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ABSTRACT

A common practice in computational genomic anal-
ysis is to use a set of ‘background’ sequences as
negative controls for evaluating the false-positive
rates of prediction tools, such as gene identifica-
tion programs and algorithms for detection of cis-
regulatory elements. Such ‘background’ sequences
are generally taken from regions of the genome
presumed to be intergenic, or generated syntheti-
cally by ‘shuffling’ real sequences. This last method
can lead to underestimation of false-positive rates.
We developed a new method for generating arti-
ficial sequences that are modeled after real inter-
genic sequences in terms of composition, complex-
ity and interspersed repeat content. These artificial
sequences can serve as an inexhaustible source
of high-quality negative controls. We used artificial
sequences to evaluate the false-positive rates of a
set of programs for detecting interspersed repeats,
ab initio prediction of coding genes, transcribed re-
gions and non-coding genes. We found that Repeat-
Masker is more accurate than PClouds, Augustus
has the lowest false-positive rate of the coding gene
prediction programs tested, and Infernal has a low
false-positive rate for non-coding gene detection. A
web service, source code and the models for hu-
man and many other species are freely available at
http://repeatmasker.org/garlic/.

INTRODUCTION

Genomes evolve by random accumulation of mutations and
by selection for a variety of functional requirements. For
species with short generation time and large population
sizes (e.g. bacteria), the strong selective forces lead to highly
optimized genomes, dense in genes and with negligible over-
head of non-functional sequences: this makes prokaryotic
gene prediction relatively straightforward (1). In contrast,
the genomes of species with much longer generation times
and much reduced population sizes (e.g. vertebrates) accu-

mulate vast amounts of genetic material that largely ap-
pears not to be under selective constraints (2). Over half the
human genome is derived from retrotransposed elements,
DNA transposons, and other types of repetitive sequences
(3). Functional sequences and regulatory elements are a
small fraction of the vertebrate genome, making their iden-
tification difficult. Most vertebrate genes are interrupted by
introns replete with material that is largely under low se-
lective constraints; long introns are particularly difficult to
model. Recognizing alternative splicing demands further al-
gorithmic complexity, as does modeling of non-coding tran-
scripts. For all these reasons and more, ab initio vertebrate
gene prediction poses a significant challenge for computa-
tional biology.

Current sequencing technologies make it possible to se-
quence a complete genome in a short time. The next-
generation technologies will soon enable the sequencing of
a human genome for $1000 in less than a day (4,5). Many
other genomes have been sequenced and have high-quality
assemblies, including fruit fly (6), mouse (7), chicken (8),
chimp (9), dog (10), pig (11), cat (12), horse (13), cow (14)
and zebrafish (The Danio rerio Sequencing Project, http:
//www.sanger.ac.uk/Projects/D rerio/). With the exponen-
tial increase in genome sequences, robust annotation sys-
tems are needed to identify all functional elements in a com-
prehensive and efficient manner.

One of the first analytical steps after a genome is se-
quenced and assembled is to identify all repetitive se-
quences, both those derived from the propagation of repet-
itive elements such as transposons, and ‘tandem repeats’
that arise by expansion of a few nucleotides. RepeatMasker
(http://www.repeatmasker.org/) is a common method for
identification of repetitive sequence derived from transpos-
able elements. Tools such as the Tandem Repeat Finder
(TRF) (15) are used to identify low complexity sequence
expansions in the genome. Repetitive sequence detection is
challenging because many of the repeats have evolved over
millions of years, accumulating substitutions, insertions and
deletions to the point of being nearly indistinguishable from
random sequence. This problem calls for the development
of standard negative and positive controls to evaluate the
accuracy of any repeat finder.
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The next step in genome analysis is the identification of
genes. Coding genes are the best understood functional part
of the genome and many tools have been developed to iden-
tify them from the genomic DNA sequence. In parallel,
non-coding genes can also be detected using various strate-
gies. Modern gene prediction programs rely on three basic
concepts:

(1) Modeling of gene structure. Typical ab initio programs
look for known components of a gene, such as promoter
elements, splicing signals, open reading frames (ORFs)
and codon usage (in the case of coding genes) or spe-
cial folding structures (for non-coding RNAs). Exam-
ples of coding gene prediction programs are Genscan
(16), Twinscan (17) and Augustus (18).

(2) Similarity-based identification. Genes can be identified
or inferred by local alignment to databases of expressed
sequence tags (ESTs), cDNAs, known mRNAs or pro-
tein sequences. The expression data can be derived from
the same organism or from related model organisms,
which may have more detailed annotation. Sequences
may thus inherit a classification or function based on
their similarity to a reference sequence. Examples of
programs in this category are N-Scan (19) and JIGSAW
(20). Specialized programs exist for the detection of spe-
cific RNA families such as SnoScan (21) and tRNAscan
(22), while Infernal (23) can use diverse models for de-
tection of ncRNAs.

(3) Detection of transcriptional footprints. Observing vari-
ous signatures of transcription that accumulated over
evolutionary time can identify transcribed regions.
This includes biased mutation rates (24) and strand-
biased representation of interspersed repeats and poly-
adenylation signals (25). These two approaches are em-
bodied in the FEAST tool (25), which relies on four
algorithms to identify transcribed regions: Greens and
CHOWDER quantify mutational strand biases caused
by transcription-coupled DNA repair, and ROAST and
PASTA are based on strand-specific selection against
disruptive poly-adenylation signals.

