JP Massar2, John K. Myers3, Mike Travers4, Johnny Casey3,

Mark Slupesky2 and Jeff Shrager4,5,*

1Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond VA, 2Berkeley
CA, USA, 3Sequoia Consulting, North Hills, 4CollabRx, Inc., Palo Alto and 5Symbolic Systems Program
(consulting), Stanford University, Stanford, CA, USA

Received January 31, 2009; Revised April 15, 2009; Accepted April 23, 2009

ABSTRACT

BioBIKE (biobike.csbc.vcu.edu) is a web-based
environment enabling biologists with little pro-
gramming expertise to combine tools, data, and
knowledge in novel and possibly complex ways,
as demanded by the biological problem at hand.
BioBIKE is composed of three integrated compo-
nents: a biological knowledge base, a graphical
programming interface and an extensible set of
tools. Each of the five current BioBIKE instances
provides all available information (genomic, meta-
bolic, experimental) appropriate to a given research
community. The BioBIKE programming language
and graphical programming interface employ famil-
iar operations to help users combine functions and
information to conduct biologically meaningful ana-
lyses. Many commonly used tools, such as Blast and
PHYLIP, are built-in, allowing users to access them
within the same interface and to pass results from
one to another. Users may also invent their own
tools, packaging complex expressions under a
single name, which is immediately made accessible
through the graphical interface. BioBIKE represents
a partial solution to the difficult question of how
to enable those with no background in computer
programming to work directly and creatively with
mass biological information. BioBIKE is distributed
under the MIT Open Source license. A description of
the underlying language and other technical matters
is available at www.Biobike.org.

INTRODUCTION

Research in all areas of biology has come increasingly to
rely upon massive sets of digital data and knowledge, the
manipulation of which places most researchers outside

their area of comfort. Despite a spectacular range
of resources available to analyze biological information
(witness this issue of NAR), biological problems still
often require the development of novel methods.
Existing tools may display results that are easy for
humans to read, but they generally do not deliver them
in a form that is useful for subsequent computations.
Biologists without programming expertise (no doubt the
majority) muddle through as best they can, using isolated
tools and spreadsheets, or seeking the help of program-
mers. In the latter case, the resulting division of knowledge
is far from ideal, obscuring the process from the biologist’s
view and making it difficult to understand the meaning
of the results. Moreover, the biologist loses easy access
to surprising intermediate results, which are at the heart
of fundamental accidental discoveries (Elhai et al.,
manuscript submitted for publication).

BioBIKE (the Biological Integrated Knowledge
Environment; formerly BioLingua, 1) has been developed
to allow researchers without programming expertise to
combine tools, data and knowledge in ways demanded
by the biological problem at hand. BioBIKE is composed
of three integrated components: (i) a biological knowledge
base, (ii) a graphical programming interface and (iii) an
extensible set of tools that can be combined in novel ways.

BioBIKE INSTANCES AND THEIR KNOWLEDGE AND
DATA BASES

A BioBIKE instance provides a framework for all avail-
able information needed by a given research community
(Table 1), including sets of genomic sequences, gene
annotations, functional descriptions, formal categories
(e.g. COG), hierarchical groupings of metabolic reactions
linked with genes (from KEGG, 2) and internal tables of
Blast scores to support rapid protein comparisons. In
addition, an instance may be stocked with experimental
data, such as results from microarray or proteomic experi-
ments. Indeed, any data that can be put into a standard-
ized form, such as a table or XML structure, can be

*To whom correspondence should be addressed. Tel: +1 650 380 6306; Email: jshrager@stanford.edu

� 2009 The Author(s)
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/
by-nc/2.0/uk/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.



integrated into the knowledge-base (in simple cases
through built-in resources, otherwise with the help of
BioBIKE engineers). All of this knowledge and data are
represented in an integrated manner within the BioBIKE
frame system.

The availability of integrated data and knowledge on
the same server makes possible certain operations that
are not practical with data that is distributed across the
web. For example, in CyanoBIKE it is a simple matter to
find all proteins common to one set of organisms (perhaps
user-defined) but not in another, for example those in N2-
fixing cyanobacteria that are not found in non-N2-fixing
cyanobacteria. Protein similarities and orthologs amongst
proteins of organisms outside the database are also avail-
able using the same interface, albeit more slowly, through
services such as NCBI’s Blast (3).

