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Abstract

Cancer is a complex disease, driven by aberrant activity in numerous signaling pathways in even individual malignant cells.
Epigenetic changes are critical mediators of these functional changes that drive and maintain the malignant phenotype.
Changes in DNA methylation, histone acetylation and methylation, noncoding RNAs, posttranslational modifications are
all epigenetic drivers in cancer, independent of changes in the DNA sequence. These epigenetic alterations were once
thought to be crucial only for the malignant phenotype maintenance. Now, epigenetic alterations are also recognized as
critical for disrupting essential pathways that protect the cells from uncontrolled growth, longer survival and establishment
in distant sites from the original tissue. In this review, we focus on DNA methylation and chromatin structure in cancer.
The precise functional role of these alterations is an area of active research using emerging high-throughput approaches
and bioinformatics analysis tools. Therefore, this review also describes these high-throughput measurement technologies,

Luciane T. Kagohara is a Postdoctoral Research Fellow in the Department of Oncology Johns Hopkins University SKCCC. She studies the role of aberrant
epigenetic and gene expression markers in cancer.
Genevieve Stein-O’Brien is a PhD student at the McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins Medical School. Her research focuses on
human development and construction of analytical tools for genetic and epigenetic analysis.
Dylan Kelley is a Researcher in the Department of Otolaryngology, Johns Hopkins University. He is investigating chromatin modification and alternative
splicing in transcriptional regulation of head and neck cancer.
Emily Flam is a Researcher in the Department of Otolaryngology, Johns Hopkins University. She is studying the role of enhancers and methylation in tran-
scriptional regulation of head and neck cancer.
Heather C. Wick is a PhD Candidate at the Institute of Genetic Medicine at Johns Hopkins University School of Medicine. She is studying transcriptional
programs and chromosomal remodeling in prostate cancer.
Ludmila V. Danilova is a Research Associate in the Department of Oncology Johns Hopkins University SKCCC. Her primary interest is in integrative ana-
lysis of different types of cancer genomics data.
Hariharan Easwaran is an Assistant Professor in the Department of Oncology Johns Hopkins University SKCCC. He investigates the mechanisms and roles
of epigenetic alterations in cancer etiology.
Alexander V. Favorov is a Research Associate in Johns Hopkins University SKCCC and a Senior Researcher at VIGG RAS and GosNIIGenetika. He develops
statistical approaches to decipher genome-scale data.
Jiang Qian is a Professor in the Wilmer Eye Institute, Johns Hopkins University. He works on computational analysis of genetic and epigenetic regulatory
networks in various systems.
Daria A. Gaykalova is an Assistant Professor in the Department of Otolaryngology, Johns Hopkins University. She investigates the role epigenetics in tran-
scriptional regulation of head and neck squamous cell carcinoma progression.
Elana J. Fertig is an Assistant Professor in the Department of Oncology Johns Hopkins University SKCCC. She develops bioinformatics pattern detection al-
gorithms for epigenetic and genomic data integration in cancer.

VC The Author 2017. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/),
which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

49

Briefings in Functional Genomics, 17(1), 2018, 49–63

doi: 10.1093/bfgp/elx018
Advance Access Publication Date: 11 August 2017
Review paper

https://academic.oup.com/


public domain databases for high-throughput epigenetic data in tumors and model systems and bioinformatics algorithms
for their analysis. Advances in bioinformatics data that combine these epigenetic data with genomics data are essential to
infer the function of specific epigenetic alterations in cancer. These integrative algorithms are also a focus of this review.
Future studies using these emerging technologies will elucidate how alterations in the cancer epigenome cooperate with
genetic aberrations during tumor initiation and progression. This deeper understanding is essential to future studies with
epigenetics biomarkers and precision medicine using emerging epigenetic therapies.
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Introduction

Cancer is a complex disease. The malignant transformation is a
multistep process associated with the accumulation of numer-
ous molecular alterations. These molecular changes impact cel-
lular function within the tumor and its microenvironment, and
culminate in the hallmarks of cancer: sustained proliferative
signaling, resistance to apoptosis, senescence, angiogenesis,
invasion and metastasis, deregulating cellular energetics,
avoiding immune destruction, tumor-promoting inflammation,
and genome instability and mutation [1]. Numerous genetic
alterations (mutations, loss of heterozygosity, deletions, inser-
tions, aneuploidy, etc.) have been associated with carcinogen-
esis [2] and can sometimes present a clear oncogenic function
being considered as cancer driver mutations in such cases [3].
All these genetic alterations ultimately result in aberrant gene
expression. However, the landscape of genetic alterations is in-
sufficient to explain the pervasive gene expression changes and
alterations to cellular function in cancer [4]. For example, ac-
cording to the Knudson two-hit hypothesis deletions on both al-
leles of tumor suppressor genes block the mechanisms in the
cell that prevent aberrant cellular growth [5, 6]. In many can-
cers, one of these alterations (or ‘hits’) is a hereditary or somatic
mutation in a tumor suppressor gene and the second ‘hit’ is an
acquired mutation or copy number loss in the other allele.
Sometimes, the second genetic ‘hit’ is not observed. Instead,
epigenetic alterations cause the changes in gene expression of
tumor suppressors in place of genetic changes [4].

Epigenetic alterations are heritable traits that impact the
phenotype by interfering with gene expression independent of
the DNA sequence [7, 8]. These epigenetic mechanisms include
DNA methylation, chromatin remodeling, noncoding RNAs
(ncRNAs), binding of regulatory proteins [such as 11-zinc finger
protein (CTCF) and brother of the regulator of the imprinted site
(BORIS)], and transcription factors [9, 10]. Many of these mecha-
nisms also affect chromatin states. Epigenetic changes are as
pervasive in cancer as genetic alterations, and likely are respon-
sible for the hidden source of variation in cancer [4].

Epigenetic events can also act concomitantly with other mo-
lecular processes in normal states or disease to have persistent
gene expression and functional alterations. For example, epigen-
etic alterations that impact transcription factor binding can ex-
plain genome-wide transcription dysregulation independent of
genetic variation in cancer [11]. Recent studies have also found
that cancer mutations are associated with the chromatin struc-
ture of the tissue of origin [12]. These mutations occur more fre-
quently in regions of closed chromatin, which are inaccessible to
DNA repair genes during replication [12]. Therefore, alterations
to chromatin structure may be critical drivers of cancer.

