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In order to maintain a coherent, unified percept of the external environment, the brain must continuously

combine information encoded by our different sensory systems. Contemporary models suggest that

multisensory integration produces a weighted average of sensory estimates, where the contribution of each

system to the ultimate multisensory percept is governed by the relative reliability of the information it

provides (maximum-likelihood estimation). In the present study, we investigate interactions between

auditory and visual rate perception, where observers are required to make judgments in one modality while

ignoring conflicting rate information presented in the other. We show a gradual transition between partial

cue integration and complete cue segregation with increasing inter-modal discrepancy that is inconsistent

with mandatory implementation of maximum-likelihood estimation. To explain these findings, we

implement a simple Bayesian model of integration that is also able to predict observer performance with

novel stimuli. The model assumes that the brain takes into account prior knowledge about the

correspondence between auditory and visual rate signals, when determining the degree of integration to

implement. This provides a strategy for balancing the benefits accrued by integrating sensory estimates

arising from a common source, against the costs of conflating information relating to independent objects

or events.
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1. INTRODUCTION
Many physical properties of our external environment can

be encoded by more than one sensory modality. Rather

than being treated independently by the brain, it has long

been recognized that these sources of information interact

with one another. The perceptual consequences of these

interactions are most noticeable when multisensory cues

are placed in conflict. Classic demonstrations include

marked shifts in the perceived location of auditory stimuli

when accompanied by spatially distinct visual stimuli (the

‘ventriloquist illusion’, Pick et al. 1969; Welch & Warren

1980; Bertelson & Radeau 1981) and distortions of

perceived visual rate induced by concurrent auditory

stimulation (‘auditory driving’, Gebhard & Mowbray

1959; Shipley 1964; Myers et al. 1981; Welch et al.

1986; Recanzone 2003). Traditionally, the direction of

such effects has been thought to reflect modality

appropriate ‘capture’, with vision dominating spatial

judgements and audition dominating temporal judge-

ments. However, in recent years it has become clear that

such a rigid strategy for resolving discrepancies between

sensory estimates is unfeasible. Instead, it has been

proposed that the brain may form an optimal combination

of the available sensory information, based on the

reliability of estimates derived from source.

Consider a situation in which an observer both hears

and sees a sudden explosion. Though estimates of the

spatial and temporal properties of the event derived by
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each modality are likely to be similar, each will be

perturbed to some extent by sources of external (physical)

and internal (neural) noise. Given this noisy input, the

challenge for the observer is then to form a best

approximation of what has occurred. Current opinion

suggests that this is achieved via an integrative mechanism

that operates according to maximum-likelihood esti-

mation (MLE). According to a MLE model of multi-

sensory integration, the strategy adopted by the brain is to

merge sensory information into the most reliable compo-

site estimate of a given property possible. If the noise

associated with each sensory estimate is independent and

normally distributed, the statistically optimum combi-

nation is a simple weighted average, where the degree to

which each modality contributes to the ultimate multi-

sensory percept is set according to the normalized

reciprocal variance of the estimate it provides. For

example, if the visual estimate of the location of the

explosion is less variable (i.e. more reliable) than the

corresponding auditory estimate, greater weight will be

assigned to it during the integration process. However, if

conditions such as smoke or haze from previous explosions

degrade visual sensitivity to the extent that positional

estimates become more variable (less reliable) than those

provided by the auditory system, the pattern of weights

will be reversed. In either case, the variance associated

with the composite audio-visual estimate will be lower

than for either of the individual sensory estimates. Thus,

by exploiting the inherent redundancy of stimulus coding

across sensory systems, this flexible strategy helps to
q 2006 The Royal Society
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minimize the effect that noise has on the observer’s

perceptual representations.

Empirical results consistent with near-optimal MLE

integration of multisensory information have been

reported in a number of studies (van Beers et al. 1999;

Ernst & Banks 2002; van Beers et al. 2002; Gepshtein &

Banks 2003; Alais & Burr 2004). In addition, comparable

weighting schemes have been shown to predict observers’

responses when presented with multiple visual cues to

depth (Landy et al. 1995; Jacobs 1999; Rushton & Wann

1999), position (Landy & Kojima 2001) or surface

geometry (Knill & Saunders 2003; Hillis et al. 2004),

suggesting that similar processing strategies may operate

for integrating information both within and across sensory

modalities.