THE BioBIKE GRAPHICAL PROGRAMMING
INTERFACE

Checking the VPL (visual programming language) box at
the login screen of a BioBIKE instance brings the user to
the graphical programming interface. (Users may also
access BioBIKE with scripts through a web-based com-
mand line interface described in ref. 1.) An example of the
function palette and workspace is shown in Figure 1.
BioBIKE functions and other constructs are represented
by boxes obtained from pull down menus. These may be
moved around by familiar actions such as drag-and-drop

and copy-paste to form complex expressions. When com-
pleted, expressions may be executed by double-clicking
them. Results are returned (and sometimes displayed in
a human-readable format) so that the user can assess the
effect of each step. Data, and whole sessions, may be saved
to the BioBIKE server so that incomplete work can be
continued later.
The design of the BioBIKE language adheres to these

principles:

Intelligibility: an expression should be intelligible to some-
one with requisite biological knowledge but no prior
experience with BioBIKE. Many concepts of molecular
biology, such as codon and ortholog, are incorporated
into the language.
Computability of results and nesting: BioBIKE functions
often display results formatted for human comprehen-
sion. In addition to this, functions generally return
their results in a form that can serve as input for further
analysis. This allows users to compose expressions by
taking the result of one function and feeding it into
another, producing new results at each turn. This process
can be abbreviated by nesting expressions together, as
shown in Figure 2.
Small working vocabulary: expressions that are related to
each other have been brought together within a single
function, to reduce the burden on the memory of a
new user. For example, the function SEQUENCE-
SIMILAR-TO performs all flavors of Blast, or finds
sequences differing from a reference by a given number
of mismatches, depending on options specified by
the user.
Implied iteration: the size of biological databases often
makes it necessary to perform iterative operations (i.e.
loops). Such operations in conventional languages are
the bane of those new to programming. Most BioBIKE
functions iterate automatically. In Figure 1, for example,
a specific gene could be given to the ORTHOLOG-OF
function or a list of genes could be given instead. In the
latter case, the function returns a list of results, one for
each gene.

Figure 1. BioBIKE function palette and workspace. The green workspace shows the work of a user looking for a regulatory sequence upstream from
a gene, by focusing on sequences common amongst upstream sequences of orthologous genes in related organisms. The first function defines the
variable gln-orthologs as the set of orthologs in marine cyanobacteria of a gene the user knows to encode glutamine synthetase. The second function
is in the midst of being completed. The user is choosing the newly defined variable from the VARIABLES menu to be inserted into a function that
will extract the sequences upstream from all the orthologs and then find statistically overrepresented sequences within the set of sequences, using
MEME (6).

Table 1. Current BioBIKEsa

CyanoBIKE: Cyanobacteria (42 genomes)
ParaBIKE: Eukaryotic parasites (5 genomes)
StaphyloBIKE: Staphylococcus (45 genomes)
StreptoBIKE: Streptococcus (25 genomes)
ViroBIKE: Viruses (1797 genomes, 20 metagenomes)
BIKE: Used for education (0 genomes)

aAll instances are available through biobike.csbc.vcu.edu

Nucleic Acids Research, 2009, Vol. 37,Web Server issue W29



Extensibility: users can define new data and functions
which immediately enter the language, becoming
instantly accessible through the same sort of menus as
built-in objects. In addition to serving as a memory aid,
this affords the modular addition of concepts into the
language itself. Users not satisfied with the names of
concepts built into the language can readily build a pri-
vate vocabulary if desired.

Although specialized for bioinformatics, BioBIKE is
built on top of the standard computer language Lisp,
and is therefore capable of all operations typical of a gen-
eral purpose programming language. Behind the scenes,
BioBIKE expressions are translated into Lisp and com-
piled, yielding code that runs at a speed comparable to
that of C code. Lisp is a uniquely powerful language,
often used to create new specialized languages, as we

have done here. R, for example, is written on top of
Scheme, a dialect of Lisp (4). Lisp is also the language
of choice for artificial intelligence, which continues to
inform BioBIKE’s development.

BioBIKE TOOLSET AND ADVANCED FACILITIES

BioBIKE provides access to several programs that are
commonly used: Blast (3), for sequence searches);
Clustal (5), for multiple sequence alignments); Meme (6),
for motif discovery; RNAz (7), for discovery of conserved
RNA sequences; and Phylip (8), for construction of
phylogenetic trees. All are accessed through the same
interface, greatly reducing the need to figure out the idio-
syncrasies of each resource. Useful tools not already in the
language that have Application Programming Interfaces
(APIs), or that are capable of running within a Linux

Figure 3. Example of progressive evaluation and iteration in BioBIKE. The pattern of four cysteine residues separated by 2, 2 and 3 amino acids is
often found in proteins with 4Fe-4S clusters (20). (A) The first function finds the pattern of cysteines amongst the sequences of all proteins in
the cyanobacterium Synechocystis PCC 6803 and assigns the names of the proteins bearing the motif (Result 1) to a user-defined variable called
4fe-4s-proteins. (B) The annotation for each of the proteins is displayed in a separate window (see inset), and the annotations are also returned as
result #2. (C) The user is concerned that this motif might well arise by chance on some proteins of Synechocystis. To test this, a set of random
protein sequences is generated, each element being a random shuffling of a real protein sequence. The set is assigned to the variable random-
sequences, and the random sequences are returned as result #3. (D) This set of random sequences is searched for the characteristic motif, and none
are found (no result), lending some confidence to the belief that the presence of the motif in proteins of Synechocystis is of biological significance.

Figure 2. Example of a nested function. The function makes an alignment of the sequences of all orthologs of the protein Asr1156, starting as many
as 100 amino acids before the nominal beginning of the protein but going backwards only up to the first stop codon. The sequences are labeled with
the name of the protein and aligned, using Clustal (5) and visualized using JalView (19). This is the code used to generate an alignment (discussed in
Elhai, Taton, Massar, and Shrager, manuscript submitted for publication) that provides evidence against existing annotations of a family of
conserved genes and for the use of nonstandard start codons in cyanobacteria.

W30 Nucleic Acids Research, 2009, Vol. 37,Web Server issue



environment can generally be added to BioBIKE on
request with little difficulty, and thus be made accessible
to BioBIKE users through the standard graphical pro-
gramming interface.

LEARNING BioBIKE AND STYLES OF BioBIKE
USAGE

Online tours of BiobIKE are accessible through the
BioBIKE portal (biobike.csbc.vcu.edu), and a tour of
the resources of the interface and the basic conventions
of the language is available through the HELP button.
A tour that describes how BioBIKE can be used
in motif discovery is included in the Supplementary
Material.

BioBIKE expressions are often intelligible when read,
but new users do not find them easy to write. Those new
to BioBIKE often begin by using it as a simple query
language, asking, for example: ‘What is the sequence of
my favorite gene?’ From there, one might construct a pro-
gressive series of queries, each one utilizing on the result of
the previous, for example: ‘What are the orthologs of the
sequence of my favorite gene?’ ‘What are the upstream
sequences of those orthologs?’ ‘What common sequence
motifs are found in those upstream sequences?’ This
progression of questions might have led to Figure 1.

This progressive evaluation style is critical for pro-
gramming novices (9), and one may continue
indefinitely within this style, obtaining useful results.
However, it is also possible to create more complex
structures from simple elements, facilitated by drag-
and-drop and copy-paste operations. Figure 3 provides
an example of iteration mixed in with sequential
evaluation. Since each simple element may be executed
independently by double-clicking on it, users may still
examine the intermediate results, even within complex
expressions.

Complex expressions or sub-expressions can also be
collapsed visually into single boxes, making it easier to
grasp the larger picture. Moreover, as mentioned above,
BioBIKE itself is extensible: if a user should devise a com-
plex expression that might be of continued utility, the
expression can be packaged, given a unique name, and
made accessible via a menu, no differently from any
other BioBIKE function. In this way, complicated opera-
tions can be broken up into logical chunks and subse-
quently offered as distinct functions.