Most gene prediction programs use a data set of se-
quences with validated genes for training: each program
‘learns’ what a region containing a gene looks like. Then
the program scans a sequence, scoring fragments for gene
plausibility and filtering the results by scores or p-values.
Modern genome annotation pipelines use a variety of gene
prediction programs and combine their results using heuris-
tic methods. The resulting number of predicted genes is usu-
ally considerably larger than the number of genes for which
there is expression evidence. For example, the Ensembl
gene annotation (release 64, http://www.ensembl.org/) for
the GRCh37 version of the human reference genome in-
cludes 46 993 predicted human genes. In contrast, only
26 976 genes have supporting experimental evidence (Fig-
ure 1, Supplementary Figure S1).

Clearly, many gene predictions are false positives. Assess-
ing the rate of false-positive prediction is usually difficult
because of the absence of appropriate negative controls; us-
ing imprecisely matched negative controls quickly leads to
wrong estimates of statistical significance. Furthermore, the

Figure 1. Total number of known and predicted coding genes in Ensembl
64 for human and other species. The gene size is determined by the total
length in bases of each CDS.

Figure 2. Overview of the algorithms. Our development consists of two
stages: (1) training (left side): the fraction of the genome remaining after
masking of functional and repetitive regions is analyzed for k-mer and GC
content. Repeats are also modeled, separated into interspersed (IR) and
simple sequence repeats (SR); (2) generation (right side): a base sequence
is generated using the k-mer and GC profiles. Artificially evolved repeats
are then inserted into the base sequence to create a new artificial sequence.

definition of a ‘false positive’ is not trivial and will depend
on the specific genomic analysis being performed. When as-
sessing the ability to identify Alu repeats and other evolved
interspersed elements, it is reasonable to consider any such
identification in a negative control as a false positive. In the
case of gene prediction, the ideal negative control would
have all the properties and characteristics of the genome,
except it should be guaranteed to lack genes and other func-
tional elements. Even then, any random sequence could po-
tentially be processed and interpreted by the transcriptional
and translational machinery of the cell; short ORFs arising
at random could potentially yield biologically active pep-
tides. While even such ‘random’ predictions may be of inter-
est, it is still important to assess how frequently they arise
for each gene prediction algorithm and for each type of
negative control used. A common practice in other areas
is the use of ‘decoys’. For example, in proteomics the use of
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Figure 3. Multi-species PCA. We compared the GC-binned tetramer com-
position of orthologous sequences in human (hs), chimpanzee (pt), cow
(bt), dog (cf), elephant (la), guinea pig (cp), marmoset (cj), horse (ec),
mouse (mm), orangutan (pa), panda (am), pig (ss), rabbit (os), rat (rn) and
rhesus (rm) for intergenic (blue) and intronic (red) regions.

randomly permuted peptides in MS/MS spectra database
searches can assist in the computation of a robust e-value
(26). There is currently no standard method or protocol
to define a set of sequences to be used as negative con-
trols for genome analysis. A common practice is to use in-
tergenic regions as negative control, under the assumption
that they lack functional elements. A widely used method
used to generate decoys in sequence analysis is to ‘shuffle’–
–or permute––the sequence being studied. This method in-
volves random base permutation, typically performed in
such a way to preserve the observed dinucleotide compo-
sition. Shuffling may be performed globally or locally. The
advantage of global shuffling is its simplicity, but it may lose
many important properties of the DNA sequence, e.g. G+C
content inhomogeneities. Other methods have been used to
generate sequences representing the ‘background’. For ex-
ample, in an analysis of short ORFs in Drosophila (27), the
authors used as negative controls a pool of ‘reverse’ small
ORFs defined as sequences from a stop codon to the next
start codon, and following a similar size distribution.

We present here a novel method for generating ‘decoy’
artificial DNA sequences with the same characteristics of
intergenic sequences in terms of composition, complexity
and presence of interspersed elements. We started by per-
forming a detailed compositional analysis of the reference
genome; this yielded a multifaceted set of models describing
the characteristics of intergenic sequences.

Drawing parameters from these rich models, our se-
quence generation method has two stages. In the first stage,
a ‘base’ sequence is produced with compositional charac-
teristics similar to the unique portion of real, intergenic se-
quences. In the second stage, this base sequence is ‘bom-
barded’ with artificially evolved interspersed repeats and

low complexity sequences. The resulting artificially gener-
ated sequences are nearly indistinguishable from real inter-
genic regions. Finally, we used the artificial sequences to test
the specificity of programs for predicting coding and non-
coding genes, and for identifying interspersed repeats.

Our method can generate an unlimited amount of arti-
ficial sequences mimicking real genomic sequences for any
species available in the UCSC Genome Database, and it can
be trained for other species given adequate genome infor-
mation.