The advantages of MLE as a mechanism for multi-

sensory integration are twofold. First, it provides a means

of resolving discrepancies associated with internal and

external noise, thus helping to maintain a unified percept

of the world. Second, it has the capacity to increase the

precision of perceptual representations, thereby facilitat-

ing the subsequent computation and execution of

appropriate behavioural responses (Clarke & Yuille

1990; Ernst & Bülthoff 2004; Knill & Pouget 2004;

Witton & Knudsen 2005). Critically, however, these

benefits apply only when information relates to a common

source. In rich, dynamic environments containing mul-

tiple stimuli, combining sensory information associated

with independent objects or events is likely to be

disadvantageous and in some instances hazardous. Thus,

an inflexible stimulus-driven mechanism that automati-

cally integrates multisensory information would carry

potential costs as well as benefits.

Ideally, the brain would always be able to integrate

sensory estimates derived from a common source, while

avoiding the conflation of information derived from

independent objects or events. Though not captured by

a mandatory MLE model, there is reason to believe that

there are strategies in place to maintain a balance between

these competing goals. For instance, it has long been

recognized that cross-modal interactions break down

when the degree of conflict between each modality is

large (Warren & Cleaves 1971; Jack & Thurlow 1973;

Recanzone 2003; Bresciani et al. 2005; Gepshtein et al.

2005). Since highly discrepant sensory estimates are

unlikely to relate to a common source, this acts to directly

reduce the risk of integrating unrelated information. In

addition, there is evidence to suggest that even when

integration does take place, the brain does not necessarily

discard unimodal information altogether. Indeed, based

on results from a task in which observers were asked to

discriminate between visual–haptic stimuli using any

means available, Hillis et al. (2002) suggest that either

the combined estimate or one of the unimodal estimates

can be accessed, depending on which is most advan-

tageous for a given judgement.

In this study, we investigated interactions between

auditory and visual temporal rate perception while

instructing observers to base their judgements solely on

information from one modality. This approach differs

from most studies investigating MLE integration, where

observers are invariably asked to make single judgements

about discrepant multisensory stimuli. Interestingly,

under these conditions we find that the magnitude of
Proc. R. Soc. B (2006)
cross-modal effects are neither consistent with mandatory

MLE integration nor with uncompromised access to the

relevant unimodal estimate. Rather, observers’ rate

percepts fall between the predictions of each strategy,

suggesting that only partial integration of temporal

information is occurring. Additionally, a key advantage

of this approach is the facility to map out audio-visual

interactions over a wide range of inter-modal discrepan-

cies, revealing a gradual transition between partial cue

integration and complete segregation. Building upon

recent suggestions (Ersnt 2005), we go on to develop a

simple Bayesian model of audio-visual integration that

accounts for these new findings. Furthermore, we show

that this parsimonious computational approach can be

used to predict observer performance under novel

stimulus conditions.
2. METHODS AND RESULTS
(a) Observers

Two of the authors (NWR and JH) acted as observers

along with one participant (EGL) who was completely

naive to the purposes of the experiment. Each had normal

or corrected to normal vision and no hearing loss.

(b) Stimuli

Visual stimulation was produced using a 14 mm diameter

green light-emitting diode (LED), positioned 1 m in front

of the observer. The LED had a maximum luminance of

6400 cdmK2 and flickered on and off at a controllable rate.

Auditory stimuli were bursts of white noise sampled at

8192 Hz and presented binaurally via Sennheisser HD-

265 headphones. To produce a comparable temporal

profile to the flickering visual stimulus, each noise burst

was amplitude modulated by a square wave around a fixed

mean intensity (65 dB SPL). Auditory stimuli were

produced at a variety of modulation depths, expressed

here as a multiple of each observer’s detection threshold

(initially obtained by measuring the minimum depth

which could be distinguished from a non-modulating

stimulus with 75% accuracy).

