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Regular exercise has a myriad of health benefits. An increase in circulating exercise factors 
following exercise is a critical physiological response. Numerous studies have shown that 
exercise factors released from tissues during physical activity may contribute to health 
benefits via autocrine, paracrine, and endocrine mechanisms. Myokines, classified as 
proteins secreted from skeletal muscle, are representative exercise factors. The roles of 
myokines have been demonstrated in a variety of exercise-related functions linked to 
health benefits. In addition to myokines, metabolites are also exercise factors. Exercise 
changes the levels of various metabolites via metabolic reactions. Several studies have 
identified exercise-induced metabolites that positively influence organ functions. Here, 
we provide an overview of selected metabolites secreted into the circulation upon exercise.

Keywords: exercise, metabolites, alpha-ketoglutarate (α-KG), beta-aminoisobutyric acid (BAIBA), kynurenic acid 
(KYNA), β-hydroxybutyrate (BHB), lactate, 12,13-diHOME

INTRODUCTION

Exercise benefits every part of the body and prevents chronic diseases. The effects of exercise 
are mediated by a complex process involving interorgan crosstalk and activation of integrated 
body systems at the molecular, cellular, and systemic levels. However, the cellular and molecular 
mechanisms underlying the effects of exercise are unclear. Omics technologies have made it 
possible to obtain a huge number of molecular measurements within a tissue, a cell, or plasma 
during exercise and to comprehensively understand the effects of physical exercise (Pourteymour 
et  al., 2017; Whitham et  al., 2018; Pillon et  al., 2020). Numerous studies have identified 
exercise factors that are part of a complex network of interorgan communication. Diverse 
tissues including skeletal muscle, adipose tissue, bone, and the liver release exercise factors 
into blood (Moon et  al., 2016; Ingerslev et  al., 2017; Zhang et  al., 2017; