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Abstract: Natural products (NPs) are a rich source of structurally novel molecules, and the chemical
space they encompass is far from being fully explored. Over history, NPs have represented a
significant source of bioactive molecules and have served as a source of inspiration for developing
many drugs on the market. On the other hand, computer-aided drug design (CADD) has contributed
to drug discovery research, mitigating costs and time. In this sense, compound databases represent
a fundamental element of CADD. This work reviews the progress toward developing compound
databases of natural origin, and it surveys computational methods, emphasizing chemoinformatic
approaches to profile natural product databases. Furthermore, it reviews the present state of the art in
developing Latin American NP databases and their practical applications to the drug discovery area.

Keywords: chemoinformatics; compound databases; chemical space; diversity; drug discovery; open
science; pseudo-natural product

1. Introduction

Natural products (NPs) are a major source of bioactive molecules, and their impor-
tance is invaluable [1]. Between 1981 and 2014, over 50% of newly developed drugs
were developed from NPs [2]. Over nearly four decades, they have been a significant
resource of bioactive compounds for medicinal chemistry [3]. There are several sources for
bioactive molecules, which include marine [4,5], fungal [6,7], bacteria [8], and plants [9].
Endogenous substances produced by humans and animals are another vital source of
bioactive compounds [10]. Venoms and poisons produced by different animals are other
rich sources [11].

Currently, there is an effort to find bioactive compounds from NPs as starting points
for the further development of drug candidates for infectious diseases: antibacterial [12],
antiprotozoal [13], antifungal [14], and antiviral [15]. Additionally, NPs are currently
employed in medicinal chemistry to develop new chemotherapies, for example, neurode-
generative [16], cancer [17], immune-related [18], liver [19], and kidney [20] diseases, to
mention a few examples. Moreover, during the current pandemic outbreak, NPs have been
a rich source for discovering potential lead compounds against severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) [21,22].

Figure 1 shows the chemical structures of representative NPs approved for clinical use.
The figure shows the pharmacological effect and the source of the compound. With the
exception of captopril, all compounds were approved for clinical use without modifying the
original chemical structure of the compound found in the extraction source. Captopril was
developed based on the bradykinin potentiating factor in Bothrops jararaca snake venom. In
1981, it was the first animal toxin-based drug approved for human use. [23,24]. Digoxin is
obtained from the plants of the genus Digitalis [25].

Biomolecules 2022, 12, 1202. https://doi.org/10.3390/biom12091202 https://www.mdpi.com/journal/biomolecules

https://doi.org/10.3390/biom12091202
https://doi.org/10.3390/biom12091202
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/biomolecules
https://www.mdpi.com
https://orcid.org/0000-0003-4444-8221
https://orcid.org/0000-0003-4940-1107
https://doi.org/10.3390/biom12091202
https://www.mdpi.com/journal/biomolecules
https://www.mdpi.com/article/10.3390/biom12091202?type=check_update&version=2


Biomolecules 2022, 12, 1202 2 of 21Biomolecules 2022, 12, 1202 2 of 21 
 

 
Figure 1. Chemical structures of representative natural products approved for clinical use. The phar-
macological effect and the source of the compound are indicated (plants, animals, and bacteria). 
Captopril was inspired by a natural product (see main text for details). 

Information regarding the known activities of plants, either of their therapeutic or 
side or toxic effects, can serve as a starting point in the drug discovery process from NPs 
[10]. Furthermore, the stress-driven growth of plants and micro-organisms is used in the 
drug discovery process from NPs since it stimulates the production of secondary metab-
olites [26]. On the other hand, NP-based drug repositioning is a technique with potentially 
lower development costs and shorter time frames [27]. NPs show great promise in drug 
repositioning because they have been used for various medical purposes for thousands of 
years [27]. 

Computer-aided drug design (CADD) [28] has helped to mitigate the cost of billions 
and decrease time through the preclinical and clinical phases [29]. Chemoinformatics is a 
discipline with many tools used in CADD that has deeply impacted drug discovery in the 
pharmaceutical industry and academia [30]. One definition of chemoinformatics is the ap-
plication of informatics methods to solve chemical problems [31]. To date, the discovery process 
of more than 70 commercialized drugs has included a computational method [28]. 

Figure 1. Chemical structures of representative natural products approved for clinical use. The
pharmacological effect and the source of the compound are indicated (plants, animals, and bacteria).
Captopril was inspired by a natural product (see main text for details).

Information regarding the known activities of plants, either of their therapeutic or
side or toxic effects, can serve as a starting point in the drug discovery process from
NPs [10]. Furthermore, the stress-driven growth of plants and micro-organisms is used
in the drug discovery process from NPs since it stimulates the production of secondary
metabolites [26]. On the other hand, NP-based drug repositioning is a technique with
potentially lower development costs and shorter time frames [27]. NPs show great promise
in drug repositioning because they have been used for various medical purposes for
thousands of years [27].
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Computer-aided drug design (CADD) [28] has helped to mitigate the cost of billions
and decrease time through the preclinical and clinical phases [29]. Chemoinformatics is
a discipline with many tools used in CADD that has deeply impacted drug discovery in
the pharmaceutical industry and academia [30]. One definition of chemoinformatics is
the application of informatics methods to solve chemical problems [31]. To date, the discovery
process of more than 70 commercialized drugs has included a computational method [28].
Nowadays, chemoinformatics has major applications in the research of NPs to identify and
optimize bioactive compounds [32,33]. In this context, databases of NPs play a key role in
drug discovery. Over 120 different NP databases and collections have been published and
re-used since 2000: 98 of them are still somehow accessible, and only 50 are open access [34].
Around the world, several NP databases have been published, which contain compounds
found in a certain country or geographical region. Specifically, in Latin America, some
databases have been published representing the biodiversity of a particular geographical
area [35].

