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Abstract

Viruses may represent the most diverse microorganisms on Earth. Novel viruses and vari-

ants continue to emerge. Mosquitoes are the most dangerous animals to humankind. This

study aimed at identifying viral RNA diversity in salivary glands of mosquitoes captured in a

sylvatic area of Cerrado at the Chapada dos Guimarães National Park, Mato Grosso, Brazil.

In total, 66 Culicinae mosquitoes belonging to 16 species comprised 9 pools, subjected to

viral RNA extraction, double-strand cDNA synthesis, random amplification and high-

throughput sequencing, revealing the presence of seven insect-specific viruses, six of which

represent new species of Rhabdoviridae (Lobeira virus), Chuviridae (Cumbaru and Croada

viruses), Totiviridae (Murici virus) and Partitiviridae (Araticum and Angico viruses). In addi-

tion, two mosquito pools presented Kaiowa virus sequences that had already been reported

in South Pantanal, Brazil. These findings amplify the understanding of viral diversity in wild-

type Culicinae. Insect-specific viruses may present a broader diversity than previously imag-

ined and future studies may address their possible role in mosquito vector competence.

Introduction

Viruses may represent the most abundant and diverse microbes on Earth [1–3]. Previously

unrecognized virus species and variants continually emerge, favored by globalization, climate

changes, viral RNA plasticity with adaptation to vectors and hosts, ecotourism, uncontrolled

urbanization and proximity among urban centers and sylvatic areas, posing a significant global

health concern, especially in developing tropical regions [4–6]. The research of new species is

challenging for traditional and current detection methods due to viral profusion [7]. High-

throughput sequencing (HTS) lead to the identification of previous uncharacterized viruses,

virulence factors and more accurate and complete viral genomic data. Thus, enlightening viral

ecology, diversity and evolution [3,8].

The interest on new human, animal and plant viruses naturally drew research efforts to

metagenomic studies involving invertebrates. At least 220 viruses are recognized human
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Centro Oeste de Biodiversidade Viral—CNPq

processo 407817/2013-1. AZLP and MSC received

Master’s scholarships from Capes and CNPq,

respectively. BMR receives an Scientific

Productivity Grant from CNPq.

https://doi.org/10.1371/journal.pone.0187429
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0187429&domain=pdf&date_stamp=2017-11-08
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0187429&domain=pdf&date_stamp=2017-11-08
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0187429&domain=pdf&date_stamp=2017-11-08
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0187429&domain=pdf&date_stamp=2017-11-08
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0187429&domain=pdf&date_stamp=2017-11-08
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0187429&domain=pdf&date_stamp=2017-11-08
https://doi.org/10.1371/journal.pone.0187429
https://doi.org/10.1371/journal.pone.0187429
http://creativecommons.org/licenses/by/4.0/


pathogens [9], 150 of which are transmitted by arthropods [10], classified as arthropod-borne

viruses or arboviruses [11]. Mosquitoes are the most important vectors of arboviral diseases to

humans [12], and are considered one of the deadliest animals by the World Health Organiza-

tion [13]. Arboviruses are originally maintained in nature by enzootic cycles of transmission

[5]. A high density of competent vectors and susceptible amplifier hosts, mainly birds, pri-

mates and small mammals is a fundamental condition for maintenance of arboviruses [5,14].

For a mosquito to become competent for arbovirus transmission, a complex of multifacto-

rial physical barriers and evolutive selections must be overcome by the virus, until a persistent

infection is established in their salivary glands, secreting large amounts of viral particles in

their saliva [15].

Metagenomic studies involving insects surprisingly revealed a higher genetic biodiversity

than observed in viruses affecting vertebrates [8,16,17], suggesting that most viral infections in

arthropods are asymptomatic or latent [7].

Insect-specific viruses (ISV) only replicate in invertebrate cell lines and can interfere with

the replication of some arboviruses in mosquito cells, probably altering vector competence

[18–20]. Most ISV are classified in the same taxons and genera of arboviruses, such as the Fla-
viviridae, Rhabdoviridae, Togaviridae, Bunyaviridae and Reoviridae families, as well as the

Mesoniviridae, Tymoviridae, Birnaviridae, Totiviridae, Partitiviridae, Chuviridae families and

in the negevirus taxon [21].

This study aimed to investigate the diversity of viral RNA genomes in salivary glands of

mosquitoes captured in a protected Cerrado area comprising the Chapada dos Guimarães

National Park (CGNP), State of Mato Grosso (MT). Cerrado, a tropical savannah that origi-

nally covered 22% of the Brazilian territory, is considered the second greatest phytogeographic

domain in South America and one of the 34 hotspots of global biodiversity [22–24].

Materials and methods

Study area

CGNP is a protected sylvatic area of Cerrado with 326,30 km2 and intense eco-touristic activ-

ity, located in the South-Central region of MT, Midwestern Brazil, in close proximity to urban

centers (35 km from Cuiabá, capital of the State) (Fig 1A). This region presents altitudes rang-

ing between 200 and 900 m and tropical climate with a mean temperature of 25˚C, 1,900 mm

annual rainfall and two well-defined seasons: a rainy summer (October-March) and a dry win-

ter (April-September) [25].

Mosquito sampling

Collections were carried out in five plots of the Rio Claro RAPELD (Rapid Assessment surveys

for Long-Term Ecological Research) module [26] present in the CGNP. The module covers an

area of 5 km2 subdivided into 12 equidistant plots, each with 250 m of topographical isocline

that works as a sampling trail. The choice was based on proximity to water collections, riparian

vegetation, bird landing spots and easier access to vehicle (Fig 1B).

Adult Culicinae mosquitoes were captured for two consecutive days with Nasci aspirators

(1 pm to 8 pm) and CDC light traps (6 pm to 6 am) in December 2014 and April and Septem-

ber 2015, characterizing rainy, transition and dry periods, respectively. Nasci aspirator catches

were carried out for 30 min in each plot sampling trail, and CDC light traps were installed

every 50 mat a height of 1.5 m above ground level. Collections were performed in accordance

with Brazilian laws, approved by SISBIO/Ministry of the Environment, license number 43909–

1.
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Fig 1. Mosquito collection points location in different climatic periods between 2014–2015 at Chapada dos Guimarães National Park

(CGNP). (a) CGNP location in State of Mato Grosso, Central-Western Brazil, containing three Rapid Assessment Surveys for Long-Term

Ecological Research modules (RAPELD) (green and brown rectangles). (b) Rio Claro RAPELD module schematic representation, indicating the

sampled plots and their trails in red (A3, A4, B0, B2 and B4 with their respective geographical coordinates). Blue dots represent the collection points

within each trail in the enlarged view.

https://doi.org/10.1371/journal.pone.0187429.g001

Table 1. Pools of Culicinae specimens captured in the Rio Claro RAPELD module at Chapada dos Guimarães National Park, Mato Grosso, Brazil.

Pool Species [n specimens] Period* Plots RNA DNA product Total reads (nt)

M01 Psorophora albigenu [2] Rainy A3 10 7.649 20,091,498

Psorophora ciliata [1] A3

Psorophora cingulata [3] A3

Psorophora ferox [5] A3

Psorophora lanei [1] B2

Psorophora lineata [1] B2

Psorophora longipalpus/albipes [1] B2

M02 Haemagogus janthinomys [4] Rainy A3, B2 6.3 36.217 3,978,638

M03 Stegomyia albopicta [1] Rainy A3 6.2 8.800 11,717,278

Ochlerotatus sp. [7] A3, B2, B3

M04 Ochlerotatus serratus [1] Transitional A3 4.8 4.356 12,032,638

Ochlerotatus crinifer [1] A3

M05 Mansonia wilsoni [3] Transitional A3, B3 5.6 25.607 16,471,976

M06 Culex sp. [12] Transitional A3 9.2 37.209 5,683,104

M07 Psorophora dimidiata [2] Transitional A4, 9 38.244 7.839,992

Psorophora pseudomelanota [1] B0, A3

M08 Stegomyia albopicta [3] Transitional B0, B3 11.5 46.529 8,932,600

M09 Wyeomyia sp. [17] Dry A3, B0 8.3 127.090 11,941,868

*Climatic period. Rainy: December, 2014; Transitional: April, 2015; Dry: September, 2015. n: number