(c) Unimodal rate discrimination

Ability to discriminate the rate of visual or auditory

modulation was first measured relative to a fixed 10 Hz

standard. A two-interval forced choice procedure was

employed, whereby observers judged which of two

successive one-second intervals contained the stimulus

with the faster rate. The order of presentation of test and

standard intervals was randomized on a trial-by-trial basis.

A method of constant stimuli was employed (seven test

rates centred on 10 Hz, 40 trials per test rate) and

psychometric functions were modelled by fitting a

cumulative Gaussian function to each of the resulting

datasets. Separate runs measured discriminative ability for

visual modulation and for each of a number of auditory

modulation depths. As shown in figure 1, auditory rate

discrimination thresholds varied systematically as a

function of modulation depth. With larger modulation

depth stimuli, auditory rate judgements were more precise

than visual judgements. However, by reducing modulation

depth auditory thresholds could be made to approximate

or exceed visual thresholds for each individual observer.

Accordingly, manipulation of the modulation depth of
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Figure 1. Thresholds for discriminating the rate of modu-
lation of auditory (unfilled symbols) and visual (filled
symbols) stimuli relative to a 10 Hz standard. Auditory
thresholds are shown as a function of modulations depth,
expressed as a multiple of each observer’s detection
threshold. Error bars in this and subsequent figures indicate
G1 standard error, estimated by a bootstrap procedure.
Note, no systematic biases were observed in any condition.
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the auditory stimulus provided a means of controlling the

relative balance between visual and auditory sensitivity.
(d) Cross-modal interactions with equated

auditory and visual sensitivity

In cross-modal conditions, observers were required to

discriminate rate information derived from one modality

(task-relevant), while ignoring rate information presented

to the other (task-irrelevant). In each case, judgements

were made relative to a congruent bimodal reference

stimulus comprising visual and auditory modulation at

10 Hz. The auditory and visual components of the

reference stimulus were presented in phase, such that
Proc. R. Soc. B (2006)
periods in which the LED was on were temporally

coincident with periods in which the auditory stimulus

was loudest. Psychometric functions were obtained for a

range of interleaved task-irrelevant test rates using

identical procedures to those used in unimodal measure-

ments. Changes in perceived rate induced by task-

irrelevant stimuli were quantified by measuring shifts in

the point of subjective equality (PSE), the physical test

rate required in the task-relevant modality to be percep-

tually equivalent to the standard.

Cross-modal data was first collected under conditions

where auditory and visual sensitivity was equated. The

modulation depth of auditory stimuli was set to the point

at which the exponential fit of the auditory threshold data

in figure 1 intersects the dotted horizontal line indicating

visual threshold level for each observer. Figure 2 displays

results for visual judgements (filled symbols) and auditory

judgements (unfilled symbols) and shows that PSEs were

systematically pulled above and below the reference

frequency, depending on the rate of the task-irrelevant

stimulus. For instance, in order for perceived visual rate to

be equivalent to the reference stimulus, physical visual

flicker rates greater than 10 Hz were required when paired

with slow irrelevant auditory stimuli and flicker rates less

than 10 Hz were required when paired with fast auditory

stimuli.

The fact that PSEs were systematically altered by an

irrelevant stimulus strongly suggests that observers were

not able to retain uncompromised access to the individual

auditory and visual rate estimates. Rather, some form of

integration of rate information has occurred. However, the

magnitudes of the shifts in perceived rate are not

consistent with mandatory implementation of MLE.

Since auditory and visual sensitivity were equated, MLE

would predict equivalent weighting of information from

each modality (i.e. a simple arithmetic average). The

resulting linear prediction is shown in figure 2 across a

range of task-irrelevant rates spanning 2 Hz either side of

the 10 Hz reference. MLE over-estimates the amount of

shift in the PSE away from the reference rate.

While mandatory MLE would predict that the degree

of cross-modal distortion in both judgement conditions

should continue to rise as the irrelevant stimulus rate is

moved away from the 10 Hz reference, this is not borne

out in the data (see figure 2). In contrast, effects in both

conditions display a finite tolerance to bimodal rate

discrepancies. Minimal changes in perceived rate were

induced by task-irrelevant rates that were considerably

slower (i.e. 5 Hz) or faster (i.e. 15 Hz) than the reference

stimulus.