The present manuscript discusses the importance of NPs as a source of bioactive
molecules, the relevance of compound databases in drug discovery research, and the role
of chemoinformatics in the development and analysis of compound databases. Finally, it
reviews the state of the art in developing Latin American NP databases and their practical
applications in drug discovery.

2. Importance of Natural Products as a Source of Bioactive Molecules

Nature is an abundant source of privileged scaffolds. The term privileged structure
was first proposed in 1988 as structures capable of providing useful ligands for more
than one receptor [36]. However, in drug discovery, a privileged scaffold should not hit
many targets as in the term “frequent hitters” because they are associated with unwanted
effects [37,38]. Privileged scaffolds are sources of molecular skeletons around which one
may build compound libraries in the search for new drug candidates [3]. Terpenoid,
polyketide, phenylpropanoid, and alkaloid structures are examples of privileged scaffolds
from NPs that are currently used in the design and development of new drug candidates
(Figure 2) [39].

There is one approach that involves the preparation of biologically relevant small-
molecule libraries through unprecedented combinations of NP fragments to afford novel
scaffolds that do not occur in nature; these molecules are called “pseudo-natural products”
(pseudo-NP). Pseudo-NPs retain the biological relevance of NPs yet exhibit structures
and bioactivities not accessible to nature or through the use of existing design strategies.
Pseudo-NPs may display unexpected bioactivities that differ from the activities of the NPs
from which their fragments are derived. That is why their bioactivity should be monitored
in a wide biological space through different biochemical and biological assays. Most of the
pseudo-NP collections fall within the “Lipinski rule of 5” (Ro5) space, showing advanta-
geous physicochemical “drug-like” properties. For the design of pseudo-NP libraries, it
is important to consider that the combination of biosynthetically unrelated NP fragments
may be beneficial for novel bioactivity, maximizing the biological relevance of the resulting
pseudo-NP scaffold. There are pseudo-NP collections that have been developed through
the first-time combination of some scaffolds, resulting in totally new chemical entities, such
as chromopynones, indotropanes, pyrrotropanes, and pyrroquinolinones (Figure 3) [40,41].
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Figure 2. Examples of privileged scaffolds present in natural products. Figure 2. Examples of privileged scaffolds present in natural products.
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Figure 3. Examples of the combination of NP-derived fragments to form pseudo-NPs. The resulting 
pseudo-NPs come from a specific synthetic route that is depicted elsewhere [40]. 

Throughout history, NPs have served as biomolecule reservoirs, both for molecules 
that later ended up converting into approved drugs without suffering chemical modifica-
tions (Figure 1) and for starting points for optimization that later, with further structural 
modifications, were approved for clinical use. Sometimes, bioactive molecules from NPs 
lack suitable physicochemical properties, and their synthetic complexity may hinder their 
direct use as therapeutics. In this case, to be developed as drug candidates, NPs need to 
go through an optimization process that usually involves structural modifications to im-
prove one or more of the following characteristics: potency, selectivity, solubility, meta-
bolic and chemical stability, and the removal of toxicity (or at least a significant reduction 
in toxicity) [42]. This is usually done by decreasing the molecular size, eliminating the 
unnecessary functional groups and chiral centers, and introducing nitrogen atoms (be-
cause of the limited nitrogen presence in the NPs) [42]. 

3. Relevance of Compound Databases in Drug Discovery Research 
CADD can potentially speed up and decrease the cost of the drug discovery process. 

Traditional drug discovery technologies have very low hit identification rates. For in-
stance, the hit identification rate of high-throughput screening (HTS) is only 0.021% and 
of molecular docking is 34.8% [43]. Compound databases are very useful resources in 
CADD. A database can be defined as an organized collection of data in any field [44]. It is 
important to highlight the importance of databases, firstly as a starting point to organize 
information. Depending on the kind of information stored, databases can be divided into 
six categories summarized in Table 1 [45]. In order to retrieve the required information, it 
is important to identify and look into the correct database category.  

  

Figure 3. Examples of the combination of NP-derived fragments to form pseudo-NPs. The resulting
pseudo-NPs come from a specific synthetic route that is depicted elsewhere [40].

Throughout history, NPs have served as biomolecule reservoirs, both for molecules
that later ended up converting into approved drugs without suffering chemical modifica-
tions (Figure 1) and for starting points for optimization that later, with further structural
modifications, were approved for clinical use. Sometimes, bioactive molecules from NPs
lack suitable physicochemical properties, and their synthetic complexity may hinder their
direct use as therapeutics. In this case, to be developed as drug candidates, NPs need to
go through an optimization process that usually involves structural modifications to im-
prove one or more of the following characteristics: potency, selectivity, solubility, metabolic
and chemical stability, and the removal of toxicity (or at least a significant reduction in
toxicity) [42]. This is usually done by decreasing the molecular size, eliminating the unnec-
essary functional groups and chiral centers, and introducing nitrogen atoms (because of
the limited nitrogen presence in the NPs) [42].