RNA and DNA concentration is presented in ng/μL.

https://doi.org/10.1371/journal.pone.0187429.t001
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Specimens were maintained with artificial feeding (sugar solution 20%) under controlled

temperature and humidity for 3–4 days until the identification with taxonomic keys in a dor-

mant state [27]. Females were pooled into 1–20 individuals by genus and collection season, fol-

lowed by salivary glands dissection [28] in phosphate buffer and stored at -80˚C (Table 1).

Viral RNA extraction, reverse transcription and dscDNA synthesis

Viral RNA was extracted from 200 μL of minced salivary glands using High Pure Viral RNA

Kit (Roche, USA), without carrier RNA. RNA was quantified (quantifluor RNA system, Pro-

mega) and reverse transcribed in random reactions with 20 μL final volume using 20–957 ng

of RNA, 5 μM of K-random-S primer [29], 0.25 mM dNTP mix, buffer, 5 mM of MgCl2, 16 U

of RNAse out (Invitrogen, USA) and 100 U of Go Script Reverse Transcriptase (Promega,

USA) at 25˚C for 5 min and 42˚C for 60 min. The second strand of cDNA (dscDNA) was syn-

thesized using 20 μL of cDNA, 2 μM of the same random primer, buffer, 0.2 mM of dNTP mix

and 5 U of DNA Pol I Large Klenow Fragment (Promega, USA) in 25 μL final volume, incu-

bated at 25˚C for 20 min and 75˚C for 20 min.

Viral random PCR

Samples were amplified in quintuplicate using 5 μL of dscDNA, 2 μM of K-S primer [29], 2.5

U of GoTaq Hot Start Polymerase (Promega, USA), Buffer, 2mM MgCl2, 0.2 mM of dNTP

mix and ultrapure water in 50 μL final volume and amplified as described by Kluge et al. [30].

Final product was purified with polyethylene glycol 8000 20%, eluted in 50 μL of ultrapure

RNAse free water and quantified using the quantifluor one dsDNA system (Promega).

High-throughput sequencing and analysis

cDNA libraries were constructed using Illumina TruSeq RNA v2 Kit. Samples were sequenced

using 2 x 100 paired-end reads in two lanes with 60 GB on a HiSeq 2500 platform (Illumina,

USA) at Macrogen (Seoul, Korea).

Sequence read data were quality checked using FastQC (v0.11.5) and trimmed to remove

terminal low-quality, Illumina adapters and random primer adaptor using Trimmomatic

(v0.36), filtering out reads shorter than 60 bases (parameters: ILLUMINACLIP: TruSeq3-PE.

fa:2:20:10, LEADING: 3, TRAILING: 3, SLIDINGWINDOW: 4:30, MINLEN: 60). These reads

were assembled using the CLC Genome Workbench (v6.5.2) and Velvet (v2.1.10) with various

kmer size parameters (25, 40, 60 and 90). Resulting contiguous sequences (contigs) were used

to search against the viral RefSeq database by BLASTx tool and those with viral hits were

searched against the non-redundant sequence database (nr) using BLASTx to confirm the viral

identity. Only those hits with e-values of less than 1e-3 were used.

To further extend the viral contigs, the reads were mapped back to the viral contig and the

resulting contig was used as seeds for another attempted assembly until genome completion or

no further extension. Contig mapping and genome annotation were performed using Gen-

eious (v9.1.7). The on-line open access software TMHMM (v2.0) (http://www.cbs.dtu.dk/

services/TMHMM/) was used to predict the transmembrane domains. All the sequences

obtained in this study were deposited in GenBank (NCBI; Table 2).