Epigenetic alterations with functional impacts on gene ex-
pression in individual tumor remain key targets of interest [9,
13–15]. Notably, emerging epigenetic therapies can revert spe-
cific epigenetic alterations in cancer [9, 13–15]. There are two

groups of drugs used for epigenetic therapy: (1) DNA me-
thyltransferase inhibitors (DNMTi) and histone deacetylase in-
hibitors (HDACi); (2) targeted therapeutic agents to block
specific genes that when mutated cause deregulation of epigen-
etic markers. Both classes of inhibitors cause pervasive
genome-wide epigenetic changes. There are currently numer-
ous ongoing clinical trials using these inhibitors to treat differ-
ent tumor types. The FDA has already approved some of these
agents to treat cancer patients. The mechanisms of action and
the list of approved epigenetic drugs or on clinical trials were
previously reviewed in detail [16, 17]. Development of thera-
peutic agents to reverse specific alterations to the epigenetic
landscape is currently an active area of research. Therefore,
genome-wide characterization of epigenetic aberrations is cru-
cial for the development of new therapies and to identify new
biomarkers for existing epigenetic inhibitors [16, 17].

This review focuses on describing current resources to discover
reversible epigenetic events in cancer that may be targeted thera-
peutically in cancer: DNA methylation and chromatin organization
(Figure 1). We describe techniques, model systems, and data re-
sources with high-throughput epigenetic data in cancer. We also
discuss the emerging bioinformatics algorithms for analysis of
these data and their integration with high-throughput transcrip-
tional data in cancer. The review focuses on experimental and
computational techniques for cancer epigenetics data that is cur-
rently available in the literature. Therefore, this review summarizes
the experimental and computational tools that can find the hidden
sources of genetic variation in cancer and for precision medicine of
novel epigenetic therapies from current publicly available data.

Reversible epigenetic events
DNA methylation

DNA methylation is the addition of a methyl radical (CH3) to
the 5-carbon on cytosine residues (5mC) in CpG dinucleotides
[18–20]. Modifications to DNA methylation are normal events
that have critical roles during different stages of human devel-
opment, silencing of genome repetitive elements, protection
against the integration of viral sequences, genomic imprinting,
X chromosome inactivation in females and transcriptional
regulation [7, 20, 21]. CpG methylation differs between tumor
and normal tissues. Removal of CpG methylation specific to
cancer cells is referred to as hypomethylation, and CpG methy-
lation specific to cancer cells is referred to as aberrant methyla-
tion or hypermethylation.

DNA methylation changes to regulatory elements (promoters;
insulators; enhancers) with CpG-concentrated regions known as
CpG islands (CpGIs) have been a focus within genome-wide epi-
genetic studies. These CpGIs are long sequences (�800 nucleo-
tides in average, range 200–10 000) that have a high concentration
of CpGs (�10%) and CþG content (>55%) in comparison with the
rest of the genome (1% of CpG and 42% CþG content) [22, 23].
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DNA methylation changes outside of CpGI regions or their ‘CpG
shores’ are also apparent. The methylation patterns in these
shores are highly tissue specific in normal human samples [24].
The alterations in DNA methylation in cancer extend well beyond
CpGI shores [24, 25]. The methylation profiles in tumor samples
at some regions distant from CpGIs may be more similar to other
normal tissues than the cell of origin [24]. The impact and func-
tion of these distant alterations remain poorly understood.

Genome-wide hypomethylation was the first described epigen-
etic aberration in cancer [26]. Loss of normal DNA methylation lev-
els is associated with genome instability and aneuploidy,
reactivation of transposable elements and loss of imprinting [26,
27]. Nonetheless, hypermethylation is investigated more fre-
quently. This event is associated with gene silencing [28–30] by (1)
blocking transcription directly, by blocking transcription factors
binding to their specific sites; or indirectly by (2) recruiting of pro-
tein complexes with high affinity for methylated DNA (methyl-
binding domain complexes, MBDs) (Figure 1) [18, 19, 21, 29, 31–34].
Aberrant DNA methylation can silence tumor suppressor genes as
effectively as inactivating mutations. Therefore, hypermethylation
can serve as one of the hits required for oncogenesis described in
Knudson’s two-hit hypothesis [4, 5, 35–37]. Hypermethylation of
gene promoters is not limited to protein-coding genes. DNA
methylation also regulates the expression of noncoding RNAs,
some of which have a role in malignant transformation [4].

Further epigenetic changes by TET (ten-eleven translocation)
5mC dioxygenases revert DNA methylation in cancer. Members
of the TET family are capable of oxidizing 5mC, causing a conver-
sion to 5-hydroxymethylcytosine (5hmC). These same proteins
can subsequently oxidize 5hmC to 5-formylcytosine (5fC) and
5-carboxycytosine (5caC). The presence of these oxidative 5mC
products is associated with gene expression restoration and is
considered an active mechanism of methylation reversion [38,
39]. Studies to determine the role of cytosine variants in cancer
are emerging in the literature. The development of techniques to
characterize 5hmC, 5fC and 5caC are relatively recent, which ex-
plains the lack of high-throughput methods for genome-wide
mapping. Moreover, no therapeutics that can currently target
DNA methylation reversions by TET family members.

Chromatin modifications

Histone marks are posttranslational modifications of core histone
proteins that affect chromatin structure [40]. These modifications

correlate with open or closed conformations of chromatin and
drive differential access of genes to transcription factors and
regulatory proteins (Figure 1). Therefore, cells can use histone al-
terations as facile to regulate their gene expression dynamically.
They are frequently deregulated in complex diseases, including
cancer [4]. Changes in chromatin landscape co-occur with alter-
ations of DNA methylation. Histone methylation (20 variants) and
acetylation (18 variants) are the most common modifications that
primarily target lysine residues of histone tails [41]. Many more
modifications exist, including phosphorylation, ubiquitylation
and glycosylation, which spread to other amino acid residues,
such as arginine, serine and threonine [42–45]. Critical amino
acids of histone tails are frequent targets of epigenetic modifica-
tions. Genes encoding for these amino acids in these tails are also
frequently mutated in cancers [46–48]. Multiple regulatory pro-
teins write, read and erase histone marks [49]. Many of these pro-
teins are also dysregulated in diseased cells [50]. Because histone
marks have stable covalent structures, they can be inherited dur-
ing cell division and DNA duplication and serve as disease
markers [51]. Analysis of chromatin structure and its regulatory
machinery is critical to developing epigenetics therapies.