3. Relevance of Compound Databases in Drug Discovery Research

CADD can potentially speed up and decrease the cost of the drug discovery process.
Traditional drug discovery technologies have very low hit identification rates. For instance,
the hit identification rate of high-throughput screening (HTS) is only 0.021% and of molec-
ular docking is 34.8% [43]. Compound databases are very useful resources in CADD. A
database can be defined as an organized collection of data in any field [44]. It is important
to highlight the importance of databases, firstly as a starting point to organize information.
Depending on the kind of information stored, databases can be divided into six categories
summarized in Table 1 [45]. In order to retrieve the required information, it is important to
identify and look into the correct database category.
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Table 1. Categories into which databases can be divided according to the type of information stored.

Database Category Content Database References

Chemical information
Chemical and crystal structures spectra

Reactions and syntheses
Thermophysical data

ChemSpider
ChEBI

Chemical Universe Database GDB

[46]
[47]
[48]

Bioactivity

Inhibitor constant (Ki)
Dissociation constant (Kd)

Half maximal inhibitory concentration (IC50)
Half maximal effective concentration (EC50)

PubChem
ChEMBL

BindingDB
ChemBank
PDBbind

[49]
[50]
[51]
[52]
[53]

Drug Detailed drug data
Comprehensive drug target information DrugBank [54]

Natural product Pathways (synthesis and degradation)
Structures

Universal Natural Product Database
MeFSAT

Natural Product Atlas

[55]
[56]
[57]

Chemical availability Available compounds offered by chemical
vendors

ZINC
NCI

[58]
[59]

Fragment
Structures

Physicochemical information
Binding site preferences

FDB-17
Fragment Store

PADFrag

[60]
[61]
[62]

One major CADD approach for the identification of lead molecules is the virtual
screening (VS) of compound databases [45]. The term VS was first mentioned in the
1990s [63], referring to the identification of novel hits from large chemical libraries. VS
techniques are usually classified into two major categories: structure-based (SBVS) and
ligand-based (LBVS). In general, SBVS is more suitable for finding structurally novel ligands
and is the preferred method when the three-dimensional (3D) structure of the target protein
has been experimentally characterized [64]. When the structure of the target is unknown,
or its prediction by structure-based methods is challenging, LBVS is the choice [65]. LBVS
assumes that molecules with similar structures exhibit similar behavior. Among the LBVS
techniques are the quantitative structure–activity relationship (QSAR) [64] and quantitative
structure–property relationship (QSRP) [66] studies. QSAR/QSPR studies aim to find
a mathematical association between the molecule structure with a given property, such
as biological activity [65]. In this sense, the bioactivity and chemical information (i.e.,
chemogenomic) databases are crucial to allow the creation of QSAR/QSPR models that
predict certain pharmacological activity or a property of pharmaceutical interest for a
determined molecule or set of analog molecules.

Another important application of the databases in the drug discovery process is the
training of artificial intelligence (AI) algorithms. AI encompasses a set of computational
algorithms that allow computers to simulate human cognitive abilities such as learning
from experience and solving problems [67]. Among the LBVS techniques is the AI-based
QSAR, and the creation and training of these models rely on the data found in the bioactivity
databases. AI can be applied to SBVS, specifically, to the docking of the protein-ligand
complexes [68]. AI-based scoring functions have shown better performance in benchmark
studies [69,70]. The creation of AI-based scoring functions depends on the availability of
the required data in the database to train the model. AI algorithms have already been
applied in the drug discovery process from NPs such as: data-mining into traditional
medicines and peer-reviewed articles, the prediction of chemical structures from microbial
genomes, the automation of the dereplication process of NPs, encoding NPs into molecular
representations, the vectorization of NPs with molecular descriptors, the mapping of NPs
in the chemical space, the engineering of likeness scores, and the deorphanization and
generation de novo natural product-inspired compounds [71]. Finally, research on using
AI to create models that allow the prediction of the biological effects of NPs has increased
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in recent years. The application of AI models to predict the biological effects of molecules,
toxicity, and drug–target and drug–drug interactions has been reviewed elsewhere [72].

4. Role of Chemoinformatics in the Development and Analysis of
Compound Databases

Generating a compound database relies on the capacity to represent chemical com-
pounds so that the actual chemistry software can recognize and differentiate the molecules.
For this purpose, several notations have been created that represent chemical structures.
There are three types of notations for chemical structures: one-dimensional (1D), two-
dimensional (2D), and three-dimensional (3D).

The most popular 1D notation is the simplified molecular input line entry system
(SMILES), with its first version reported in 1998 [73]. A general issue with this notation
is that the same molecule can be represented with multiple SMILES strings. Therefore,
the canonical SMILES were developed: the canonicalization process allows the creation
of unique SMILES strings for every molecule. It is important to be aware that multiple
algorithms exist for canonicalization. Further, there is an extended version that allows
stereochemistry specification: isomeric SMILES [74]. Most of the compound databases
store the compounds using the SMILES notation. The international chemical identifier
(InChI) [75] notation was first introduced in 2007 [76]. In contrast to SMILES, InChI
allows the creation of a unique identifier for every molecule. Additionally, this notation
allows the inclusion or exclusion of stereochemical, isotopic, and tautomeric information.
Nevertheless, InChI was barely used: the reason could be that, in contrast to SMILES
strings, it is not human-readable and has a long string. InChIKey strings appeared in 2009
to tackle the problems of InChI. It is a fixed-length (27-character) condensed version of
InChI [76]. Later, SMILES arbitrary target specification (SMARTS) notation was developed
to specify substructural patterns which allow the matching of molecules that contain the
specified substructural pattern [77]. For 2D graphical representation, there are programs
that allow drawing of the chemical structures and facilitate the storage and interconversion
between standard 1D and 3D file formats [78]. 3D databases are very useful for structure-
based screening. It is not common to find (high-quality) 3D databases, but among the
resources that provide 3D high quality molecular representations is the ZINC database [58]
which provides the protonated and tautomeric molecular form which is very important for
molecular docking and other 3D-dependant applications [45].

Chemoinformatics has played a key role in database assembly, curation, and content
analysis. Currently, there are available several open-source software that allow characteri-
zation of the physicochemical profile and structural features of compound databases. For
instance, RDKit [79] is a collection of chemoinformatics and machine-learning software
that is possible to use from Python or through a graphical interface with the free available
software KNIME Analytics Platform [80]. RDKit allows the efficient calculation of several
physicochemical properties of pharmaceutical interest from a large compound database.
Examples are the octanol/water partition coefficient (logP) [81], topological polar surface
area (TPSA) [82], molecular weight (MW), number of Lipinski hydrogen bond acceptors
(HBA) and donors (HBD), and number of rotatable bonds (RB) [83,84]. Furthermore, with
RDKit, it is possible to characterize the molecular complexity through the calculation
of the number of stereocenters and the fraction of carbon atoms with sp3 hybridization.
Additionally, this software allows users to identify and filter molecules with structural
alerts: chemical moieties that can potentially confer toxicity to the molecule. There are
more utilities of RDKit for the chemoinformatic analysis, characterization, and creation of
compound databases: identification of the Murcko scaffold [85], molecule fragmentation,
calculation of multiple fingerprints, and the generation of canonical SMILES, InChI and
InChIKey strings. Moreover, it is suitable for the preparation of compounds for molecular
docking studies. RDKit software has been extensively used in academia, as shown in these
recent examples [86–90].
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In the last ten years, chemoinformatic methods to evaluate the diversity of compound
databases have been developed and adopted in the drug discovery process. Molecular
diversity can be evaluated using the six physicochemical properties of pharmaceutical
interest previously mentioned: logP, TPSA, MW, HBA, HBD, and RB [84]. Molecular
diversity captures information regarding the whole molecule and is straightforward to
interpret. It can be evaluated using boxplots, histograms, and density plots. In order
to have a complete evaluation of the diversity, fingerprints help to capture structural
information that the physicochemical descriptors do not. Fingerprints capture structural
features using the minimum unit of information in informatics: the bit. A string made
of just bits, containing only one and zeros, can be created for every compound in the
database. Two common molecular fingerprints employed to capture structural information
are the Molecular ACCess System (MACCS) keys-166 bits [91] and Extended Connectivity
Fingerprint (ECFP4) [92]. With either of both fingerprints, it is possible to make similarity
comparisons, using the Tanimoto coefficient [93], among the compounds in the database
and even make comparisons between several databases. In this sense, the cumulative
distribution functions allow the comparison of structural diversity quantitatively among
several databases. The diversity of a compound database also can be computed by taking
into account just the core structure of the molecule: the scaffold. In this regard, there
are three different ways to evaluate scaffold diversity: counts, cyclic system retrieval
curves, and Shannon entropy (SE). Finally, global diversity can be assessed using consensus
diversity plots (CDPs). In CDPs, it is possible to represent four measures of diversity: the
most common are fingerprint-based, scaffold, whole molecular properties associated with
drug-like characteristics, and size of the database. All the different ways to assess the
diversity of a compound database previously mentioned have been extensively reviewed
recently [94]. Additionally, the reader is further directed to the following references for
more detailed information about the basis of molecular diversity analysis [95,96]. There
is a free-access online server for diversity assessment that uses, as an input, the SMILES
strings and allows the evaluation of diversity, creating the plots mentioned above in an
automated way: box plots, histograms, and density plots from the logP, TPSA, MW, HBA,
HBD and RB, cumulative distribution functions, cyclic system retrieval curves, CDPs, and
SE determination [97].

5. Natural Product Databases

Between 2000 and 2019, 123 commercial and open access NP databases have been
published. Of them, 98 are still somehow accessible, 92 are open access, and only 50 contain
molecular structures that can be retrieved for a chemoinformatic analysis [34]. Table 2
summarizes examples of the most representative NP databases. Among the largest com-
mercial databases is the Dictionary of Natural Products [98]. It contains more than
230,000 compounds and provides names and synonyms, physicochemical properties, spec-
troscopic data, molecular structures, and biological source and use. Another commercial
database is Scifinder [99], assembled and maintained by the American Chemical Society
(ACS). It contains arguably the most extensive collection of NPs, with over 300,000. This is
due to the fact that, since 1957, the Chemical Abstracts Service (CAS), a division of the ACS,
assigns a unique registry number to every new chemical substance reported in the scientific
literature. Another large commercial database is Reaxys [100], collected and maintained
by Elsevier. It contains approximately 107 molecules including over 200,000 NPs. The
Collection of Open Natural Products (COCONUT) [101] is a major open access database
of NPs, containing more than 411,000 NPs collected from 50 open access NP databases.
The Universal Natural Product Database [55] is a compilation that tried to gather all the
known NPs; it has more than 229,000 NPs. It provides 3D structures with stereochemical
information and calculated molecular descriptors. It is not yet accessible through the link in
the original publication. Instead, it is contained and maintained on the ISDB website [102].
The SuperNatural II [103] database contains over 325,000 NPs and includes information
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about 2D structures, physicochemical properties, predicted toxicity class, and potential
vendors. Nevertheless, it does not provide a bulk download.

ZINC [104] is another open access database with over 80,000 NPs, with approximately
48,000 which are purchasable. It includes information regarding known biological targets
and predicted targets. The download of the entire subset of NPs in 1D or 3D notation is
straightforward. Some NP databases are no longer accessible through the link provided in
the original publication. Fortunately, their structures are in ZINC. Such is the case with the
Herbal Ingredient Targets [105] and Herbal Ingredients in vivo Metabolism database [106],
which contain NPs mostly from Chinese plants. Specs [107] has an industrial catalog of
purchasable NPs, although the website does not allow the downloading of compounds
anymore. Nonetheless, the structures are available via ZINC. Despite the Universal Natural
Product Database, SuperNatural II, and ZINC being among the largest databases of NPs in
the public domain, they do not offer information regarding the taxonomic and geographic
origin of the organisms that produce the NPs, and there is a lack of literature references [34].

Traditional Chinese medicine (TCM) is part of the public health system [108]. There-
fore, the China Government encourages research in the area of NPs, and as a conse-
quence, a large number of NP databases have been published [109–115]. Nonetheless,
TCM@Taiwan is the most extensive database of NPs used in the TCM [116], containing ap-
proximately 58,000 molecules. Regarding traditional medicine in India (Indian Ayurveda),
there are two open access databases available: IMPPAT [117], which contains more than
10,000 phytochemicals extracted from 1700 medicinal plants; and MedPServer [118], con-
taining 1124 NPs coming from North-East India. Moreover, there are several databases con-
taining compounds from African traditional medicine [119–124]. Nevertheless, AfroDB [125]
is the most comprehensive, composed of around 1000 NPs, and it is accessible via ZINC.

Table 2. Most representative natural products databases.

Database Name Number of Compounds Accessibility Reference

Collection of Open Natural Products (COCONUT) 411,621 Open access [101]

Universal Natural Product Database ∼229,000 Open access [55]

SuperNatural II 325,508 Open access [103]

ZINC ∼80,000 Open access [104]

Dictionary of Natural Products ∼230,000 Commercial [98]

Scifinder ∼300,000 Commercial [99]

Reaxys ∼200,000 Commercial [100]

TCM@Taiwan ∼58,000 Open access [116]

IMPPAT ∼10,000 Open access [117]

AfroDB ∼1000 Open access [125]

6. Latin American Natural Product Databases

Around the world, several NP databases are published that represent the biodiversity
of a specific geographical region. For instance, the databases mentioned in Section 5
represent the biodiversity of China, India, and Africa. Latin America stands out for its rich
and unique biodiversity. In fact, it is home to at least a third of the global biodiversity [126].
Therefore, the Latin America region is a potential source of new drug candidates. Some
Latin American countries have published their own NP database that contains compounds
found in their respective country. Table 3 summarizes the Latin American NP databases
released so far. In the next subsections, each database is discussed.
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Table 3. Latin American natural products databases.

Database Size Country Source Database Website Reference

NuBBEDB 2223 Brazil

Plants
Microorganisms
Terrestrial animals
Marine animals

http:
//nubbe.iq.unesp.br/
portal/nubbe-search.html

[127,128]

SistematX 9514 Brazil Plants https:
//sistematx.ufpb.br/ [129,130]

UEFS 503 Brazil Plants http://zinc12.docking.
org/catalogs/uefsnp [131]

CIFPMA 454 Panama Plants
Not available.
Structures accessible
under request.

[132,133]

UNIIQUIM Unknown Mexico Plants https://uniiquim.
iquimica.unam.mx/ [134]

BIOFACQUIM 553 Mexico

Plants
Fungus
Propolis
Marine animals

Database version 1
https://biofacquim.
herokuapp.com/
Database version 2
https:
//figshare.com/articles/
dataset/BIOFAQUIM_V2
_sdf/11312702

[135,136]

6.1. NuBBEDB

The database is the result of the collaboration between the Nuclei of Bioassays, Biosyn-
thesis and Ecophysiology of Natural Products (NuBBE) research group of the São Paulo
State University and the Laboratory of Computational and Medicinal Chemistry of the
University of São Paulo. The database was published in 2013 as the first NP library of
Brazilian biodiversity, containing 640 compounds [127]; in 2017, an updated version came
out with more than 2000 NPs [128]. Currently, the database contains 2223 compounds. The
available information regarding the compounds includes the International Union of Pure
and Applied Chemistry (IUPAC) name, linear notations (SMILES, InChI, and InChIKey
strings), Ro5 and Veber descriptors, and predicted spectroscopic data: nuclear magnetic
resonance (NMR), source, therapeutic effect and reference. It is possible to download the
whole database in .mol2 format. Additionally, the database can be found in Chemspider
and ZINC, and it is part of the COCONUT database.