MATERIALS AND METHODS

Genome data used

We obtained genomic sequence and annotations, from
the UCSC Genome Database (http://genome.ucsc.edu),
for the following species––human: hg19 (3); chimpanzee:
panTro3 (9); cat: felCat4 (12); chicken: galGal3 (8); cow:
bosTau4 (14); dog: canFam2 (10); elephant: loxAfr3
(http://www.broadinstitute.org/scientific-community/
science/projects/mammals-models/elephant/elephant-
genome-project); fugu: fr2 (28); guinea pig: cavPor3
(http://www.broadinstitute.org/scientific-community/
science/projects/mammals-models/guinea-pig/guinea-
pig-genome-project); horse: equCab2 (13); lizard:
anoCar2 (29); marmoset: carJac3 (http://genome.wustl.
edu/genomes/view/callithrix jacchus); medaka: ory-
Lat2 (30); mouse: mm9 (7); opossum: monDom5 (31);
orangutan: ponAbe2 (32); panda: ailMel1 (33); pig: susScr2
(11); platypus: ornAna1 (34); rabbit: oryCun2 (http:
//www.broadinstitute.org/scientific-community/science/
projects/mammals-models/rabbit/rabbit-genome-project);
rat: rn4 (35); rhesus: rheMac2 (36); sheep: oviAri1 (http:
//www.sheephapmap.org/); stickleback: gasAcu1 (http:
//www.broadinstitute.org/models/stickleback); tetraodon:
tetNig2 (http://www.genoscope.cns.fr/externe/tetranew/);
Xenopus tropicalis: xenTro2 (37); zebra finch: taeGut1 (38);
zebrafish: danRen7 (The Danio rerio Sequencing Project
http://www.sanger.ac.uk/Projects/D rerio/); Ciona intesti-
nalis: ci2 (39); purple sea urchin: strPur2 (40); Anopheles
gambiae: anoGam1 (41); bee: apiMel2 (42); Drosophila
melanogaster: dm3 (6); Caenorhabditis elegans: ce3 (43).

Interspecies comparison

To define intergenic and intronic regions in hg19, we com-
bined the gene annotations in the tracks knownGene.txt,
ensGene.txt and vegaGene.txt from the UCSC Genome
Database. Intergenic ranges represent all genomic regions
excluding combined gene ranges. Intronic ranges are the in-
tersection of all regions inside gene coordinates after ex-
cluding any overlap with annotated exons. For each region,
we used the LiftOver tool (44) to search the respective re-
gion in the other genomes for which LiftOverChain is avail-
able. The total spans of these regions are reported in Sup-
plementary Table S1.

We obtained the respective sequence for all regions for
each species and computed the tetramer composition per
species and stratified into five GC content bins [0%–37%,
37%–39%, 39%–42%, 42%–45% and 45%–100%] that have
approximately equal total genomic span. We combined all
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tables to compute the principal component analysis (PCA)
showed in Figure 3.

Intergenic region profile

We created profiles summarizing GC content characteristics
of the human genome, excluding the non-chromosomal se-
quences (chrUn, mitochondria, haplotype-specific regions
and diverse unassigned regions). The first step is to com-
pute the local GC content homogenized in 10 kb bins: we
compute the local GC content in non-overlapping 1 kb win-
dows and average them in 10 kb sections. The GC content
is classified into five bins as described above.

We removed from the reference genome sequence (3.1
Gb) all fragments annotated as known genes, non-coding
RNA and pseudogenes (UCSC tracks: knownGene.txt,
ensGene.txt, vegaGene.txt, vegaPseudoGene.txt), CpG is-
lands (UCSC track: cpgIslandExt.txt), interspersed re-
peats (from RepeatMasker annotation, UCSC file chro-
mOut.tar.gz), simple repeats (from TRF annotation, UCSC
file chromTrf.tar.gz) and ultraconserved regions (UCSC
tracks: phastConsElements46way.txt filtered by region
>100 bp and multiz46way.txt filtered for regions >100 bp
and score >0.65). After removing all these, 574 Mb re-
mained (17% of the genome). For each sequence, we com-
puted a table containing the k-mers in 1 kb long non-
overlapping windows and classified each window by GC
content. This table contains the probabilities of each k-
mer to be followed by each possible nucleotide [A, C,
G, T]. These probabilities are derived empirically from
the frequency of each such event, observed in the refer-
ence genome sequence. We also compared the GC content
of consecutive non-overlapping windows and used these
to compute the transition probabilities between different
GC levels. We obtained annotations of repetitive elements
from the RepeatMasker output from the UCSC Genome
Database. For each interspersed repeat in intergenic regions,
we recorded the type, family, percentage of divergence from
the corresponding consensus sequence, insertions and dele-
tions, size and number of fragments. We also assigned each
repeat to a GC bin according to its position in the genome.
We further recorded the frequency of repeats that inserted
into other repeats.

We extracted annotations of simple sequence repeats
from TRF output. For each repeat, we recorded the con-
sensus monomer, size, divergence, insertions and deletions,
and assigned it to the respective GC bin according to its po-
sition in the genome.

We provide the models for all species used in this study in
the project website.

Sequence generation

The method to generate a new artificial sequence has two
main steps: (i) generate a base sequence of the size required
and (ii) addition of simple and interspersed repeats ran-
domly selected from observed genome distributions. Each
repetitive sequence is artificially evolved from the corre-
sponding repeat family consensus. Repeats are then inserted
into the base sequence in random location and orientation
based in the local GC content as observed in the training

dataset. To avoid inserting older repeats into younger ones,
the most diverged repeats are inserted first, using the diver-
gence from the consensus as an approximation of repeat age.

Generation of repetitive elements

For each selected repeat, we use the sequence derived from
the consensus reported in RepBase rel. 20090120 (45). First
the consensus is trimmed to an equivalent length as seen
in the annotation, then a series of mutation stages are used
to artificially evolve it. The first stage deletes random po-
sitions in the sequence; the second stage mutates random
positions as transition and transversion events; in the third
stage insertions are added at random positions. Each time
a position is selected, the probability of inserting a repeat
is evaluated considering the frequency of the adjacent k-
mers produced. One additional step evaluates the fragmen-
tation probability: if the element is fragmented, then a new
younger element is selected from the repeat insertion table.

Generation of low complexity repeats

Our algorithm expands the monomer consensus to the de-
sired length, then applies a series of mutation stages (dele-
tions, transitions, transversions and insertions) in a simi-
lar way to the artificial evolution of repetitive elements de-
scribed before.

Sequence validation

Real genomic sequences have certain constraints on compo-
sition and complexity. Our training method relies on com-
position properties of the sequences; complexity properties
are not explicitly modeled. After generating artificial se-
quences, we computed various complexity metrics and com-
pared these with the expected values for real intergenic se-
quences. Since our artificial sequences are (by definition)
unique due to the random generation process, we could not
compare them with real sequences using traditional align-
ment methods. Therefore, we evaluated the sequences us-
ing alignment-free methods, in terms of base composition,
dimer skews, complexity and repeat content. We performed
three types of comparisons between real sequences, artificial
sequences and shuffled sequences:

(1) We visualized individual real, artificial and shuffled se-
quences using the GESTALT Workbench (46).

(2) We compared (i) 80 sequences of 100 kb each randomly
selected from the hg19 genome after discarding func-
tional regions (genes, pseudogenes, CpG islands, ultra-
conserved elements), (ii) the same intergenic sequences
permuted independently using the dinucleotide compo-
sition conservation with the Altschul–Erickson shuffle
algorithm (47), and (iii) a set of simulated sequences of
equal size, G+C content and repetitive fraction, gen-
erated using tetramer models and window size of 1000
bases. We built a matrix with the calculated values for
sequence composition and complexity (see below) and
analyzed it using both PCA and cluster analysis in the
statistical program R.
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(3) We compared 10 randomly selected real intergenic se-
quences to 100 artificial sequences modeled after each
real sequence (with similar G+C content and repeti-
tive fraction using tetramer models and window size
of 1000 bases) and to 100 dimer permutations of each
real sequence. We then compared the distributions of
sequence composition and complexity (see below) and
repeat content (fraction of sequence in SINEs, LINEs,
LTR elements, DNA transposons and simple repeats,
as tallied by RepeatMasker).

Sequence composition. We used three composition-based
measures (Equations (1–3)): G+C content (gc), G/C skew
(gcs) and CpG ratio (cpg). G+C content and CpG ratio are
common descriptors of the sequence composition, showing
significant variation along the chromosomes in a genome:

gc = nG + nC

n A + nT + nC + nG
(1)

gcs = nG − nC

nG + nC
(2)

cpg = nCG

nG · nC
, (3)

where nX is the total count of base X.

Sequence complexity. We calculated the complexity of the
sequences using five different methods (Equations (4–8)).
The Wootton–Federhen complexity cwf (48) and the en-
tropy of the symbols ce (49) measured the complexity as
function of the monomer composition. For the entropy of
symbols in a Markov model cm (49) and the linguistic com-
plexity cl (50) we used word lengths of 6, 8 and 12, calculat-
ing the complexity as a function of words observed in rela-
tion to all the possible words in an alphabet. Additionally,
we quantified the compressibility of the sequence cz with the
Zlib library (http://www.zlib.net/). Zlib uses two algorithms,
the first step is a LZ77 compression which maps and masks
repeated patterns, and the second step is symbol encoding
with Huffman trees. The level of compression is inversely re-
lated to the complexity of the sequence: low complexity se-
quences, like simple repeats, have higher compression factor
than most coding sequences:

cw f = 1
N

· log4
N!∏

i∈ACGT
ni !

, (4)

where N is the length and nX is the total count of base X.

ce = −
∑

i∈ACGT

(ni

N
· log4

ni

N

)
, (5)

where N is the length and nX is the total count of base X.

cm = −
4m∑

i=1

(
mi

N − m − 1
· log4m

mi

N − m − 1

)
, (6)

where N is the length and m is the word length and mt is the
total count of the t word.

cl =

m∑
i=1

Vi

m∑
i=1

Vmax(i )

, (7)

where Vt is the total distinct words with i length and Vmax
is the maximal number of observed words of length i.

cz = Z(s)
S(s)

, (8)

where S(s) is the size in bytes of the sequence s and Z(s) is
the size in bytes after compression.

Cluster analysis. We performed a cluster analysis to vali-
date the similarity of artificial sequences to real and shuf-
fled intergenic regions using the composition and complex-
ity measures described above. The data matrix was analyzed
with the Partitioning Around Medoids (PAM) method from
the package cluster in R (51). The PAM method is an im-
proved version of k-means clustering algorithm with addi-
tional diagnostic information related to the cluster solution.
This diagnostic method is known as the silhouette score
with a value span from 0 to 1, with a score of 0 given to el-
ements that are probably classified in the wrong cluster and
1 as the element is most likely to be in the correct cluster.
Since we are comparing three sequence classes, we used an
expected group value of 3.

Repeat detection

As described before, we performed three analyses for repeat
detection. The first analysis was intended to estimate the
real false-positive rate for PClouds (52) and RepeatMasker
in artificial sequences generated without any repetitive el-
ements. We used a set of 100 intergenic regions of 100 kb
each from the human genome; each sequence was permuted
independently (conserving dinucleotide composition) using
the Altschul–Erickson shuffle algorithm (47). We generated
a similar set of artificial sequences without repeats using the
same G+C content as the real intergenic region and gener-
ated with k-mer size of 8 and window size of 1000.

We ran RepeatMasker open-3.2.7 using the default pa-
rameters and ‘-species human’ flag. To test PClouds, we
trained the model as recommended by the authors, then
we ran PClouds v0.9 with the following configuration as
used by the authors in the original report with C10 pa-
rameters: [OligoSize → 16, COPYTHRESHOLD → 2,
ENDTHRESHOLD → 10, STEP1THRESHOLD → 20,
STEP2THRESHOLD → 200, STEP3THRESHOLD →
2000, CALCHUNCKSIZE → 10000000, GENOMESIZE
→ 3200000000, WindowSize → 10, PercentCutoff → 80].
We used custom Perl scripts to parse the outputs and report
the total bases detected as repetitive.

The second and third test challenged specific models for
detection of Alu and MIR repeats. We generated a set of
sequences with a G+C content between 40% and 60% (rep-
resenting the average G+C in the genome) and inserted ar-
tificially generated Alu repeats in a gradient of sequence

http://www.zlib.net/
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fraction from 10% to 90%. We generated 10 sequences of
each category and computed an average. We ran Repeat-
Masker with default parameters and ‘-species human’ flag
and PClouds trained with the 1000 Alu sequences used by
the authors in the original report. Those sequences were ob-
tained randomly from the RepeatMasker output for hg17.
After training, we tested PClouds with word size of 8, 10,
12, 14 and 16 using C10 parameters. We used custom Perl
scripts to parse the outputs and report the total bases de-
tected as TP, TN, FP and FN. MIR tests were performed in
a similar way.

Gene prediction

Coding genes. We used Genscan v1.0 (16), Twinscan v3.5
(17) and Augustus v2.0.3 (18) as ab initio gene prediction
programs, using default parameters and the trained mod-
els for detection of human genes, as provided by the au-
thors with their respective programs. We ran each program
against the set of sequences with repeat regions masked.

Non-coding genes. We used Infernal v1.2 (21) to predict
putative non-coding RNAs using default parameters. We
selected all models from Rfam v9.1 (53) that were built in-
cluding human sequences in the model alignment.

Transcriptional footprints

We used FEAST (25) with default parameters to identify
regions with transcriptional footprints––a combination of
orientation skews indicative of transcriptional activity.

Data access

The models and software can be accessed from the project
website www.repeatmasker.org/garlic/. We implemented the
algorithm in the Perl language for multiple platform com-
patibility. All the code is released as Open Source under the
GPLv3.0 license.

RESULTS

A statistical model of the non-functional genome

We model the genome as being composed of three classes of
sequence: (i) sequences under functional or mutational con-
straints (typified by transcribed regions), (ii) sequences that
arose by duplication but are largely unconstrained (typified
by intergenic interspersed repeats), and (iii) a background
or ‘base’ sequence. The functionality of introns is under de-
bate (54,55) but they are at the very least mutationally bi-
ased (24). Since our goal is to characterize and recreate un-
constrained sequences, we conservatively excluded class (i)
in its entirety, including all introns. We studied the compo-
sitional characteristics of classes (ii) and (iii), and the mu-
tational spectrum of class (ii) sequences (repeats) relative to
their respective consensus sequences.

Based on the available annotation of the human genome,
we identified 574 Mb of ‘base’ sequence (17% of the
genome) left after removing all fragments annotated as
genes, pseudogenes, CpG islands, ultraconserved sequences
and repetitive sequences (see the Materials and Methods

section). Of the 3.1 Gb in the human reference genome
(GRCh37, hg19), 7.5% is ambiguous sequence (gaps and
heterochromatin) and 48% is annotated as transcribed (in-
cluding introns). The remaining 44.5% of the genome is
composed of intergenic sequence, of which 25% is repetitive
and 19.5% is unique. We define this last fraction (intergenic
and unique) as the ‘base’ sequence.

We analyzed the base sequence and computed the
frequencies of all observed k-mers in fixed-size non-
overlapping windows stratified by G+C content. Since
the choice of these parameters may affect the quality of
the sequence generated, we tested different values of k
(4,6,8,10,12) and window length [200, 500, 1000, 2000, 5000]
but we did not observe significant differences between the
sequences produced (data not shown). For our tests, we
chose models with k = 4 and window size of 1000 as de-
fault. We also computed the G+C content transition fre-
quency between adjacent windows. This is a measure of how
frequently a region shifts from one G+C class to another.
These changes are common in the genome, typically trig-
gered by the presence of repetitive elements or other func-
tional constrains such as CpG islands. A general overview
of the processes described above is presented in Figure 2.

Intergenic and intronic regions are compositionally distinct

In the genome, there are two classes of largely non-
functional regions that could be used for model training:
intergenic and intronic regions. Introns are known to be
mutationally biased (24); their composition is therefore ex-
pected to differ from that of unconstrained intergenic se-
quence. We verified the existence of such a difference by
comparing the intergenic and intronic regions in the human
genome––representing 1.2 Gb and 403 Mb, respectively––
and their orthologous regions in 14 other species (Supple-
mentary Table S1). We computed the tetramer frequencies
in those regions, binning by G+C content, and compared
the intergenic and intronic profiles of the 15 genomes simul-
taneously by PCA. The third principal component clearly
distinguishes between intergenic and intronic regions (blue
and red, respectively, in Figure 3).

Generation of artificial sequences

We implemented a workflow for generating artificial se-
quences or arbitrary length and with similar characteris-
tics to those of unconstrained intergenic regions of the
genome. In its simplest form, our workflow requires spec-
ifying just the target species and the desired length of the
artificial sequence. Additional optional parameters include
k-mer size, window size, and the desired repetitive frac-
tion of the sequence. If unspecified, the latter is modeled
from the real genome distributions. Visual comparison of
the generated artificial sequences to real intergenic regions
with similar G+C content and repetitive fraction shows that
our algorithm captures the complexity of the G+C con-
tent across the sequence and the diversity of interspersed
repeats (Figure 4). In contrast, local shuffling scrambles the
sequence in interspersed repeats, leading to unrealistic re-
sults. We further applied alignment-free comparison meth-
ods to verify that the composition and complexity of the

http://www.repeatmasker.org/garlic/
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Figure 4. GESTALT comparison of artificial, real and shuffled sequences.
(a) Artificial sequence, (b) Intergenic region chr4:104640972–104740972,
(c) Intergenic region chr4:104640972–104740972 after dimer permutation.
The elements in RepeatMasker are: LINEs in green, SINEs in red/pink,
LTR, DNA transposable elements and others in brown.

repeat-masked artificial sequences is comparable to real in-
tergenic sequences (for details see the Materials and Meth-
ods section). We created for each sequence a numerical vec-
tor including all its quantified properties and visualized the
vectors in a multiscale projection after dimension reduction
with PCA (Figure 5). The dispersal range of artificial se-
quences is equivalent to that of real intergenic sequences––
if somewhat less diverse––showing high compositional sim-
ilarity. We also used cluster analysis methods on the numer-
ical matrix of the composition and complexity values to test
whether the sequences generated can be distinguished from
the real sequences. After application of the PAM method
with three expected clusters, the clusters showed mixed ele-
ments of artificial, real and shuffled sequences with an av-
erage silhouette value of 0.77, a value considered as stable
(Supplementary Figure S2).

The sequences generated have similar composition and
complexity to that of real intergenic sequences, but clearly
show a larger diversity in complexity. Repetitive content is
similar in proportions as expected in the real intergenic se-
quences, while shuffled sequences are essentially devoid of
repetitive content––typically including just a small fraction
of simple repeats and none of the other repeat classes (Sup-
plementary Figure S3).

Evaluation of repeat detection methods

We compared the performance of PClouds (52) and Repeat-
Masker when analyzing (i) the expected false-positive rate
for repetitive regions modeling in the human genome, (ii)
Alu-specific model accuracy and (iii) MIR-specific model
accuracy. For the first test we selected 100 intergenic se-
quences of 100 kb each from the human reference and dimer
permuted in 1000 non-overlapping windows. We generated
a similar number of 100 kb sequences using those intergenic
regions as model for expected G+C level in 10 kb windows
and generated using k-mer size of 8 in non-overlapping 1000
bp window size. We trained the PClouds model using the
protocol described in the original article with word size of
16 and C10 parameters over the 23 human chromosomal se-
quences, and then used PClouds to identify repetitive region
in our sequence test set. We analyzed all the test sequences
using RepeatMasker with default parameters. Since we in-

cluded no repeat elements while generating the sequence,
any prediction represents a false positive. We computed the
false-positive rate per base (FPR) as

FPR = FP/L,

where FP is the total bases identified as repetitive and L
the total length of the sequence. Figure 6a summarizes
the results obtained. In dimer-permuted sequences, Re-
peatMasker’s FPR is very low (median of 0.13%), while
PClouds’ FPR is significant (median of 42.16%). For artifi-
cial sequences we observed higher median values for differ-
ent k-mer sizes in PClouds (49.77%, 52.37% and 53.96% for
k-mer of 4, 6 and 8, respectively), while the median FPR for
RepeatMasker is consistently below 0.39%.

For the Alu specific benchmarks we generated a series
of 100 kb artificial sequences; we used a G+C content be-
tween 40% and 60% and created 10 independent sequences
with {10, 20, 30, . . . 90%} repetitive content exclusively of
artificially generated Alu sequences. We trained PClouds
with the same 1000 Alu sequences reported in the origi-
nal article with word size of {8, 10, 12, 14, 16} and C10
parameters. We ran RepeatMasker with default parame-
ters and post-processed the results selecting only predicted
Alu regions. In the artificial sequences, we know the exact
positions where Alu were inserted, therefore we can com-
pute Specificity (Sp), Sensitivity (Sn) and false-positive rate
(FPR) values as

Sp = TN/(TN + FP)

Sn = TP/(TP + FN)

FPR = FP/(TN + FP),

where TP are True Positives, FP are False Positives, TN are
True Negatives and FN are False Negative bases.