Inoculation in cell culture and RT-PCR for a rhabdovirus

The salivary glands supernatant of the pool positive for Lobeira virus was inoculated into C6/

36 cells (1:10 dilution) cultivated in L-15 medium supplemented with 5% fetal bovine serum

and incubated at 28˚C with 5% CO2, monitored for 7 days for cytophatic effect identification.
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The supernatant was stored at -80˚C and an aliquot subjected to RNA extraction, reverse

transcription with primers designed using Geneious for a region between N and P genes

(NPLOBF-AGTGGGAGTGGTTCAGACTG; NPLOBR-AAGTGTCTTCTAGATCCCGGT at 1 μM;

Table 2. Viral sequences obtained from the salivary glands of Culicinae mosquitoes captured in the Rio Claro module, Chapada dos Guimarães

National Park, Mato Grosso, Brazil.

Pool GenBank Virus Best hit Length (nt) aa Query

cover

E-value Classification Hits Genome

accession identity (%)

number (%)

M03 MF344589 Kaiowa virus putative glycoprotein 705 100 68 3e-94 Chuviridae ssRNA-

BR/MT-M03 [Kaiowa virus]

ANW72242

M05 MF344587 Murici vı́rus RdRp 903 41 99 2e-69 Totiviridae dsRNA

[Anopheles totivirus]

AOR51364

M05 MF344596 Cumbaru virus putative glycoprotein 472 69 93 1e-77 Chuviridae ssRNA-

[Kaiowa virus]

ANW72242

M05 MF344586 Araticum virus RdRp 1348 56 56 3e-168 Partitiviridae dsRNA

[Hubei partiti like vı́rus

42]

APG78281

M06 MF344585 Angico virus RdRp 1143 57 57 4e-155 Partitiviridae dsRNA

[Hubei partiti-like virus

48]

APG78218

M07 MF344588 Croada virus putative glycoprotein 558 72 76 8e-72 Chuviridae ssRNA-

[Kaiowa virus]

ANW72242

M08 MF344590 Kaiowa virus BR/MT-M08 putative glycoprotein 1353 99 67 0.0 Chuviridae ssRNA-

[Kaiowa virus]

ANW72242

M08 MF344591 Lobeira virus

(nucleoprotein)

Nucleoprotein 1219 49 88 7e-116 Rhabdoviridae ssRNA-

[North Creek virus]

AGY80340

M08 MF344592 Lobeira virus Phosphoprotein 515 42% 40% 3e-32 Rhabdoviridae ssRNA-

[Riverside virus 1]

AMJ52361*

M08 MF344593 Lobeira virus Matrix protein 545 42% 40% 3e-32 Rhabdoviridae ssRNA-

[Riverside virus 1]

AMJ52361*

M08 MF344594 Lobeira virus Glycoprotein

[Riverside virus 1]

AMJ52367

1620 29% 46% 2e-14 Rhabdoviridae ssRNA-

M08 MF344595 Lobeira virus Large protein 8875 58% 93% 0.0 Rhabdoviridae ssRNA-

[Riverside virus 1]

AMJ52368

aa: amino-acid; BR: Brazil; MT: Mato Grosso; RdRp: RNA dependent RNA polymerase

* The presented results correspond to the concatenated genes (phosphoprotein plus matrix protein).

https://doi.org/10.1371/journal.pone.0187429.t002
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500 bp), a region of G gene (GLOBF-GTGAACGTCGTATAGTGAAATCCG; GLOBR-GCACCC
CATCCTTCAAAATGA at 1 μM; 250 bp) and a region of L gene (LLOBF-AGCAGGTGGATTA
GAGGGGC; LLOBR- ATATCCGCTGCCTGAAGAGTC at 1 μM; 600 bp).