The website allows users to search compounds by selecting specific criteria: metabolic
class (alkaloids, flavonoids, lignoids, etc.), name and location of the species that contain the
NP, source (marine, plant, etc.), and drug-like physicochemical properties. Furthermore,
one can draw a structure and retrieve the compounds that contain it or search compounds
that contain a specific NMR signal.

An absorption, distribution, metabolism, excretion and toxicity (ADMET) profile of the
database revealed that 91% of the compounds can permeate through the human intestinal
barrier, and 93% of the molecules can efficiently move in systemic circulation and reach
their desired site of action. Moreover, it is predicted that most of the compounds do not
inhibit five isoforms of CYP450 (CYP 3A4, 2D6, 1A2, 2C9, and 2C19). The CYP450 enzyme
is responsible for detoxifying more than 80% of drugs in liver first-pass metabolism, and
therefore, any compound that inhibits it may cause toxicity. The clearance prediction
revealed that 94% of the compounds are readily excreted from the human body after
executing their therapeutic function. Finally, 87% of compounds were shown to have no
mutagenicity, tumorigenicity, reproductive effect, and irritant properties [137].

Another study characterized the chemical space and diversity. It was found that
NuBBEDB has a focused chemical space within the space of drug-like physicochemical
properties. The study also revealed that the larger source of diversity is driven by the side
chains. Another finding revealed that the diversity and complexity varies according to the
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origin of the compounds when comparing NuBBEDB to other NP databases. One conclusion
of the study is that NuBBEDB is a promising source of molecules for drug discovery [138].

The NuBBEDB database was employed in a VS study with the purpose of finding
compounds against Trypanosoma cruzi. The researchers looked for trypanothione reduc-
tase inhibitors: this enzyme is a validated target for the discovery of new antiprotozoal
compounds. Ten compounds were identified as potential inhibitors of the enzyme [139]. In
another study, 13 compounds against Mycobacterium tuberculosis were identified from
NuBBEDB [140]. The molecules are inhibitors of the serine/threonine protein kinase, which
is essential for the growth and survival of the pathogen [141].

6.2. SistematX

The database was developed at the Laboratory of Cheminformatics of the Federal
University of Paraiba, Brazil. The first version came out in 2018 containing 2150 secondary
metabolites [129], and a second version was published in 2021 with a total of 9514 unique
secondary metabolites [130]. The information for every compound includes the IUPAC
name, SMILES, InChI and InChIKey strings, CAS registry number, physicochemical drug-
like descriptors, predicted NMR spectra, predicted biological activities, and the biblio-
graphic reference. A unique feature is the information regarding the taxonomic rank, from
family to species, and the global positioning system (GPS) coordinates of the plant from
which the compound was isolated. On the website (Table 3), the search of specific com-
pounds can be through the 2D drawing of the structure, by the SMILES strings, compound
name, taxonomic rank, and physicochemical properties. It is possible to download the
entire database in .csv or .sdf format.

SistematX has been employed in five VS studies. In the first study, compounds with
potential antichagasic activity were identified from 1306 sesquiterpene lactones on the
database. (Chagas disease is an endemic disease caused by Trypanosoma cruzi.) The
study employed two approaches, LBVS and SBVS. From LBVS, the most prominent com-
pound showed a probability of 0.82 of inhibition. From SBVS, 13 potential inhibitors were
identified [142]. In another VS study, with the purpose of identifying compounds against
the intracellular parasitic protozoan Leishmania donovani which causes Leishmaniasis,
13 promising, enzyme-targeting, antileishmanial compounds were identified from the
sesquiterpene lactones on SistematX [143]. In the third VS study, the researchers looked for
compounds against Schistosoma mansoni, which causes the chronic parasitic disease Schis-
tosomiasis. From the 1000 alkaloids on SistematX, five compounds were identified with
potential multitarget schistosomicidal activity [144]. In the fourth VS study, 1955 diterpenes
on SistematX were employed to search for compounds against SARS-CoV-2. Nineteen
compounds were identified as potential SARS-CoV-2 inhibitors [145]. In the most recent VS
campaign, the researchers were seeking acetylcholinesterase (AChE) inhibitors, which is an
approach for the treatment of Alzheimer’s disease. They employed a combined approach
in which machine learning classification models and molecular docking calculations were
used to identify two promising AChE inhibitors [146]. Other applications of SistematX
include chemotaxonomic studies using self-organizing map algorithms [147] and the pro-
file of over 2000 metabolites from the Asteraceae family while screening for inhibitors of
Leishmania major dihydroorotate dehydrogenase [148].