Histone modifications result from activity in three groups of
proteins: epigenetic writers, such as histone acetyltransferases
(HATs), histone methyltransferases (HMTs), protein arginine meth-
yltransferases (PRMTs) and kinases; epigenetic readers, such as
proteins containing bromodomains and chromodomains; and epi-
genetic erasers, such as histone deacetylases (HDACs), lysine
demethylases (KDMs) and phosphatases [52–54]. These proteins
alter chromosomal structure by directly modifying and regulating
DNA accessibility. Genetic alterations to genes encoding for histone
modifying proteins can cause widespread epigenetic changes.
These changes can dysregulate cell homeostasis pathways inde-
pendent of mutations to critical oncogenes or tumor suppressor
genes in these pathways [55]. Mutations in the histone modifiers
and readers of protein-coding genes occur frequently in all cancer
types. Therefore, integrated analyses of genome-wide genetic and
epigenetic studies are essential to determine the source of alter-
ations to the distribution of histone markers [56, 57]. A recent study
by Huether et al. found that the frequency of mutations in histone
modifying genes varies by tumor type, occurring with highest fre-
quency in brain tumors and leukemias (30% of the cases). The fre-
quency and type of alterations to histone modifying genes vary
within tumor subtypes, with histone H3 mutations present in al-
most half of high-grade gliomas [58]. Other tumor types, such as

Figure 1. Epigenetic mechanisms of gene expression regulation. Gene transcription occurs in regions, where the chromatin conformation is more open (active chroma-

tin regions). Transcriptionally silenced genes are found in regions with compact chromatin. Active chromatin areas are characterized by unmethylated DNA CpG sites,

histone acetylation and histone active markers, such as H3K4 and H3K36 methylation. Transcriptional silencing is characterized by methylated CpG sites, histone

deacetylation and repressive histone markers. These epigenetic alterations occur in areas of condensed chromatin, in which nucleosomes are positioned close to each

other. In these regions, the DNA structure and protein complexes that regulate compact confirmation block DNA accessibility to transcription factors resulting in epi-

genetic silencing. (A colour version of this figure is available online at: https://academic.oup.com/bfg)
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esophageal squamous cell carcinomas, bladder cancer, medullo-
blastoma and lung cancer, also have frequent mutations in epigen-
etic modifier genes. However, these studies lack functional
validation of the role of genetic alterations to histone modifying
genes to chromatin structure and in cancer progression [59–62].
These mutations will alter the epigenetic landscape of tumors,
which will subsequently impact sensitivity to epigenetic therapies.
Therefore, refined analysis of mutations in histone modifying
genes may provide new genetic biomarkers to predict patient re-
sponse to epigenetic therapy.

Chromatin changes also result from expression changes to
types of ncRNAs, transcripts that are not translated into pro-
teins. Details of the role of ncRNAs in gene expression regula-
tion are the subject of other reviews [63–65]. They describe all
observed functions for ncRNA. One example described is bind-
ing of long noncoding RNAs (lncRNAs) bind to DNA and to chro-
matin remodeling complexes. Both cases are associated with
complex alterations in the distribution of nucleosomes. The
functional role of specific ncRNAs on cancer epigenetics is an
active area of research.

High-throughput platforms for epigenetic
analysis

In the current era of high-throughput data, new technologies to
measure the genome-wide state of DNA methylation and chroma-
tin structure are actively emerging (Figure 2). Following the history
of the field, many measurement platforms were first developed in
microarrays and adapted to next-generation sequencing technolo-
gies. As a result, cancer biologists have access to unprecedented
measurement technologies that can assess genome-wide DNA
methylation and chromatin modifications, accessibility, protein
interactions and binding. Here, in this review, we will briefly de-
scribe high-throughput approaches for epigenetic mapping from
DNA methylation, chromatin modification markers and chromatin
structure commonly used in cancer genomics, with details about
each measurement technology in Supplemental File 1.

DNA methylation

Numerous microarray and sequencing-based technologies have
been used to measure DNA methylation (Table 1). DNA methyla-
tion can be measured on native DNA through recognition of
methylated cytosines by antibodies [methylated DNA immunopre-
cipitation (MeDIP)] or by conjugated methyl-CpG binding proteins
(MBPs) [51]. The antibodies can also recognize DNA methylation-
associated proteins such as MeCP2 with chromatin immunopreci-
pitation (ChIP)-based technologies, which can be used to estimate
DNA methylation. Massively parallel next-generation sequencing
and arrays to measure DNA methylation-enriched fragments pro-
vide whole-genome evaluation of DNA methylation with high
resolution of mCpG sites. False negatives may arise from incom-
plete binding of the antibodies. Nonetheless, these techniques
have strong true-positive rates because of the nanomolar binding
affinity to symmetrically methylated CpG.

Whole-genome profiling of bisulfite converted DNA can also
measure DNA methylation. Bisulfite treatment deaminates
non-methylated cytosine to uracils to be further recognized as
thymidine during sequencing or array-based probe annealing
but leaves methylated cytosines stay unchanged. Both con-
verted DNA and untreated input controls are profiled in arrays
(Illumina HumanMethylation Bead Chip Arrays, Agilent Human
CpG Island Microarray; and Affymetrix GeneChip Human
Promoter 1.0R Arrays) or with next-generation sequencing
(WGBS). In both cases, the ratio between methylated and unme-
thylated signals at each specific CpG is proportional to its
methylation level. Bisulfite conversion reduces the genome
from four nucleotides to three in unmethylated regions. This al-
teration makes alignment to the reference genome or annealing
to the particular probe nonunique, and may cause technical
errors in quantification of DNA methylation data. Therefore,
new bioinformatics techniques for preprocessing bisulfite-
based data remain a critical challenge preceding the analysis of
DNA methylation data in cancer. In both cases, measurements
of epigenetic variation within tumors are only possible with
bisulfite sequencing techniques. Specifically, comparison of the

Figure 2. Epigenetics measurement techniques. A wide variety of methods characterize epigenetic alterations. Currently, the most common genome-wide approaches identify

nucleosome-free regions (DNaseI-Seq; MNase-Seq; FAIRE-Seq; ATAC-Seq), protein-mediated DNA interaction sites (Hi-C; 5-C), histone marks and DNA-binding proteins (ChIP-Seq;

ChIA-PET) and DNA methylation (array hybridization, WGBS, MBD-Seq, PacBio, nanopore). (A colour version of this figure is available online at: https://academic.oup.com/bfg)

52 | Kagohara et al.

Deleted Text: non-coding RNAs (
Deleted Text: )
Deleted Text: -
Deleted Text:  (lncRNAs)
Deleted Text: P
Deleted Text: E
Deleted Text: A
Deleted Text: next 
Deleted Text: ,
Deleted Text: (
Deleted Text: next 
Deleted Text: true 
Deleted Text: due to
Deleted Text: ,
Deleted Text: , 
Deleted Text: next 
Deleted Text: -
https://academic.oup.com/bfg


epigenetic changes across reads can quantify the variation of
epigenetic alterations in a single locus [78]. Single-cell bisulfite
sequencing technologies are emerging to further refine the vari-
ability of the epigenetic landscape within tumor samples.

Additional methods are also developing to address the
challenges of aligning bisulfite-converted DNA, including
PacBio or single-molecule real-time (SMRT) sequencing and
nanopore sequencing. PacBio uses fluorescent nucleotides to
capture the signal during DNA replication. This technology
measures a specific fluorescent signal that is generated for
each nucleotide, and the time between the incorporation of
two bases is measured. The structural chemical changes in the
cytosine variants provide them with distinct times of incorpor-
ation allowing their discrimination from regular cytosines.
PacBio has a further advantage over WGBS, as it allows
sequencing of long fragments (10–60 kb), albeit at high error
rates (�15%) [79].

Nanopore sequencing also takes advantage of the differences
in the chemical structure among cytosine variants. In this case,
changes in the ionic current are specific to both sequence and
cytosine variant. The changes in current are measured based on
the time for single-strand DNA fragments take to pass through
the nanopores in a lipid membrane. The measurements of cur-
rent are then converted to nucleotides, including annotations of
cytosine variants. A further advantage of nanopore sequencing is
that it does not require DNA amplification. Currently, nanopore
sequencing provides lower coverage than next-generation
sequencing technologies and is, therefore, limited to small gen-
omes or small portions of complex genomes. Moreover, robust
bioinformatics algorithms for DNA methylation analysis with
nanopore sequencing are still under development for reliable and
reproducible interpretation of the data [80, 81].

Chromatin structure and interaction

Chromatin is the DNA–protein complex that compacts and pro-
tects the genomic DNA within the cellular nucleus and the car-
rier of epigenetic information, with techniques to measure its
structure and interaction domains summarized in Table 2. The
structure of chromatin can be evaluated by DNA accessibility
with restriction reagents, such as DNaseI or MNase, or with
assay for transposase-accessible chromatin (ATAC). DNA bind-
ing of selected proteins can also evaluate chromatin structure
(ChIP; formaldehyde-assisted isolation of regulatory elements
(FAIRE)]. Additionally, the relative proximity of distant DNA re-
gions to each other (HiC and chromatin interaction analysis by
paired-end tag sequencing (ChIA-PET)] defines the 3D structure
of chromatin. Similar to DNA methylation profiles, arrays or
sequencing measure the whole-genome structure of chromatin
from fragmented and enriched DNA. The binding of DNA by his-
tones or other proteins, such as enzymes or transcription fac-
tors, decreases the accessibility of such regions to restriction,
shredding or transposase tagmentation activity. Therefore, the
reads that remain represent the aspect of chromatin structure
that the experimental process modifies.

Chromatin state can be mainly classified into two types: active
(or open) and inactive (or condensed). Whole-genome chromatin
analysis reveals chromatin structure in regions of open chromatin,
including intergenic regions and active regulatory elements, such
as promoters, silencers and enhancers. Owing to the modest se-
quence dependence of enzymes like DNase1 or MNase, there is a
probability of false-positive signals. Chromatin states can be fur-
ther classified into more types such as promoter, enhancer and in-
sulator. These chromatin states are often associated with different
histone modifications. For example, H3K9ac is found in actively

Table 1. High-throughput DNA methylation techniques [66–77]

METHODOLOGY MeDIP (Methylated DNA 
immunoprecipitation) 

MeCP2-ChIP (Chromatin 
Immunoprecipitation) 

MBP (Methyl-CpG Binding 
Proteins) BS (bisulfite sequencing) 

DNA input Native DNA Bisulfite-converted DNA 

Fragmentation Sonication Endonuclease 

Enrichment Antibody (Ab) anti-mCpG Ab anti-MBP proteins MBP against mCpG Bisulfite-converted DNA 

Control input Total DNA fraction with no enrichment Native DNA 

Amplification PCR-based PCR-based (no mCpG is 
amplified as TpG but as CpG) 

Sequencing 4-letter based genome 3-letter based genome 

Advantages 
High resolution; independence 

on intermediate steps (e.g.: 
DNA bisulfite conversion) 

Independence on intermediate 
steps (e.g.: DNA bisulfite 

conversion) 

MBD2 protein has nanomolar 
affinity for a single symmetrically 

methylated CpG dinucleotide; 
MBD2-MBD does not bind 

unmethylated DNA 
oligonucleotides to any 

appreciable extent 

Single CpG resolution 

Disadvantages Dependence on Ab quality 
Lower resolution; dependence 

on DNA and chromatin 
integrity 

Quantitative methodologies are 
under development 

Dependence on the efficiency of 
bisulfite conversion step 

Array-based 
technologies MeDIP-chip ChIP-chip MBD-chip 

Infinium HumanMethylation850 
Bead Chip Array from Illumina 
[Illumina 850K], Human CpG 

Island Microarray Kit [Agilent], 
GeneChip Human Promoter 1.0R 

Arrays 

Sequence-based 
technologies MeDIP-Seq ChIP-Seq MBD-Seq Whole genome bisulfite 

sequencing (WGBS) 

References [48-50] [51,52] [53-56] [57-60] 

Epigenetic regulation in cancer | 53

Deleted Text: Single 
Deleted Text: bisulfite 
Deleted Text: bisulfite sequencing
Deleted Text: since 
Deleted Text: -
Deleted Text: next 
Deleted Text: S
Deleted Text: I
Deleted Text: -
Deleted Text: transposase 
Deleted Text: , 
Deleted Text: ). 
Deleted Text: ,
Deleted Text: ,
Deleted Text: Due 
Deleted Text: -


transcribed promoters, while H3K9me3 is found in constitutively
repressed genes. Moreover, the combination of histone modifica-
tions can more precisely predict chromatin states. For instance,
H3K4me and H3k27ac are marks for active enhancers. The histone
modifications can be determined by ChIP-seq approach using anti-
bodies against specific histone modifications. Public domain

databases characterize histone antibody specificity to select opti-
mal antibodies to measure histone modifications with ChIP [101].

Other restrictions of chromatin analysis arise from the re-
quirement of high tissue input for most of the procedures. In
addition, the chromatin integrity and DNA–protein binding
strength highly depend on sample preservation, limiting

Table 2. High-throughput chromatin organization techniques [82–100]

TYPE OF 
ANALYSIS 2D STRUCTURE 3D STRUCTURE 

METHODOLOGY 
DNase1/MNase 
(Micrococcal 

nuclease) 

FAIRE 
(Formaldehyde-

Assisted Isolation of 
Regulatory Elements) 

ChIP (Chromatin 
immunoprecipitation)

ATAC (Assay for 
Transposase-

Accessible 
Chromatin)

HiC

ChIA-PET
(Chromatin 
Interaction 
Analysis by 

Paired-End Tag 
Sequencing) 

Sample input Fresh/frozen tissues Fresh cell lines Fresh tissues 

Fragmentation Endo- or exonuclease Sonication Endo- or exonuclease, 
sonication 

No fragmentation 
step.

Tn5 transposase 
tagmentation. 

Endonuclease 

Enrichment Size selection Phenol-chloroform 
extraction Antibody (Ab) capture Specific adapters 

(tagmentation) 

Biotin-
streptavidin 

(fragments are 
ligated to biotin) 

Antibody 

Control input Total genomic DNA with no enrichment 

Amplification PCR-based 

Sequencing 4-letter based genome 

Advantages Modest high-
resolution

Does not depend on 
restriction enzyme or 
buffer composition 

Single protein 
information

Low-input of sample 
(50,000 cells) Single protein information 

Disadvantages High-input of sample 
(>1 million cells) Low resolution Depends on Ab quality Requires intact nuclei Depends on Ab quality 

Array-based 
technologies 

DNase1-chip 
MNase-chip - ChIP-chip - C3, C4, C5 -

Sequence-based 
technologies 

DNase-Seq 
MNase-Seq FAIRE-Seq ChIP-Seq ATAC-Seq C4, C5, HiC ChiA-PET 

References [62-66] [67] [68-71] [72-74] [75-79] [80]

Figure 3. Epigenetic data can be obtained in vivo from primary tumor samples, PDXs and mouse models of cancer. While there are no limitations to measuring DNA

methylation in patient samples, demands of high tissue quality and quantity limit measurements of chromatin structure and interaction data in patient samples. All

epigenetic data can also be obtained in vitro with 2D (cancer cell lines) and 3D (organoids and conditionally reprogrammed cells) culture systems. (A colour version of

this figure is available online at: https://academic.oup.com/bfg)
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analysis to fresh tissues or cell lines. Both of these restrictions
prevent analysis of the majority of primary human tumors,
which are small and sometimes not adequately preserved in tis-
sue banks. Moreover, individual samples have different cellular
properties that impact the chromatin digestion. The degree of
chromatin digestion by endonucleases/exonucleases or by son-
ication must be empirically determined for each sample to
avoid under- and over-digestion. Even on proper chromatin
fragmentation, condensed chromatin with repressive marks
can still be under-digested, resulting in the presence of longer
DNA segments (>900 bp), poor amplification during library prep
for the sequencing and low resolution of repressive histone
marks. Both ChIP and ChIA-PET require further preparation of
individual samples for each study protein. Therefore, analysis
of several proteins can be costly and require a high volume of
cells that is not available for most primary cancer samples.

Model systems

Ideally, the epigenetic measurement technologies will be applied
to primary tumors samples to measure their epigenetic state.
Such comprehensive profiling of DNA methylation has been per-
formed extensively across measurement technologies. However,
profiling chromatin in tumor samples is more challenging. Many
chromatin assays require large quantities of high-quality DNA
and the intact chromatin structure. However, tumor samples that
are available for profiling are typically small and use preservation
techniques that may degrade the quality of the DNA or chromatin
structure. Therefore, both in vitro and in vivo model systems of
cancer are used to determine the epigenetic state of many cancer
types (Figure 3). Extending these techniques to humanized pa-
tient-derived xenografts (PDXs) is essential to determine the im-
pact of the immune system to perform preclinical studies
correlating the functional role of epigenetics on the efficacy of
epigenetic inhibitors and immunotherapy.

Epigenetics data sources

Numerous international high-throughput genomics databases
from thousands of tumor samples and model systems are avail-
able in the public domain, reviewed in [102]. However, similar re-
sources for epigenetics in cancer are still more limited. Recent
efforts to organize and share large epigenomic data sets have cre-
ated publicly available resources for discovery and validation in
cancer. Cancer-specific resources range in specificity, including
large, multi-assay data sets across epigenetics data modalities,
such as DNA methylation, histones and chromatin structure. DNA
methylation of 1001 cancer cell lines was measured with Illumina
450K arrays along with therapeutic sensitivity, copy number, som-
atic mutations and gene expression [103] and is freely available
from the Gene Expression Omnibus (GEO Series GSE68379). Both
The Cancer Genome Atlas (TCGA) and International Cancer
Genome Consortium (ICGC) contain microarray measurements of
DNA methylation in primary tumors and cancer models. DNA
methylation of tumors has been assessed with sequencing tech-
nologies in isolated studies from smaller groups, with correspond-
ing data often deposited into sources including GEO [104], dbGAP
and ArrayExpress [105]. However, these sequencing-based DNA
methylation data are available for fewer primary tumors than the
array-based data from international consortia.

Currently, there are no databases of chromatin structure in
primary tumors because of the dual challenge of sample quality
and quantity described above. Therefore, projects such as
ENCODE contain ChIP-seq data of histone marks and chromatin

accessibility in numerous cancer cell lines in place of primary
tumors [106]. Additional resources include FANTOM’s efforts to
characterize promoter utilization in 250 cancer cell lines [107].
Similar to DNA methylation, chromatin measurements in other
model organisms have been performed by individual laborato-
ries. Data of chromatin structure of healthy samples from pro-
jects such as the Roadmap Epigenomics Project [108] have
found unanticipated associations with mutations in cancer
samples [109]. Therefore, comparison of epigenetics data in
healthy tissue samples with cancer genomics data sets from
distinct databases may also yield novel insights into the func-
tional impacts of epigenetic regulation in cancer.

Determining the function of epigenetics alterations in cancer
requires integration with genomics data. Ideally, these meas-
urements would be made for the same tumor sample. Most
prominently, TCGA and ICGC contain microarray measure-
ments of DNA methylation, RNA-sequencing of transcription,
reverse phase protein array (RPPA) for protein and phosphopro-
tein states, sequencing of mutations and copy number arrays in
primary tumors. Availability of high-throughput genomics data
ENCODE and FANTOM further enables correlation of chromatin
features with gene expression to assess the functional changes
resulting from epigenetic alterations in tumors or cancer cells
and their association with DNA methylation. New resources
containing all these sources for data for a wide range of cell
lines and primary tissues are essential to establish epigenetic
drivers and therapeutic targets in cancer.

Resources to access, analyze and integrate
epigenetics data

Despite the breadth of public domain epigenetics data sets, there
is a lack of centralized resources to obtain the wide range of data
from numerous studies in a centralized platform. There are sev-
eral databases for chromatin data. For example, Cistrome is a
centralized database of histone modifications [110], which in-
cludes Cistrome Cancer to integrate TCGA gene expression data
with public ChIP-seq data to determine functional histone modi-
fications in cancer. Another database, EnhancerAtlas (enhancer-
atlas.org), was specially designed for enhancer analysis and
visualization across studies [111]. It contains enhancer annota-
tion for >100 cell/tissue types, including both normal and cancer
cells. The enhancer annotations are derived from multiple, inde-
pendent experimental evidence including chromatin accessibil-
ity, histone modifications and enhancer RNAs (eRNAs).
Furthermore, the database provides several analytic tools, so that
the users can compare the enhancer activity across different cell
types or connect the enhancers and target genes.