CONCLUSION

BioBIKE represents a novel paradigm regarding the
interaction of biologists with information of interest to
them. Its goal is to put the analysis of large amounts of
information directly into the hands of biologists them-
selves—to enable them to manipulate biological knowl-
edge and data in an interactive computational
environment. This offers extraordinary power to biologists
with little computational background. BioBIKE has
already made possible a deep analysis of proteomic data
(10), a cross-genomic analysis of repeated sequences (11),

and the introduction of many dozens undergraduates and
high school students to biological analysis on the com-
puter (Elhai, unpublished results).
Some excellent web-based resources, such as Entrez

(12), provide convenient access to sequences and other
information. BioBIKE does the same, but the information
is returned in a form that may be used immediately for
further analysis. Still other resources, such as IMG (13)
and the NCBI implementation of Blast (14) provide a
good interface for the analysis of sequences with a fixed
set of tools. Some, e.g. Taverna (15) and Galaxy (galaxy.
psu.edu), go a step further and facilitate the creation
of a work flow using a fixed set of tools (fixed to those
unfamiliar with computer programming). BioBIKE
does these things as well, but does not confine the user
to follow predetermined channels. The user new to pro-
gramming may use existing tools or combine basic
functions to create ways to answer questions for which
tools do not exist. Such flexibility has previously required
one to employ conventional programming languages,
sometimes supplemented with bioinformatic add-ons,
such as BioRuby (bioruby.org) or BioPerl (16).
BioBIKE is equally powerful but does not require the
user to learn the underlying language. BioBIKE is aimed
at biologists who do not wish to expend the effort required
to learn a conventional programming language but
who wish to have the same hands-on relationship with
informational objects of study as they do with objects in
the laboratory.
BioBIKE is a first step in a new direction, and although

even in its present state it is a powerful tool, it must be
stressed that the goal of intuitive use remains unmet. Users
should not expect to figure out BioBIKE as they would a
simple web-based tool that offers a small number of func-
tions. A greater set of tours and help pages may increase
the ability of naı̈ve users to exploit the resource indepen-
dently. However, our current direction is more ambitious.
We plan to extend BioDeducta (17), which combines
BioBIKE with an automated reasoning system, to enable
users to present BioBIKE with a natural language ques-
tion (e.g. ‘Is there a common sequence motif found
upstream of orthologs of glnA?’), and through a series
of natural language interactions, arrive at a BioBIKE
expression that answers the question.

SOFTWARE AVAILABILITY AND COMPATIBILITY

At the time of writing, there are five BioBIKE instances
freely available through the web (Table 1). BioBIKE is
written in Common Lisp, operating within the KnowOS
paradigm (18), and is distributed under the MIT Open
Source license. Although it is freely available for anyone
to download and install (see www.BioBIKE.org for
instructions), we encourage users to use already-existing
servers. The authors are happy to discuss collaboration
with communities of biologists who would like to create
BioBIKE instances particular to sets of model organisms.
At present, the graphical interface is only operational
within Firefox 1.5 and above.

Nucleic Acids Research, 2009, Vol. 37,Web Server issue W31



SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.

ACKNOWLEDGEMENTS

We thank Andrew Pohorille of NASA’s Division of
Astrobiology and Fundamental Biology who provided
seed support for BioLingua/BioBIKE. Others who have
contributed significantly to this work include Pat Langley,
Marc Santoro, Michiko Kato, James Mastro, Bogdan
Mihai, Emily Niman, Craig Noe, Peter Seibel, Hien
Truong, Andy Whittam, Richard Waldinger, Carolyn
Talcott and Merill Knapp. Richard Waldinger and several
anonymous reviewers provided valuable comments on
various drafts of this article.

FUNDING

National Science Foundation (DBI-0516378, DBI-
0850146 to J.E.); the National Aeronautics and Space
Administration (JRIs: NCC2-5555, NCC2-5462, NCC2-
5471 to J.S.); software grants from Franz, Inc. and
LispWorks, Inc. Funding for open access charge: Jeff
Shrager.

Conflict of interest statement. None declared.

REFERENCES

1. Massar,J.P., Travers,M., Elhai,J. and Shrager,J. (2005) BioLingua:
a programmable knowledge environment for biologists.
Bioinformatics, 21, 199–207.

2. Kanehisa,M., Goto,S., Hattori,M., Aoki-Kinoshita,K.F., Itoh,M.,
Kawashima,S., Katayama,T., Araki,M. and Hirakawa,M. (2006)
From genomics to chemical genomics: new developments in KEGG.
Nucleic Acids Res., 34, D354–D357.

3. Altschul,S.F., Madden,T.L., Schaffer,A.A., Zhang,J., Zhang,Z.,
Miller,W. and Lipman,D.J. (1997) Gapped BLAST and
PSI-BLAST: a new generation of protein database search programs.
Nucleic Acids Res., 25, 3389–3402.