6.3. UEFS

The NP database of the State University of Feira de Santana [131] was developed and
is maintained by the State University of Feira de Santana in Bahia, Brazil (UEFS, for its
acronym in Portuguese: Universidade Estadual de Feira de Santana). The database contains
NPs that have been separately published, but there is no common publication nor public
database for it. Nevertheless, it is accessible via ZINC. There are 503 NPs in the database.
It is possible to download the whole database in .mol2 or .sdf format, and it provides
a bulk download of the SMILES strings. The available information of the NPs includes
calculated physicochemical properties, biological targets, and binding affinity, together
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with the bibliographic reference. There is a cross-reference for the biological targets to
Reactome which is an open source, open access, manually curated and peer-reviewed
pathway database [149]. Finally, it is possible to find information about the vendors of
individual compounds.

6.4. CIFPMA

The NP database of CIFLORPAN from the University of Panama, Republic of Panama
(CIFPMA) was developed by the Center for Pharmacognostic Research on Panamanian
Flora (CIFLORPAN, for its acronym in Spanish: Centro de Investigaciones Farmacognósticas
de la Flora Panameña), College of Pharmacy of the University of Panama. The first ver-
sion was published in 2017 [132], containing 354 molecules; in 2019, the database was
updated to 454 compounds [133]. The compounds have been tested in over 25 in vitro and
in vivo bioassays, for different therapeutic targets including anti-HIV (human immunodefi-
ciency virus), antioxidants, and anticancer. In fact, the compound structures are available
upon request.

A chemoinformatic analysis of the database suggested that, in general, the compounds
have drug-like properties. The database was compared to the TCM@Taiwan and UEFS
databases mentioned in Sections 5 and 6.3 and other NP databases. It was found that
CIFPMA has the largest scaffold diversity compared to other databases. Moreover, unique
scaffolds were found in the CIFPMA database. Finally, it was established which scaffolds
are present in compounds with experimental cytotoxic effect, anti-HIV-1, antimalarial,
anti-trypanosomatid, and antifungal activities [132].

The database was part of another chemoinformatics study, which involved a compari-
son of several NP databases against other databases with compounds of synthetic origin.
The study revealed that so many of the NPs and synthetic compounds share the same
chemical space. Moreover, the NPs present a larger fingerprint-based diversity than the
synthetic compounds. Furthermore, the study revealed that NPs have a higher proportion
of chiral carbons and atoms with sp3 hybridization and greater complexity, while synthetic
products contain a greater proportion of aromatic atoms. Lastly, cyclicity, relative shape,
and flexibility are very similar in NPs and synthetic compounds [133].

6.5. UNIIQUIM

The database was created at the National Autonomous University of Mexico (UNAM,
for its acronym in Spanish: Universidad Nacional Autónoma de México) by The Informatics
Unit of the Institute of Chemistry (UNIIQUIM, for its acronym in Spanish: Unidad de
Informática del Instituto de Química). The database [134] is composed of NPs from Mexico
and mainly NPs isolated and characterized by the Department of Natural Products of
the Institute of Chemistry, UNAM. The number of NPs on the database is not clear, and
the website is only in Spanish. The information on the NPs includes the IUPAC name,
CAS registry number, physicochemical properties, the species that synthesizes the NP, the
spectroscopic techniques employed to characterize the compound, experimental biological
activity, and reference to either the article where the NP is reported or to the articles
that report the biological activities. In the current version, it is not possible to make a
bulk download. The content can be browsed displaying a table either with the chemical
structures or with the producing organism. Furthermore, the content can be browsed in a
table that contains the bibliographic references.

In a study, the chemical and toxicological profile of molecules with analgesic activity
was described. The results showed that most of the compounds probably interact with
the opioid receptor. Moreover, the predicted acute toxicity is low, and none is predicted
to be mutagenic. The study concludes that due to the structural diversity, the common
nociception activity and the predicted safety profile as nonmutagenic agents highlights the
importance of the molecules for further studies on the search of analgesic and nociception
effects [150].
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6.6. BIOFACQUIM

The database was curated and constructed in Mexico by the Computer-Aided Drug
Design at the School of Chemistry (DIFACQUIM, for its acronym in Spanish: Diseño de
Fármacos Asistido por Computadora) research group, UNAM. The first version came out in
2019 [135] and contained 423 NPs isolated and characterized in Mexico at the School of
Chemistry, UNAM, between the years 2000 and 2018. Later, in 2020, a second version came
out [136], and the database was updated with NPs isolated and characterized by research
groups of other Mexican institutions, reaching a total of 531 molecules. Nowadays, the
database contains 553 NPs. The database is composed mainly of NPs that come from plants,
followed by fungus, and to a lesser extent, propolis and marine animals. There is a website
for the first version of the database, and it allows the user to search the compounds by
name. Moreover, it is possible to retrieve compounds by kingdom (plant, fungus, propolis).
The entire database can be downloaded in .csv format. The latest version of the database is
available on a different website [136], and it is possible to download the whole database
in .sdf format. Information on the NPs includes the compound name, SMILES strings,
bibliographic reference, taxonomic rank (kingdom, genus, species), place where it is found,
the source from which the NP was isolated, biological activity, and IC50 value. The database
is also available at ZINC, and it is part of the COCONUT database.