Genome browsers are tools to visualize and integrate data
from publicly available repositories. Notable genome browsers in-
clude the UCSC Genome Browser [112, 113], the Ensembl Genome
Browser [114], the WashU EpiGenome Browser [115, 116], the NCBI
Map Viewer [117] and MEXPRESS [118]. Each browser has a unique
interface, set of features and capacity for data integration from
external data sources. Here, we cover four browsers tailored to epi-
genetics data: the UCSC Genome Browser, the WashU EpiGenome
Browser, MEXPRESS and cBioPortal.

The UCSC Genome Browser provides access to the genomes
of multiple species, including different assemblies. The user
can direct the browser to a gene or region, or scroll to browse
the genome. The display can be customized to include a wide
variety of genome-wide tracks, including genes, structural
elements, methylation and acetylation data imported from
ENCODE, and many others to enable comparative genomics. It
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is also possible to include custom tracks either from other pub-
lic data sets or uploaded by the user [112, 113].

Similar to the UCSC Genome Browser, the WashU EpiGenome
Browser includes genome assemblies of several species. The
WashU EpiGenome Browser also allows the user to load tracks
calling on data from public hubs, as well as custom tracks either
uploaded by the user or through a URL link. Publicly available
tracks are similar to those offered by other browsers, including
genes, structural and genetic variation, repeat masking and
others. The WashU EpiGenome Browser also includes a number
of epigenomic tracks and chromatin interaction data (e.g. ChIA-
PET; HiC). This browser also includes several applications for
additional visualization, such as a scatter plot displaying tracks
for gene sets provided by the user [115, 116].

MEXPRESS is a Web-based tool that stores all DNA methyla-
tion data from TCGA for gene-level analysis. Specifically, this
database queries by gene and tumor type and then correlates
clinical covariates and expression with measurements of DNA
methylation for that gene from TCGA. Analysis is performed
across all probes in the array for the query gene to distinguish
the impact of epigenetic alterations throughout gene promoters,
gene body and CpGIs. cBioPortal also enables analysis of DNA
methylation but is limited to analysis of the single probe per
gene. In this case, the probe that is most strongly anticorrelated
with DNA methylation is selected for analysis. Therefore,
cBioPortal does not enable the more complex epigenetic regula-
tion of gene expression facilitated by MEXPRESS [118].

Another widely used genome browser is the Integrative
Genomics Viewer (IGV).1,2 Similar to other online browsers, IGV
can pull, integrate and visualize a wide variety of data from pub-
licly available databases including ENCODE, TCGA, 1000
Genomes and other sources. Users can also provide URLs for data
sets or load their own data. IGV can visualize a wide array of data
types, and the user can fine-tune and customize the display, and
save multiple instances of these settings for future use [119, 120].

Bioinformatics techniques

For all epigenetic data, be it microarray or next-generation
sequencing, the bioinformatics pipeline follows three major
steps: (1) quality control, (2) preprocessing and (3) analysis [121].
Typically, each of these steps is performed independently for
each study and data modality. The bioinformatics techniques for
each of these steps are active areas of research. The maturity of
analysis techniques matches the age of each measurement tech-
nology. Once each data set is understood independently, epigen-
etic data can be integrated with other cancer genomics data to
determine its functional impact. Such robust, integrated tech-
niques are emerging in bioinformatics. Still, further research in
data integration is essential to establish epigenetic drivers of car-
cinogenesis and therapeutic response for precision medicine.

DNA methylation normalization and analysis

Preprocessing high-throughput epigenetic data is critical to obtain
accurate results. Supplemental File 1 describes techniques for
each measurement technology in detail. For microarrrays, prepro-
cessing entails image processing and normalizing probe inten-
sities. Whole-genome bisulfite sequencing (WGBS) techniques
require alignment to a reference genome and quantification simi-
lar to most second-generation bulk RNA sequencing techniques.
As such, most preprocessing pipelines rely on modification of al-
gorithms developed for RNA sequencing. MBD-seq data adapt
peak-calling algorithms from ChIP-seq such as MACS [122] to

distinguish genomic regions that are methylated. Whereas MBD-
seq is nonquantitative, both microarrays and WGBS provide quan-
titative measurements of the percentage of methylation at each
probe or genome coordinate. These estimates can be allele specific
for stranded WGBS. Nonetheless, the false-positive rate for MBD-
Seq is far lower than arrays or WGBS. As newer technologies, pre-
processing techniques for both Nanopore and PacBio methylation
analysis are emerging in the literature.

Signal from DNA methylation data can contain technical
artifacts independent of the biological conditions, similar to the
batch effects established in other high-throughput data sets
[123]. These artifacts are most predominant when comparing
data across distinct studies but may also be present within large
cohort studies such as TCGA. Visualization tools have been de-
veloped to assess these technical artifacts from DNA methyla-
tion arrays [124, 125] and are an important first step to any
analysis of large cohort studies. Many batch correction tech-
niques developed for gene expression microarrays [126, 127]
have been applied to DNA methylation arrays [128]. However,
care must be taken when applying these algorithms to maintain
the distribution of DNA methylation values. Therefore, normal-
ization techniques that account for this distribution [129, 130]
and tissue specificity [131] better correct for batch effects in
DNA methylation arrays. Similar to gene expression micro-
arrays, batch correction techniques must be selected to preserve
signal for the desired analysis [132]. Sequencing-based meas-
urements of DNA methylation are not immune to batch effects.
However, these have been less studied than DNA methylation
arrays. Gene-level estimates of DNA methylation from bisulfite
sequencing could be corrected with standard expression-based
techniques, with the same caveats that apply to microarrays.
However, these techniques will not extend to locus-specific
methylation estimates or DNA methylation from MBD-
sequencing. In all cases, obtaining accurate signal requires con-
sidering batch effects as part of the experimental design, most
especially avoiding perfect confounding between known tech-
nical artifacts (e.g. site of tissue source, sampling batch, etc.)
and experimental conditions [123].

Many analytic tools for DNA methylation data were de-
veloped from well-established procedures for gene expression
analysis. Accordingly, techniques for detecting robust differ-
ences between two or more conditions are the most ubiquitous
and reviewed extensively in [133]. Case-control studies and
comparisons of matched tumor and normal tissue from the
same individual in cancer epigenetics lend themselves to this
type of analysis. Wilcoxon rank-sum tests and t-tests compar-
ing the methylation status of individual genes between two or
more groups are the most basic and commonly used analysis.
To impact expression, DNA methylation changes must occur
over a region of the genome. Therefore, bump-hunting algo-
rithms have also been developed to determine differentially
that distinguish sample phenotypes [134]. Variably methylated
regions inferred with bump-hunting [134] and outlier-based
analysis algorithms [135] are ideally suited to capture inter-
tumor heterogeneity in DNA methylation alterations.