PCR reactions included cDNA (7 μL), buffer, MgCl2 (2 μM), dNTP mix (0.2 μM), ultrapure

water and 2.5 U of HotStart DNA polymerase (Promega, USA) and the same forward and

reverse primers used in reverse transcription. These reactions were amplified at 94˚C for 2

min, 30 cycles of 94˚C for 1 min, 57˚C for 1 min and 72˚C for 1 min, and a final extension of

72˚C for 5 min. DNA products were identified in 1.5% agarose gels after eletrophoresis.

Phylogeny

Potential viral proteins identified in this study were used to query NCBI nr protein database

using the BLASTp tool to determine the closest relative sequences, its taxonomic classification

and similarity. Then, these sequences were aligned with their corresponding homologs and

related taxonomic reference sequences using MAFFT software (v7.221). The best evolutionary

model was determined by the ProtTest server (2.4) (http://darwin.uvigo.es/software/prottest2_

server.html/) [31] for each alignment. The evolutionary history was inferred by maximum like-

lihood method (ML) based on the Le_Gascuel_2008 model. A discrete gamma distribution

was used to model the evolutionary rate differences among the sites (four categories). Evolu-

tionary analyses were conducted using MEGA7. Phylogenies were edited with FigTree v1.4.3

(http://tree.bio.ed.ac.uk/software/figtree/) [32].

Results

Sequencing analysis

Illumina sequencing yielded 98,689,592 reads from nine pools comprising 66 adult mosqui-

toes, reduced to 32,926,122 reads with a median length of 101 nt after trimming. These data

generated 129,321 contigs varying from 117 to 2628 nt. Viral RefSeq BLASTx revealed 1050

viral hits (0.81%). BLASTx nr selected 47 contigs (4.47%) as potentially belonging to viruses,

classifying the remainder as probable sequences of insects (524, 49.90%), bacteria (242,

23.04%), fungi (111, 10.57%), vertebrates (31, 2.95%) and others taxons (95, 9.04%).

After de novo assembly, 11 virus-like sequences were obtained from five mosquito salivary

gland pools, indicating the presence of seven different viruses between each other and previ-

ously known viruses. Of these contigs, nine translated sequences showed� 75% amino acid

(aa) identity to unclassified viruses related to Rhabdoviridae, Totiviridae, Partitiviridae and the

recently classified Chuviridae family. These sequences represent six new viruses different

between each other, which were named using popular names of typical trees found in Cerrado

biome. In addition, two sequences yielded 99.5% similarity among themselves and� 99%

identity with sequences of the putative glycoprotein of Kaiowa virus (KAIV), originally

described in Culex spp. [33], indicating the detection of a strain of this virus in the salivary

glands of a different species, Stegomiya albopicta (Table 2).

Rhabdoviridae

In one pool containing three specimens of Stegomyia albopicta (M08) four viral sequences

were identified during the BLASTp search. These belong to the same virus and are most closely

related to North Creek rhabdovirus (NOCRV) and Riverside virus 1 (RISV), which were dis-

covered infecting Culex sitiens [34] and Ochlerotatus mosquitoes [35] The closest match for

these contigs were the genes of the nucleocapsid protein (N) of NOCRV, the matrix protein

(M)t and two different regions of the large protein (L) gene of RISV. The two regions of L
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protein were concatenated based on alignment with the L protein sequences of RISV, NOCRV

and Tongilchon virus 1. These partial genomic sequences belong to the same novel virus,

which we named Lobeira virus (LOBV) (Table 2). According to our phylogenetic tree based

on L protein, this virus clustered with high node values with RISV, NOCRV and Tongilchon

virus 1 forming clade I of the recently proposed Dielmovirus genus, dimarhabdovirus super-

group (dipteran-mammal-associated rhabdovirus) [36]. Together with clade II, clade I behaves

as a basally rooted lineage of dimarhabdovirus supergroup (Fig 2). Lobeira virus was isolated

in c6/36 cells, revealing rounded and dead cells in the supernatant.Isolation was confirmed by

three RT-PCR protocols for different genomic regions of Lobeira virus.