A chemoinformatics analysis of the first version of the database concluded that the
compounds have a broad coverage in the chemical space and overlap regions in the drug-
like space. Furthermore, compounds very similar to drugs approved for clinical use were
identified [135]. In another study, a structural content analysis of the second version
was performed. BIOFACQUIM was compared to ChEMBL 25 (1,667,509 molecules) and a
database with 169,839 NPs. The researchers concluded that 44.3% of the unique compounds
contained in BIOFACQUIM are focused on drug-like space in terms of physicochemical
properties. Additionally, a significant number of compounds and scaffolds (79 and 29,
respectively) were identified that were not present in the two large reference sets [136].
Finally, an in silico absorption, distribution, metabolism, excretion and toxicological (AD-
MET) profile of the second version of BIOFACQUIM was performed. The study concluded
that the absorption and distribution profiles of the compounds in BIOFACQUIM are similar
to those of approved drugs, while the metabolism profile is comparable to that in other NP
databases. The excretion profile of the compounds is different from that of the approved
drugs, but their predicted toxicity profile is comparable [151].

An independent VS study looked for beta-glucosidase inhibitors. The pharmacological
applications of these compounds include obesity, diabetes, hyperlipoproteinemia, cancer,
HIV, and hepatitis B and C. Employing classification models (two-variable artificial net-
work), eight compounds were identified from BIOFACQUIM as active [152]. In addition,
in an independent study, Barrera-Vázquez et al. looked for senolytic compounds which
selectively eliminate senescent cells. Cellular senescence is a cellular condition that involves
significant changes in gene expression and the arrest of cell proliferation. The elimination
of senescent cells delays, prevents, and improves multiple adverse outcomes related to
age. Through the use of chemoinformatics tools (fingerprinting and network pharmacol-
ogy), and employing two NP databases, InflamNat and BIOFACQUIM, three senolytic
compounds were identified [153].

Table 4 summarizes the main applications of databases of representative Latin Ameri-
can natural products to identify bioactive compounds.
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Table 4. Practical applications of the databases of Latin American natural products.

Database Name Disease or Symptom Causative Agent Number of Identified
Compounds Reference

NuBBEDB
Chagas disease Trypanosoma cruzi 10 [139]

Tuberculosis Mycobacterium
tuberculosis 13 [140]

SistematX

Chagas disease Trypanosoma cruzi 13 [142]
Leishmaniasis Leishmania donovani 13 [143]

Schistosomiasis Schistosoma mansoni 5 [144]
Coronavirus disease 2019 SARS-CoV-2 19 [145]

Alzheimer’s disease 2 [146]

UNIIQUIM Pain 6 [150]

BIOFACQUIM

Obesity 8 [152]
Diabetes

Hyperlipoproteinemia
Cancer

HIV/AIDS *
Hepatitis B and C.

Age-related diseases 3 [153]

* Human immunodeficiency virus infection and acquired immunodeficiency syndrome (HIV/AIDS). Although
CIFPMA does not appear in the table, their compounds have been assayed in a wide range of in vitro and
in vivo bioassays.

7. Conclusions and Perspectives

Nature is a significant source of structurally novel compounds that remains far from
being fully explored. NP databases play an important role in the drug discovery process,
serving as a systematic and organized source of potential novel hit and lead molecules.
Several chemoinformatic methods have been used to organize, characterize, and mine
different NP databases, identifying promising molecules. Nevertheless, many obstacles
slow down the drug discovery from NPs driven by chemoinformatics approaches. Firstly,
not all the NP databases are open source, restricting the access to a certain number of
research groups with enough resources to pay for the access. Even if a research group has
sufficient resources to pay for access, it will always be more attractive to resort to an open
access database. As a consequence, myriads of NPs will remain inaccessible due to the
payment restriction. On the other hand, access to many open access NP databases is not
possible anymore; thus, invaluable information is lost, perhaps forever. The number of
countries and research groups that curate and create NP databases is limited; just a few
countries have tried to characterize NPs specific to their geographical region. Therefore, an
incalculable number of novel molecules are still to be discovered. Nowadays, the number
of open access and still available NP databases is limited. Therefore, there is a sense of
urgency to keep curating and creating new NP databases.

Latin America stands out for its rich and unique biodiversity, which maybe encom-
passes a third of global biodiversity [126]. Regardless, just a few Latin American countries
have gathered and characterized NPs from their region in a database. As far as we know,
research groups in Colombia, Peru, and El Salvador are currently building compound
databases to be released in the future. Previously, the need for a unified NP database
that represents the biodiversity of Latin America has been pointed out [35]. Currently, in
Mexico, the DIFACQUIM research group, in collaboration with several other countries in
Latin America, is working on the creation and curation of a NP database that will gather all
the NP databases of Latin America. The construction is in an early stage. Nevertheless, it
will try to encompass the actual published NP databases and the upcoming ones.

In this review, we also surveyed the practical applications of the Latin American
NP databases in medicinal chemistry. It was concluded that most of the Latin American
NP databases had been used as a basis to identify multiple promising candidates to be
considered for further development for the treatment of numerous diseases. The growth
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of the practical applications of the Latin American NP databases is anticipated in the
near future.
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