Because MBD-seq data obtain calls of methylated regions, al-
ternative statistical methods either comparing the signal rela-
tive to input control or comparing binary calls necessary for its
analysis. Techniques to compare peaks across conditions are
currently emerging in the literature [136, 137]. Peak comparison
algorithms are primarily divided into: (1) linear models compar-
ing peaks similar to DMRs, such as DiffBind [138]; (2) hidden
Markov models (HMMs), such as ChiPDiff [139] and ChromHMM
[140]; or (3) whole-genome correlations, such as StereoGene [141]
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and GenometriCorr [142]. For all data platforms, more advanced
methods using mixture models, Shannon entropy, logistic re-
gression, nonnegative matrix factorization, clustering, feature se-
lection, and correlation are also emerging in the literature.

Chromatin analysis

ChIP-seq is a pull-down assay similar to MBD-Seq. Therefore,
these data use similar preprocessing and differential analysis
techniques to those described for MBD-Seq data described
above. Robust standards for quality control and preprocessing
were adopted by ENCODE as gold standards for all chromatin-
based analyses [143]. These preprocessing techniques are also
applicable to all other pull-down assays of chromatin structure,
including DNaseI-Seq, MNase-Seq, FAIRE-Seq and ATAC-Seq.
These preprocessing steps predominately select defined dis-
crete genomic regions that are enriched for the histone mark se-
lected by the antibody used for the ChIP-assay. Determining the
chromatin structure specific to cancer cells or cancer subtypes
requires differential binding algorithms similar to those
described in analysis of MBD-Seq data and reviewed in [136]. In
contrast, chromosomal capture methods, i.e. 5C and HiC, pro-
duce multiple values representing interaction profiles for each
gene. Current bioinformatics tools to preprocess and analyze
these data are summarized in [144] and rapidly developing.

All the analysis steps described above define only significant
regions in chromatin structure. Further analysis is essential to
annotate the function of these genomic regions into various
states, including active promoter, weak promoter, poised pro-
moter, strong enhancer, weak/poised enhancers, insulator,
transcriptional transition and heterochromatin. ChromHMM is
a widely used method to predict chromatin states [140]. This al-
gorithm uses a multivariate HMM to integrate multiple histone
modification ChIP-seq data sets. The resulting model can then
be used to annotate the chromatin states in a specific cell type.
Segway [145] is an unsupervised pattern discovery approach to
analyzing chromatin states. The method uses a dynamic
Bayesian network model, which is the first genomic segmenta-
tion method designed for integration multiple ChIP-seq experi-
ments. Both methods annotate genomes into various states
including active promoter, weak promoter, poised promoter,
strong enhancer, weak/poised enhancers, insulator, transcrip-
tional transition and heterochromatin. ChromHMM [140] and
Segway [145] can both integrate the datasets from histone
modification, open chromatin and binding profiles of specific
proteins such as CTCF to further establish tissue-specific epi-
genetic regulation and functional epigenomics relationships.

Determining functional impacts of epigenetic
modifications with data integration

Regardless of the data type, biology defines specific relation-
ships between epigenetic regulation and gene or protein expres-
sion. Thus, identifying a functional regulatory role from the
resulting epigenetic data requires associating the changes with
alterations in gene or protein expression. However, technical
heterogeneity and confounding from nonbiological artifacts,
such as batch effects [123], library preparation [146] and anti-
body quality [147], are problematic within a single data type.
These technical artifacts can introduce complexities that are
prohibitive to integrative analysis in several biological condi-
tions [148].

One complication in integrated analyses is the presence of
distinct sources of technical variation in each data modality. To

avoid this complexity, many integrated techniques first perform
separate analyses data type and then search for associations
through the colocalization of significant results at the same
genomic location, for example associating hypomethylation of
the promoter for a given gene with an increase of gene expres-
sion. These methods require matched samples for each set of
comparisons a major limitation when dealing with a finite
amount of tissue. Additionally, as a given gene in a subtype of
cancer is likely to be affected in only a small fraction of individ-
uals, loci-based approaches can be unsuccessful in detecting
meaningful biological relationships. Thus, techniques, such as
OGSA [149] and RTOPPER [150], seek to increase power and bio-
logical inference by integrating these univariate differential re-
sults over pathway and genes sets. Algorithms integrating these
statistics can be adapted to analyze epigenetic regulation of
gene expression from distinct genomics data sets from cohorts
with similar study design, and need not necessarily have meas-
urements from the same samples in all data modalities.
Outlier-based approaches for this integration, such as OGSA
[149], are best suited to capture inter-tumor heterogeneity of
epigenetic pathway regulation.

In contrast to gene-based integration analyses, fully inte-
grated analysis has additional power to identify genes or path-
ways that are often disrupted by multiple mechanisms but at
low frequencies by any one mechanism. Unsupervised algo-
rithms, such as iCluster [151], Amaretto [152] and matrix factor-
ization algorithms [153, 154], search for patterns common in
these diverse molecular components, regardless of regulatory
relationships (Figure 4). The coordinated gene activity in pattern
sets (CoGAPS) algorithm finds patterns associated with coordi-
nated DNA methylation and expression changes by encoding a
distribution that DNA methylation silences gene expression
[154]. Similar models of DNA methylation regulation of gene ex-
pression are used to determine genes with a functional impact
on cancer subtypes in the MethylMix algorithm [155].
Supervised algorithms overcome this limitation by comparing
gene-level associations with phenotype in all measurement
platforms [156, 157] or in several measurement platforms for
multiple pathway members [149, 150, 158]. However, role of
DNA methylation in the gene body is not associated with gene
expression silencing, and thus more complex to integrate with
these techniques. Therefore, further work is needed to develop
robust bioinformatics integration algorithms that encode regu-
latory relationships between genetic and epigenetic alterations
as research refines their interrelationship biologically.

Expanding to the use of biologically driven priors to chroma-
tin data, where different marks or spatial relationships have dif-
ferent regulatory effects, presents additional challenges and
may require adapting techniques developed for dealing with
multiple targets in microRNA (miRNA) expression to the chro-
matin landscape [117, 118, 125]. Time course methods such as
miRDREM have also been developed to determine the timing of
activity of miRNA by integrating their expression with that of
mRNA targets [159]. These techniques could readily be adapted
to determine the functional impacts of chromatin regulation
from time course data of cancer development, metastasis
and therapeutic resistance emerging in the literature.
Bioinformatics methods are currently being developed that
focus on aggregating over epigenetic modifications with similar
effects on gene expression, i.e. all repressive or all activating.
The ELMER algorithm was developed to incorporate genome-wide
maps of enhancers and transcription factors with methylation
and expression data to determine epigenetic regulation of tran-
scription factors in cancer [160]. Encoding ways to account to
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multiple often-conflicting modes of regulation through dysregula-
tion techniques [161] remain a promising avenue for future
research.