Figure 6b shows our results for RepeatMasker and
PClouds. PClouds’ results are affected by the repetitive frac-
tion and word size selected. PClouds’ authors (52) reported
that two thirds of the human genome is repetitive. We found
that PClouds has a false-positive rate of up to 60%, higher
than the 12.6% reported by the authors, and that it de-
pends on the k-mer used and the sequence composition even
for models specific for Alus or MIRs. In contrast, Repeat-
Masker’s FPR is lower and stable (<0.4%) and with high
sensitivity (>90%) and specificity (>75%)

Similarly to the Alu benchmark, we created a set of
test sequences for MIR and analyzed them using the same
strategy. We present in Figure 6c our results and we ob-
served a similar performance of RepeatMasker compared
to PClouds, RepeatMasker has good specificity (>92.10%),
sensitivity (>71.29%) and low FPR (<7.9%). PClouds was
affected again by the repetitive content and word size.

Evaluation of gene prediction methods

We challenged three gene prediction programs: Genscan
(16), Twinscan (17) and Augustus (18) with artificially gen-
erated sequences lacking, by design, any real gene struc-
tures. Since some transposable elements include protein-
coding regions, it is customary to mask repeats prior to
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Figure 5. Principal component analysis of composition and complexity measures. We compare 100 sequences with 100 kb each for artificial sequences
(blue), selected intergenic regions (green) and their respective dimer permutation of intergenic sequences (red).

gene prediction. We therefore repeat-masked our artificial
sequences. The resulting base sequence, interrupted by gaps
where the repeats used to be, is known not to include any
coding regions that have been subjected to evolutionary se-
lection. Nevertheless, all the programs tested reported com-
plete genes, including transcription signals, exons and in-
trons, and coding regions (Figure 7). The longest gene pre-
diction in artificial sequences spanned 90 kb, with a pre-
dicted protein product of ∼300 aa. We used NCBI blast (56)
against the NR database of non-redundant peptides (ac-
cessed April 2012) to test whether the newly predicted cod-
ing regions have any similarity to known protein sequences.
As expected, this comparison found no significant hits (e-
value < 0.1). When studying artificial sequences, Augustus

predicted fewer unselected gene structures than Genscan
and Twinscan (0.2, 6.5 and 0.8 genes/Mb, respectively). The
three programs predicted fewer gene structures in shuffled
sequences (no predictions, 3.3 and 0.7 genes/Mb, respec-
tively).

We similarly tested how frequently Infernal (21) predicts
non-coding RNAs in the artificial sequences. We used the
198 models available for human-related sequences in Rfam
(53). Infernal did not predict any non-coding RNAs in the
analyzed intergenic, artificial and shuffled sequences with a
significance e-value < 0.01.

Finally, we challenged FEAST (25) to find regions with
transcription potential (Figure 7d). The FEAST scores ob-
served in the artificial sequences follow a similar distribu-
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Figure 6. Repeat identification benchmarks. (a) False positives expected
in dimer-permuted sequences and synthetic sequences without repeats, (b)
Alu tests, (c) MIR tests. For (b) and (c), each point represents the average
sensitivity (Sn) and specificity (Sp). Colors represent the program (PC =
PClouds, RM = RepeatMasker) and word size used for PClouds (8, 10,
12, 14, 16). The transparency of the color denotes the amount of repetitive
sequence in each set (10%, 20%, . . . 90%) and the size of the point the
average FPR. Each sequence set includes 10 artificial sequences of 100 kb
each generated with k-mer size of 8 and window size of 1000 with a G+C
content of 40–60%.

Figure 7. Coding and transcribed size distribution of predicted genes. Pre-
dictions in artificial (blue), intergenic (green) and dimer permuted inter-
genic sequences (red) are compared with known genes (gray) for (a) Au-
gustus, (b) Genscan, (c) Twinscan and (d) FEAST.

tion as the scores from real intergenic sequences. FEAST
predicted 9.3 transcribed regions/Mb in artificial sequences
and none in shuffled sequences. This false-positive rate
may be inflated since FEAST scores represent composi-

tional and repeat content skews between the opposite DNA
strands, and artificial sequences show some excess compo-
sitional skews relative to real sequences.

DISCUSSION

Richard Feynman wrote on his blackboard in 1988, ‘What
I cannot create, I do not understand’: the artificial repro-
duction of an object reflects our knowledge about it. We
thus set out to create a new algorithm that can produce se-
quences indistinguishable from the real non-functional in-
tergenic regions from a genome. With the initial draft of the
human genome, it was estimated that approximately 5% of
the human genome is likely to be functional (3). This figure
has been revised upward based on significant new experi-
mental evidence (54). The current annotation of the human
genome includes 56 563 genes with experimental evidence
annotated in Gencode v16 (57). Although there are almost
twice as many hypothetical, predicted or putative genes re-
ported, many of them are expected to be false-positive pre-
dictions. The experimental validation of all these predicted
genes may prove to be difficult since genes (or specific tran-
scripts thereof) may be expressed at too low levels, for too
short windows of time, or in too specific a context (e.g. very
limited stages of development or in response to very specific
stimuli). Conversely, many of the ab initio gene predictions
may be false positives. It is difficult to estimate a real false-
positive rate without a realistic negative control.

Based on composition analysis and the distortions intro-
duced by the absence of repeats we demonstrated the inade-
quacy of simple permutation-based methods for generating
negative control sequences: the dimer shuffle methods do
not produce sequences that are realistic enough to serve as
negative control for gene prediction. In addition, both local
and global shuffling remove the presence of repeats, mak-
ing it impossible to correctly test repeat detection programs.
We also showed that intronic and intergenic sequences have
very different compositions (Figure 3). One explanation for
this difference is that the regions have a different evolution-
ary pressure; introns have a strong bias in composition (24)
and repeat orientation (25). Therefore, intronic regions are
not adequate as negative control. In the case of intergenic
regions, we identify two main problems with using anno-
tated intergenic regions for training and testing gene identi-
fication tools:

(1) Presumed intergenic regions may include yet-
unidentified genes and functional elements. Despite
being frequently classified as dispensable DNA, in-
tergenic regions include fragments that are highly
conserved between divergent species, but of unclear
function (58). Additionally, a series of reports over
the past few years have indicated that a much larger
portion of mammalian genomes is transcribed (59,60)
and even has been claimed that up to 80% of the human
genome is biochemically functional (54). Uncharacter-
ized functional elements may deviate in composition
or other relevant sequence features from the random
distributions required for negative controls.

(2) The amount of sequence available for each species is
limited, reducing the ability to perform multiple test-



e99 Nucleic Acids Research, 2014, Vol. 42, No. 12 PAGE 10 OF 12

ing. Just one quarter of the 3 billion bases in the human
genome are considered intergenic and non-functional
(3).

Previous efforts in DNA sequence simulation have mainly
focused on analysis of coding regions. Programs such as
Seq-Gen (61), Gsimulator (62) and many others start from
a gene sequence and perform an artificial evolution pro-
cess, adding mutations and modeling the conservation of
the coding portion. All these programs are specific for cod-
ing portions in small genome scales, and are not imple-
mented to work with large genomes like human. There are
many selective pressures on coding sequences that constrain
the way in which they can mutate, and the mutation rate is
variable between regions. Therefore these methods are not
directly applicable to modeling the evolution of intergenic
sequences to produce the desired negative controls. More
elaborate efforts evolve a sequence using predefined muta-
tion rates (63), then permute the sequences to obtain a new
sequence with similar composition (64). In this case, typi-
cal elements as repeats are missing and we can expect the
same bias as observed in our shuffled sequences. Similar
to the first stage of our algorithm, previous work gener-
ated synthetic ‘pseudo-genome’ sequences by training a 15-
state hidden Markov model (65). Our artificial sequences
reflect the expected frequency distributions of longer word
sizes and include artificially evolved repeats. The resulting
sequences are visually similar to real intergenic sequences.
In contrast, the permuted sequences clearly are devoid of
repetitive elements, even when they conserve composition
and complexity properties. In our training process, we ex-
plicitly capture the composition properties of intergenic se-
quences as the k-mer frequencies observed in each of the five
GC content bins. We do not model sequence complexity ex-
plicitly. Nevertheless, the model produced by our training
steps can produce complex sequences similar to those ob-
served in the genome, with minor differences in G+C skew,
compressibility and complexity quantified in Markov mod-
els. These minor discrepancies arise by the random process
of selection and insertion of repeats.

Our artificial sequences mimic in composition and com-
plexity the large, non-functional portion of the genome. We
tested the sequences produced by the models comparing
real intergenic, artificial and shuffled sequences in terms
of composition and complexity as described above. Using
these metrics as dimensions in PCA and PAM/Silhouette
clustering, we observed a good similarity between classes.
We also tested the diversity of composition and complex-
ity features in sequences produced by repeated simulations
and shuffling of 10 real intergenic sequences. All sequences
produced were similar in composition and complexity (gc,
cpg, cwf, ce, ct, cl). In contrast with shuffled sequences,
the artificially generated sequences also contained a diverse
family of elements like interspersed repeats (LINEs, SINEs,
LTR elements and DNA transposons), and low complex-
ity sequences based on real models. Our program also has
an option to report how exactly each repeat sequence was
constructed, indicating where each mutation occurred. Our
method does not yet model certain types of repeats for
which there is some discordance between the identifier of
the consensus in Repbase and the annotation by Repeat-

Masker, and some specific types like satellite and telomeric
sequences. These are region-specific sequences, infrequently
found interspersed elsewhere in the genome, and which arise
via a generative process different from that of transposons
and retrotransposons.

Even randomly generated sequences may include by
chance sequences that, if introduced to a living cell, might
perform a biological function. The probability of such
events will depend on the size and complexity of the re-
quired signal for functional activity: short motifs like a tran-
scription factor binding site will frequently arise by chance,
while complete gene structures encoding meaningfully func-
tional proteins will rarely do so. Thus, for gene prediction
we expect most observations in random sequences to be
false positives. Our method for computationally generating
artificial genomic sequences enhances the ability to estimate
the true frequency with which such positive events happen.

Applications for complete genome simulations are not
limited to assessing gene and repeat discovery methods.
For example, genome-size simulations can be used to test
mapping efficiency of short reads (66). Other researchers
(67) criticized the results of the ENCODE project and pro-
posed a ‘Random Genome Project’ as the missing nega-
tive control. Our algorithm can be used to produce such
genome-size sequences. In addition to the applications de-
scribed above, our method for generating artificial genome
sequences can be useful for assessing a variety of other com-
putational biology algorithms, including prediction of cis-
regulatory motifs, estimation of composition fluctuations in
chromosomes, or genome fractal properties.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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