Chuviridae

Four chuvirus partial glycoprotein sequences were detected in different pools (Table 2). Two

of these, found in a St. albopicta-only and St.albopicta and Ochlerotatus pools, correspond to

the putative glycoprotein of KAIV, presenting 99 and 100% similarity with the original KAIV

sequence [33]. The KAIV sequence found in the M08 pool (BR/MT-M08 KAIV) codes for a

399-aa polypeptide, representing an increase of 129 aas in the original KAIV glycoprotein

ends, which is differentiated by only one base pair (bp), culminating in the exchange of a leu-

cine for a proline. According to the BLASTp matches, the BR/MT-M08 KAIV is mostly related

to Guato virus (GUTV) and to Chuviridae viruses, such as Chuvirus Mos8Chu, Imjin River

virus 1 and Wuhan mosquito virus 8, but with reduced aa identity (ffi30%). Both KAIV

sequences encode the end of a putatitve glycoprotein ORF, with a poly A tail at the 3’UTR and

the beginning of a second ORF (Fig 3A).

Two other chuvirus sequences were found in the salivary glands ofMansonia wilsoni (M05)

and Psorophora (M07) mosquitoes, coding for 157 and 186 aas. These contigs showed the

highest aa identity (69 and 72%, respectively) with the KAIV glycoprotein sequence by

BLASTp search (Table 2). Therefore, owing to the relatively low aa identity found, these

sequences belong to two new viruses different from each other, named Cumbaru virus

(CUMV) and Croada virus (CROV). CUMV sequence presents a transmembrane domain

between 92 and 114 aa position, indicating that this is probably a viral envelope glycoprotein.

The ML phylogenetic tree for KAIVs, CUMV, and CROV included the representative Chu-
viridae viruses and the most closely related chuvirus species. CUMV, CROV, KAIV and

GUTV clustered into a distinct lineage to Chuvirus Mos8Chu0, inserted in a major group with

other viruses originally described in insects, dismembered from tick viruses (Fig 3).

Totiviridae

A sequence with 903 nt encoding part of the putative RNA dependent RNA polymerase

(RdRp) gene was found in theMa. wilsoni pool (M05). This sequence showed the highest aa

identity (� 41%) with the Anopheles totivirus (AToV), identified in Anopheles gambiae mos-

quitoes in Liberia (Table 2) [37]. This low identity suggests that this is also a novel virus spe-

cies, designated as Murici virus (MURV).

The ML phylogeny based on the RdRp with representative members of the Totiviridae fam-

ily related to MURV grouped this virus with AToV in a separated clade with high node value,

clustered within a major group that include unclassified arthropod viruses. The five Totiviridae
genera are originally arranged in three initial groups, where the unclassified virus set is closer

to the Giardia lamblia virus isolate Wang, the only member of Giardiavirus genus (Fig 4).
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Partitiviridae

Two putative RdRp partiti-like sequences encoding 456 and 381 aas were detected in the pools

of salivary glands ofMa. wilsoni (M05) and Culex sp. (M06), related to the Hubei partiti-like

virus 42 and the Hubei partit-like virus 48 with 56 and 57% identity, respectively. These diver-

gent sequences of a highly conserved genomic region indicate the presence of two new virus

species different between each other, named as Araticum virus (ARAV) and Angico virus

(AGIV) (Table 2).

The AGIV and ARAV ML tree was based on all approved members of the Partitiviridae
family RdRp sequences. A large group of recently discovered viruses includes AGIV and

ARAV and stands distinctly although with a common ancestor to four other Partitiviridae gen-

era. This entire group behaves as a distinct lineage of Cryptosporidium parvum virus 1, the

unique member of the Cryspovirus genus, comprised by several arthropod viruses described in

a study carried out in China (Fig 5) [8].

Discussion

Metagenomic studies contribute to the discovery of a great number of new viral species worldwide

[3,8,38]. In this study, the sequencing of viral RNA obtained from the salivary glands of 66 Culici-

nae females collected in Chapada dos Guimarães National Park demonstrated the presence of pre-

viously undescribed ISV. These viruses belong to the Chuviridae, Rhabdoviridae, Partitiviridae

Fig 2. Lobeira virus genome map and phylogeny. (a) Genomic organization of Lobeira virus and structure-based alignment with

Riverside virus 1. (b) Maximum likelihood phylogenetic tree for Large protein of Lobeira virus (in blue) with dimarhabdovirus

supergroup members and selected rhabdovirus-like sequences related to Lobeira virus by BLASTp search. Phylogeny was rooted

on the branch of Lyssavirus genus. Viruses originally found in mosquitoes and other arthropods are marked in red and yellow,

respectively. Bar indicates amino acid substitutions per site.

https://doi.org/10.1371/journal.pone.0187429.g002
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and Totiviridae families, all comprising RNA viruses, clustered with other arthropod viruses

recently described within these families.

Rhabdoviruses are ssRNA- viruses pathogenic to humans, animals and plants, including

also a large number of unassigned viruses associated with a wide array of insects and other

arthropod species with global distribution [16,39,40].

The LOBV genome detected in this work contains the general layout found in rhabdovi-

ruses, flanked by five structural protein genes in the order 3’-N-P-M-G-L-5’, clustered together

in a monophyletic group with three rhabdoviruses, RISV, Tongilchon virus 1 and NOCRV.

This group composes clade I of the recently proposed Dielmovirus [41], a new genus from

Fig 3. Croada, Cumbaru and Kaiowa viruses partial genomic maps and phylogeny. (a) Schematic

representation of structure-based alignment of Kaiowa virus BR/MT-M03 and BR/MT-M08, Croada virus,

Cumbaru virus and Chuvirus Mos8Chu0. (b) Maximum likelihood phylogenetic tree for the glycoprotein of

Kaiowa, Croada and Cumbaru viruses (marked in blue) with members of Chuviridae family. Viruses originally

found in mosquitoes and ticks are marked in red and green, respectively. Bar indicates amino acid

substitutions per site.

https://doi.org/10.1371/journal.pone.0187429.g003
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Rhabdoviridae, which was also formed for another set of viruses, clade II, and behave as a

basally rooted lineage for the dimarhabdovirus supergroup (Fig 2). At the present, the dielmo-

viruses described were identified in mosquitoes from Australia (NOCRV and Beaumont virus)

[34], Hungary (RISV) [35], Japan (Culex tritaeniorhynchus rhabdovirus) [42], Mexico (Merida

virus) [43] and South Korea (Tongilchon virus 1) [44].

KAIV was recently discovered in Culexmosquitoes from the South-Pantanal region of

Mato Grosso do Sul State, Brazil, closely related to Guato virus (GUTV) with 71% aa identity

[33]. Our data suggest that these viruses, as well as CUMV and CROV, are Brazilian members

of the Chuviridae family. This family was proposed for a large monophyletic group of newly

discovered RNA viruses presenting distinct genome organization, including unsegmented, bi-

segmented and a circular form of ssRNA-, that behaves phylogenetically as an older divergent

group of rhabdoviruses [16].

GUTV and the original KAIV sequences only encode an incomplete putative glycoprotein,

as well as all chuvirus-like sequences found in four different pools of this study. Finding the

complementation of these genomes can be difficult, since glycoprotein may be so diverse that

the available search tools are unable to map their contigs with known viral proteins, making

the discovery of very distinct viruses a challenge. Additionally, KAIV was found in the salivary

glands of St. albopicta, different from the original description in Culex spp., indicating that this

virus infects different species of Culicinae.