Since the rates of auditory and visual stimuli in each

test interval were uncorrelated, cross-modal interactions

came at an overall cost to the accuracy of rate judgements.

As shown in figure 3, rate discrimination thresholds for

both auditory and visual judgements exceeded those

obtained under unimodal conditions.

(e) A simple Bayesian model

The results of our cross-modal experiment indicate that in

the majority of conditions, auditory and visual rate

information was neither merged into a composite rate

estimate nor processed in complete independence of its

counterpart in the other modality. To account for these

results, here we implement a Bayesian model of
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multisensory integration that incorporates uncertainty

about both the relationship between unimodal rate

estimates as well as the estimates themselves. We assume

that observers combine information derived from the

noisy auditory (A) and visual (V ) representations with

prior knowledge that has been built up about the co-

occurrence of particular combinations of auditory (a) and

visual (v) rates to infer the most likely physical stimulus.

The posterior distribution P(a,vjA,V ) specifies the prob-

ability of perceiving rates a and v given the noisy estimates
Proc. R. Soc. B (2006)
A and V. According to Bayes’ rule,

Pða;vjA;V ÞZ
1

a1

PðA;V ja;vÞPða;vÞ; ð2:1Þ

where P(A,V ja,v) indicates the likelihood that particular

auditory and visual representations will result from a given

physical stimulus; P(a,v) specifies prior knowledge about

the probable correspondence between auditory and visual

rates and a1 is a normalization constant that ensures that

the posterior probability distribution sums to 1. Assuming

a least squares loss function, one can calculate the optimal
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auditory and visual percepts as the centroid of the two-

dimensional posterior distribution.

In keeping with previous models, we assume that the

noise associated with each sensory estimate is independent

and normally distributed. Accordingly, likelihood distri-

butions can be derived from observers’ unimodal rate

discrimination thresholds (sA and sV) as follows:

PðA;V ja;vÞZ
1

a2

e
K1

2
ðAKaÞ2

sA
2 CðVKvÞ2

sV
2

� �
: ð2:2Þ

In everyday life, concurrent audio-visual signals often, but

not always, relate to a common source. While mandatory

MLE integration assumes perfect correspondence

between auditory and visual rates (aZv), here we

incorporate a more flexible prior that reflects this

variability. Specifically, we model the prior probability

distribution as the amalgamation of two components: a

‘linked’ component consisting of a Gaussian function of

the difference between auditory and visual rates, centred

on precise correspondence, and an ‘independent’ com-

ponent comprising of a uniform distribution across

combinations of rates in each modality,

Pða;vÞZ
1

a3

uCe
K ðaKvÞ2

2sav
2

� �
: ð2:3Þ

The parameter sav controls the spread of the Gaussian

component around the identity line, while the parameter u

sets the probability level of the uniform component

distribution relative to the peak of the Gaussian.

Notionally, the prior represents accumulated knowledge

about the relationship between auditory and visual rate

signals built up through repeated exposure to both

correlated and uncorrelated sources in the world.

Using the model, predicted outcomes for the cross-

modal task were generated. To estimate the prior

distribution for each observer, we calculated the values

of u and sav that produced the best-fitting (least-squares

residual) predictions of the combined visual and auditory

judgement datasets. As shown by the solid curves in

figure 2, these predictions do a far superior job to MLE in

capturing both the overall magnitude of the observed

interaction effects and the limited tolerance shown to

inter-modal discrepancies.

To illustrate the main components and operation of the

model, a graphical representation is shown in figure 4. In

each panel, lighter regions designate higher probability

values than darker regions. Row (a) shows a hypothetical

situation in which a 9 Hz auditory stimulus is paired with

an 11 Hz visual stimulus. The combination of physical

rates dictates the centre of the likelihood function, as

indicated by the position of the small-unfilled circle.

Perceived auditory and visual rates are calculated by

taking the centroid of the posterior distribution, indicated

by the position of the small black circle. In the case of

complete integration of auditory and visual information,

auditory and visual percepts would be fused such that this

estimate would fall upon the dashed diagonal identity line.

However, since our prior does not assume perfect

correspondence between rate information in the two

modalities, the predicted perceptual experience falls in

between independence and complete integration.

As long as combinations of auditory and visual stimuli

fall near the identity line, the posterior distribution is

dominated by the Gaussian linked component of the prior,
Proc. R. Soc. B (2006)
producing distortions of perceived rate that increase with

the degree of discrepancy between modalities. However,

as shown in row (b), posterior functions for discrepant

stimuli falling towards the limits of the linked prior

become increasingly affected by the independent com-

ponent, resulting in smaller effects. Further increase in the

degree of discrepancy between auditory and visual rates

will ultimately negate the influence of the linked prior

component entirely. Row (c) demonstrates that under

these circumstances, the model predicts veridical rate

perception in both modalities.

A couple of points warrant mention here. First, it is

important to note that without the uniform component

of the prior, the model would fail to predict the tuning

of interaction effects as a function of rate discrepancy. If

one were to implement the linked (Gaussian) com-

ponent of the prior in isolation, the model would

produce partial integration of rate estimates. However,

as with mandatory MLE, the magnitude of predicted

interaction effects would remain a linear function of rate

discrepancy and fail to capture the observed tolerance

profiles. Second, successful prediction of the experi-

mental data would not be possible if rate percepts

were derived from a maximum a posteriori estimate.

Because of the composite nature of the prior, posterior

probability distributions formed by the model are

sometimes bimodal. This presents two problems: (i)

the predicted transition between partial integration and

segregation seen with increasing discrepancy becomes

abrupt, rather than gradual and (ii) in some conditions it

becomes impossible to find any combination of rates

which will give rise to a perceived rate of 10 Hz in the

task-relevant modality.

(f ) Cross-modal interactions with unbalanced

auditory and visual sensitivity

Having established estimates of the prior distributions for

each observer, we next sought to determine whether the

Bayesian model could predict performance under new

stimulus conditions. To do this, we repeated the cross-

modal experiment while manipulating the precision of

auditory rate estimates relative to those formed by the

visual system. As with all Bayesian approaches, the model

dictates that perception is a trade-off between the

reliability of a particular estimate (represented by the

likelihood) and the prior. Reducing the precision of

auditory rate estimates should flatten the likelihood

along the auditory dimension, making perception more

susceptible to influence by the prior. As a result, the model

predicts that greater distortion of auditory rate judge-

ments by visual stimuli should occur. Increasing the

estimate precision should have the opposite effect,

resulting in percepts that are less prior driven (i.e. more

veridical).

From the exponential curve fits of auditory unimodal

data shown in figure 1, the modulation depth of auditory

stimuli were set such that auditory rate discrimination

thresholds were either 50 or 200% of visual thresholds for

each observer. Cross-modal interactions were then

independently measured for each stimulus set, using

identical methods to those described previously. For

each observer, model predictions were also generated

using the prior parameters obtained in the previous

experiment, along with the new set of unimodal rate
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discrimination thresholds. Experimental data and

model predictions for the ‘higher-auditory precision’

(sAZ0.5sV) and ‘lower auditory precision’ (sAZ2sV)

conditions are shown in figures 5 and 6, respectively.

While PSE functions retain the same characteristic shape

seen in the previous cross-modal experiment, clear

differences are now apparent between the magnitude of

cross-modal effects in auditory and visual judgement

conditions. When auditory precision was increased

(figure 5), the distortion of perceived rate was smaller

for auditory judgements than visual judgements. Reducing

auditory precision (figure 6) had the opposite effect,

resulting in larger distortions of perceived auditory rate

than visual rate. These changes in the relative magnitude

of the interaction effects were correctly predicted by the

model, which produced plausible approximations of the

mean datasets in each case. Some departures from model
Proc. R. Soc. B (2006)
predictions can be seen in the individual datasets (most

noticeably for JH in figure 5 and NWR in figure 6).

However, these discrepancies are not systematic across

observers and it should be stressed that the predicted

functions involve no free parameters and are thus not a ‘fit’

of the data.
3. DISCUSSION
The experiments reported here add to a large body of

literature documenting cross-modal interactions between

visual and auditory temporal perception. Previous studies

have invariably found that such effects are unidirectional:

perceived visual timing is found to be pulled towards that

of a discrepant auditory stimulus whereas perceived

auditory timing remains unaffected by discrepant

visual stimuli (Gebhard & Mowbray 1959; Shipley 1964;
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Myers et al. 1981; Welch et al. 1986; Shams et al. 2002;

Recanzone 2003). In contrast, here we show that by

matching the relative sensitivity of the two modalities,

distortions of perceived auditory rate can be induced
Proc. R. Soc. B (2006)
which are equivalent to those seen for visual judgements.

To our knowledge, this is the first demonstration that

cross-modal interactions between auditory and visual rate

perception can occur in both directions.
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Similar results have recently been reported in the

spatial domain, where it has been shown that the visual

dominance over positional judgements can be attenuated

(Battaglia et al. 2003) or even reversed (Alais & Burr

2004) by degrading visual sensitivity. There are, however,

critical differences between these previous findings and

those in the present study. Alais & Burr report that when

asked to make single positional judgements about slightly

discrepant audio-visual stimuli, observers respond in

accordance with near optimal MLE. That is, observers

appear to form an average of the two positional estimates

after weighting each according to its reliability. However,

in the present study we demonstrate that a comparable

averaging mechanism cannot account for results obtained

when observers make separate auditory and visual rate

judgements. Under these conditions we find that the

magnitude of cross-modal interactions is considerably

smaller than would be predicted by mandatory implemen-

tation of MLE. Since this difference holds for both

auditory and visual judgements, our results also differ

from the alternative model proposed by Battaglia and

colleagues in which reliability-based weighting is sup-

plemented by a predisposition towards one modality.

Rather, to reconcile our results with a simple averaging

mechanism, one would need to assume that weights could

be flexibly altered so as to bias integration towards which

ever modality is relevant to the task at hand. Alternatively,

it could be suggested that a representation-switching

strategy is being implemented, whereby observers

alternate between using a unimodal rate estimate on

some trials and a combined auditory-visual MLE estimate

on others. While there is not currently sufficient evidence

to discount these possibilities entirely, a more cogent

explanation of the present results is that auditory and

visual rate information are only partially integrated.

In support, some evidence for partial integration has

recently been reported for a categorical audio-visual task

(Shams et al. 2005).

A further limitation of mandatory MLE as a model of

multisensory processing is that it fails to account for the

fact that cross-modal interactions often break down when

information provided by each modality is highly conflict-

ing (Warren & Cleaves 1971; Jack & Thurlow 1973;

Recanzone 2003; Bresciani et al. 2005). In previous

experiments where observers have been asked to make

single combined judgements about multisensory stimuli,

researchers have typically avoided this issue by introducing

only small, undetectable discrepancies along the dimen-

sion of interest. Since our experimental design did not

force observers to combine auditory and visual infor-

mation, we were able to measure interaction effects across

a wide range of discrepancies. This revealed tolerance

profiles characterized by a gradual transition towards

segregation of sensory information with increasing

discrepancy. Our data suggest that tolerance profiles are

relatively invariant to changes in the type of judgement

and the balance between relative unimodal sensitivity.

Following suggestions made by Ernst (2005), we

implement a Bayesian model that infers perceived rate

by combining noisy sensory estimates with prior knowl-

edge about the correspondence between signals in each

modality. In contrast to mandatory MLE, this approach

does not presuppose obligatory integration of multi-

sensory information. Instead, perceptual experience may
Proc. R. Soc. B (2006)
fall anywhere along a continuum ranging from complete

segregation of sensory estimates to complete integration.

By assuming a prior whereby auditory and visual rates are

often (but not always) equivalent, the model successfully

captured patterns of partial integration of auditory and

visual rate information across a wide range of inter-modal

discrepancies, as well as for novel stimulus conditions.