4. Ihaka,R. and Gentleman,R. (1996) R: a language for data analysis
and graphics. J. Comput. Graphical Stat., 5, 299–314.

5. Thompson,J.D., Higgins,D.G. and Gibson,T.J. (1994) CLUSTAL
W: improving the sensitivity of progressive multiple sequence
alignment through sequence weighting, position-specific gap

penalties and weight matrix choice. Nucleic Acids Res., 22,
4673–4680.

6. Bailey,T.L., Williams,N., Misleh,C. and Li,W.W. (2006) MEME:
discovering and analyzing DNA and protein sequence motifs.
Nucleic Acids Res., 34, W369–W373.

7. Washietl,S., Hofacker,I.L. and Stadler,P.F. (2005) Fast and reliable
prediction of noncoding RNAs. Proc. Natl Acad. Sci. USA, 102,
2454–2459.

8. Felsenstein,J. (2005) PHYLIP (Phylogeny Inference Package)
version 3.6. Distributed by the author. Department of Genome
Sciences, University of Washington, Seattle.

9. Green,T.R.G. and Petre,M. (1996) Usability analysis of visual
programming environments: a ‘cognitive dimensions’ framework.
J. Visual. Lang. Comput., 7, 131–174.

10. Ow,S.Y., Cardona,L., Taton,A., Magnuson,A., Lindblad,P.,
Stensjö,K. and Wright,P.C. (2009) Quantitative overview of N2
Fixation in Nostoc punctiforme ATCC 29133 through cellular
enrichments and iTRAQ shotgun proteomics. J. Proteome Res., 8,
187–198.

11. Elhai,J., Kato,M., Cousins,S., Lindblad,P. and Costa,J.L. (2008)
Very small mobile repeated elements in cyanobacterial genomes.
Genome Res., 18, 1484–1499.

12. Maglott,D., Ostell,J., Pruitt,K.D. and Tatsuova,T. (2007) Entrez
Gene: gene-centered information at NCBI. Nucleic Acids Res., 35,
D26–D31.

13. Markowitz,V.M., Szeto,E., Palaniappan,K., Grechkin,Y., Chu,K.,
Chen,I-M.A., Dubchak,I., Anderson,I., Lykidis,A., Mavromatis,K.,
Ivanova,N.N. and Kyrpides,N.C. (2008) The integrated microbial
genomes (IMG) system in 2007: data content and analysis tool
extensions. Nucleic Acids Res., 36, D528–D533.

14. Johnson,M., Zaratskaya,I., Raytselis,Y., Merezhuk,Y., McGinnis,S.
and Madden,T.L. (2008) NCBI Blast: a better web interface.
Nucleic Acids Res., 36, W5–W9.

15. Hull,D., Wolstencroft,K., Stevens,R., Goble,C., Pocock,M.R., Li,P.
and Oinn,T. (2006) Taverna: a tool for building and running
workflows of services. Nucleic Acids Res., 34, W729–W732.

16. Stajich,J.E., Block,D., Boulez,K., Brenner,S.E., Chervitz,S.A.,
Dagdigian,C., Fuellen,G., Gilbert,J.G., Korf,I., Lapp,H. et al.
(2002) The Bioperl toolkit: Perl modules for the life sciences.
Genome Res., 12, 1611–1618.

17. Shrager,J., Waldinger,R., Stickel,M. and Massar,J.P. (2007)
Deductive Biocomputing. PLoS ONE, 2, e339.

18. Travers,M., Massar,J.P. and Shrager,J. (2005) The (re)birth of the
knowledge operating system. Proceedings of the International Lisp
Conference. Assoc. of Lisp Users (ALU), Stanford, CA,
pp. 357–365.

19. Clamp,M., Cuff,J., Searle,S.M. and Barton,G.J. (2004) The Jalview
Java alignment editor. Bioinformatics, 20, 426–427.

20. Alhapel,A., Darley,D.J., Wagener,N., Eckel,E., Elsner,N. and
Pierik,A.J. (2006) Molecular and functional analysis of nicotinate
catabolism in Eubacterium barkeri. Proc. Acad. Sci. USA, 103,
12341–12346.

W32 Nucleic Acids Research, 2009, Vol. 37,Web Server issue