All the algorithms for integration described above compare
gene- or geneset-level summaries of both the epigenetics and
genomics data to associate them with phenotypes in cancer. As
is the case for CpGIs [24], epigenetic alterations in noncoding re-
gions of the genome have critical functional alterations in can-
cer. In these cases, associating the genome-wide distribution
epigenetic alterations with that of the genome, transcriptome
and proteome are essential to determine their functional im-
pact. Both Segway [145] and ChromHMM [140] perform inte-
grated analysis tailored to annotating regions of epigenetic
regulation. More general genome-wide correlation techniques
can perform additional integration to infer more complex regu-
latory relationships. GenometriCorr [142], which computes the
correlation between sets of genomic intervals, can be used
to integrate different types of data—such as the location of
gene promoters and transcription factor-binding sites or
other annotation. For a pair of interval-represented data sets,
GenometriCorr estimates a variety of correlations that are based
on interval overlaps, on relative genomic distances and on abso-
lute genomic distances. GenometriCorr is limited to correlation
between binary calls along genome tracks and thus requires an
interval calling procedure, e.g. MACS [162] to prepare the inter-
val data. In contrast, StereoGene [141] does not require such an
identification of intervals. StereoGene uses kernel methods to
correlate genome-wide patterns in intensity between two data
sets. In this case, epigenetic and genomic profiles may be used
as direct inputs for patterns in StereoGene to correlate levels of
epigenetic regulation. Both algorithms compute pairwise com-
parisons between genomic profiles or linear combination of pro-
files. Therefore, the integration of numerous data types from
many samples cannot be computed directly. Instead, these pair-
wise correlations (or distances) could be inputs to other super-
vised or unsupervised analysis techniques to infer common
epigenetic regulation across cancer samples. Future research

into methods that perform genome-wide coordinate-based inte-
gration techniques across multiple samples is essential to de-
termine the full impact of epigenetic alterations on functional
genomic alterations in cancer.

Discussion

Elucidating the relationships between different epigenetic mech-
anisms and their regulation of gene expression is essential to
finding hidden sources of variation in cancer and therapeutic se-
lection. New high-throughput measurement technologies enable
unprecedented, quantitative measurements of the epigenetic
state in cancers. For DNA methylation, these techniques can be
applied readily to both primary tumors and model organisms.
Therefore, the functional impact of methylation alterations can
be assessed bioinformatically in targeted experiments on model
organisms and across sample population. On the other hand,
chromatin assays require higher-quality and quantity samples
that are typical not feasible for preserved tumor samples or biop-
sies. As a result, chromatin measurements are typically limited
to model organisms. In the case of DNA methylation, the epigen-
etic landscape of cell line models has been shown to vary signifi-
cantly from that of primary tumors relative to PDXs [163]. We
anticipate similar discrepancies between model organisms and
primary tumors in the chromatin landscape. Thus, advances
that adapt chromatin measurement techniques to primary
tumor samples are essential to cancer epigenetics.

Databases with epigenetic and genomic data, such as TCGA,
ENCODE and FANTOM, are an important step toward achieving
this goal. Individually, these large public domain data sets have
fueled algorithm development and understanding of epigenetic
and tumor-based gene expression changes, respectively. While
TCGA contains DNA methylation, gene expression and proteomic
data in thousands of primary tumors across cancer types, it lacks
chromatin data. Chromatin and transcriptional data are available
for numerous cancer cell lines in ENCODE and FANTOM, but
these databases lack DNA methylation data and data from

Figure 4. Complete data integration to determine epigenetic regulation of gene expression can be performed for data sets containing both gene expression data (top center) and

epigenetic data (bottom center) on the same samples. Clustering-based techniques such as iClusterPlus (left) seek sets of samples that have epigenetic alterations with coordi-

nated gene expression changes. Matrix factorization-based techniques such as CoGAPS (right) infer quantitative relationships between epigenetic alterations and gene expres-

sion. These algorithms simultaneously quantify the extent of the coordinated alterations in gene expression and DNA methylation in each sample. Post hoc analyses of the

clusters in iClusterPlus or CoGAPS patterns can determine their functional impact in cancer. (A colour version of this figure is available online at: https://academic.oup.com/bfg)
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primary tumors. However, interactions between DNA methyla-
tion and chromatin structure are essential in functional epigen-
etic regulation. Therefore, it is essential to develop a
comprehensive database of matched epigenetic, genetic and
phenotypic data.

A comprehensive catalog is especially important for primary
tissue samples, where intra-tumor heterogeneity compounds
the effect of inter-individual heterogeneity further obscuring
the underlying drivers of disease. Many resistance mechanisms
to therapeutics are associated with tumor heterogeneity
[164, 165]. Advances to single-cell genomic and epigenomic
techniques in recent years enable quantification of the hetero-
geneity of epigenetic changes in cancer progression and thera-
peutic response. These single-cell techniques are also able to
measure epigenetics in samples with low cell count analysis,
facilitating analysis of tumor and biopsy samples. However,
similar to chromatin, they are limited to fresh tissues. New
methods for single-cell Hi-C [166], scATAC-Seq [89], scChIP-Seq
[167] and scBS-Seq [168] are quickly being refined and have
opened the door for querying the epigenome at all levels.
Furthermore, the inherent disadvantages from their original
approaches are not eliminated and can even be amplified with
additional complications related to adequate single-cell isola-
tion and poor sequencing resolution [169, 170]. Advancements
in fluorescence-activated cell sorting (FACS), microchip arrays
and microfluidics have made high-throughput cell isolation
more tenable, but significant price limitations and bias toward
certain cell sizes (microfluidics), cell markers (FACS) or rare cell
types (microchip) remain [170, 171].

Numerous bioinformatics techniques have been developed to
preprocess and analyze single-platform data for DNA methylation
and chromatin structure. However, establishing a functional link
in cancer requires further identification of epigenetic alterations
that are associated with gene expression, protein and phenotypic
changes. Integrating data across measurement platforms is essen-
tial to establish these functional relationships. To date, most of
these techniques are limited to correlations between genes or
common clusters shared across data sets. New integrated
bioinformatics techniques are essential to model and distinguish
different forms of epigenetic regulation in driving tumor hetero-
geneity and ultimately cancer. While integrated analyses are
emerging, few tools are designed to encode and test these regula-
tory relationships directly. Determining the true epigenetic regula-
tory mechanisms and drivers of cancer pathology will be essential
for precision medicine with emerging epigenetic therapies.

Key Points

• Epigenetic alterations compliment genomic alterations
during cancer progression and therapeutic response.

• High-throughput measurement technologies can char-
acterize the epigenetic landscape of tumors and model
organisms.

• Epigenetic data in large panels of human tumors and
cell lines are available from large research consortium.

• Bioinformatics algorithms that integrate epigenetic
data with genomics data are essential to determine
the function of epigenetic alterations in cancer.

Supplementary data

Supplementary data are available online at https://academic.
oup.com/bfg.
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