Knowledge of the probable occurrence of different

combinations of auditory and visual rates is unlikely to be

innate, but, rather, built up through extended experience

with the world (Adams et al. 2004). Co-occurring

auditory and visual temporal signals are often similar,

as they commonly relate to the same external object or

event. However, from time to time, uncorrelated signals

will co-occur by chance, where each emanates from an

independent source. The Bayesian approach dictates that

degree of multisensory integration will be set in direct

proportion to the strength of correspondence between

sensory signals. High degrees of correspondence will

produce tightly tuned prior distributions and, conse-

quently, result in significant integration. In contrast,

infrequent co-occurrence between signals will result in a

broadly tuned prior distribution and little or no

integration. This provides a practical strategy for striking

a balance between deriving benefit from the integration

of estimates derived from a common source, while

avoiding the costs of integrating estimates derived from

independent sources.

In addition to setting the degree of integration between

sensory estimates, prior knowledge about the correspon-

dence between sensory signals in the Bayesian model also

determines the degree of tolerance shown to inter-sensory

discrepancies. As would be expected given a constant prior

for audio-visual rate, tolerance profiles shown in the

present study displayed little variation across a range of

stimulus conditions. However, different prior distributions

would be needed to reflect the correspondence between

other stimulus properties (e.g. position) or other sensory

modalities (e.g. visual–haptic), resulting in independent

predictions about tolerance profiles. The model predicts

that strong patterns of integration induced by tight

correspondence between sensory signals should be

accompanied by low tolerance towards sensory discre-

pancies. In contrast, poor correspondence will produce

weaker integration over a wider range of discrepancies.

Future empirical studies testing these predictions will

ultimately inform us as to the veracity of this approach.

In the present study, we have focused purely on

discrepancies between auditory and visual signals along

the judgement dimension (i.e. temporal rate). However, it

is quite possible that the degree of integration between rate

estimates might also depend on other factors, such as the

spatial proximity of the two sources. Since our auditory

stimuli were presented diotically (same signal in each ear),

the perceived location of each sound was centred on the

observers’ midline, comparable with the position of the

visual LED. However, headphone presentation necessi-

tates that sounds are perceived intracranially (located

within the head). Although this lack of externalization

does introduce a form of spatial discrepancy between

visual and auditory stimuli, in pilot experiments we found

that patterns of interactions effects were comparable to

when auditory stimuli were presented via an external

speaker mounted to the LED.
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How might a Bayesian model of multisensory inte-

gration be implemented at a neural level? Traditionally,

multisensory integration has been viewed as a feed-

forward process, whereby projections from sensory-

specific neural regions converge upon multimodal sites.

Within this framework, it is difficult to reconcile

how different sensory estimates could influence one

another, yet still remain as separate entities. However,

neuroimaging and physiological studies have begun to

undermine the plausibility of a purely feed-forward

system, by demonstrating that changes in cortical activity

within traditional unimodal areas can be induced by

inputs to other sensory systems (Calvert et al. 1997;

Macaluso et al. 2000; Schroeder et al. 2001; Fu et al.

2003). Modulation of unimodal signals could be

mediated by feedback projections from multimodal

regions (Driver & Spence 2000; Meredith 2002), or

alternatively, by direct interconnections between primary

sensory areas (Falchier et al. 2002; Rockland & Ojima

2003). In either case, these changes in unimodal

processing could provide a feasible mechanism through

which partial integration of sensory information might

occur. Central to all Bayesian models is the probabilistic

representation of sensory information and prior knowl-

edge. While a number of suggestions have been made as to

how these distributions might be implemented at a neural

level (e.g. the rate of spiking, or its variability, across

neural populations; see Knill & Pouget 2004; Witten &

Knudsen 2005 for recent reviews), the precise mechan-

isms remain unknown and their elucidation represents a

major challenge in this field.

N.W.R. and P.V.M. are supported by the Wellcome Trust. We
would like to thank David Whitaker for constructive
discussions on the project and John Ross and Dennis Levi
for commenting on an earlier version of the manuscript.
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