Fig 4. Murici virus genomic map and phylogeny. (a) RNA dependent RNA polymerase (RdRp) protein of Murici virus and Anopheles totivirus.

(b) Maximum likelihood phylogenetic tree for RdRp sequence of Murici virus (in blue) with respective most related members of Totiviridae family.

Viruses originally found in arthropods and other insects are marked in yellow and purple, respectively. Bar indicates amino acid substitutions per

site.

https://doi.org/10.1371/journal.pone.0187429.g004
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Some ISV belonging to the Bunyaviridae, Flaviviridae and Rhabdoviridae families are

ancient RNA viruses [21] with highly divergent lineages, indicating that their evolution accom-

panied the evolution of their respective hosts [45,46]. Integration of these viruses into mosqui-

toes genomes [47–49] and their adaptation to vertebrates and plants is widely proposed as the

probable origin of pathogenic viruses for these hosts [16,50].

The totivirus Murici virus (MURV) detected in this study infectingMa. wilsonimosquitoes

is closely related to Anopheles totivirus, found in Anopheles gambiae mosquitoes in Liberia

[37], being tentatively classified within arthropods viruses of Artivirus genus belonging to the

Totiviridae family. Totiviridae members commonly have a monossegmented dsRNA genome,

organized in two overlapping ORFs, which encode the major capsid protein and the RdRp.

These viruses are originally known to infect protozoa and fungi of importance for humans,

animals and plants [51]. However, several arthropod totiviruses have also been frequently

Fig 5. Genome map of Angico and Araticum viruses and phylogeny. (a) RNA dependant RNA polymerase (RdRp) gene

comparison of Angico and Araticum viruses and Crypstosporidium parvum virus 1. (b) RdRp Maximum likelihood phylogenetic

tree of Angico virus and Araticum virus (in blue) and other Partitiviridae members. Viruses originally found in arthropods are

marked in yellow. Bar indicates amino acid substitutions per site.

https://doi.org/10.1371/journal.pone.0187429.g005
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found lately and the Artivirus genus (arthropod totiviruses) was proposed to classify them

within the family [37,52,53].

The Partitiviridae family was recently reorganized and beyond the Cryspovirus genus (pro-

tozoa viruses), four new genera were included: Alphapartitivirus and Betapartitivirus (fungi

and plant viruses), Gammapartitivirus (fungi viruses) and Deltapartitivirus (plant viruses) [54].

The ML tree for ARAV and AGIV supports the need to create a new group for the current

unclassified viruses of this family, more closely related to the genus Cryspovirus. Partitiviridae
members present bi-segmented dsRNA genomes, typically associated with latent infections in

a wide range of fungi, plants and protozoa [54]. Although unlikely, the totivirus (MURV) and

partitiviruses (ARAV and AGIV) found in this study may represent new species of viruses

from microorganisms and parasites, rather than ISV.

Some investigations with dual infection in mosquito cells or live mosquitoes demonstrated

that ISV isolated from Culicinae mosquitoes such as Palm Creek virus, Nhumirim, Culex flavi-

virus and Bagaza can reduce the replication of certain arboviruses when previously inoculated,

such as the West Nile, Murray Valley encephalitis, Japanese encephalitis and Saint Louis

encephalitis viruses [55–60]. Despite the possibility of using this ability as a control of impor-

tant public health arboviruses present in vector populations, little is known about the real

influence of ISV on mosquito competence and, therefore, on the transmission of arboviruses

to humans [15,21,58].

Finally, it is possible to verify that our findings correlate to newly described and very diverse

viruses, reinforcing a stair climbing profile for viral diversity studies, where the current new

viruses act as a necessary step in the discovery of future new viruses. Thus, our data contributes

directly to better understanding viral salivary gland diversity in wild-type Culicinae mosqui-

toes, allowing the most precise and complete description of these viral families, as well as new

alternatives for further studies on the viral symbiotic interference in mosquito vector compe-

tence for viruses with medical importance to humans, animals, or plants.
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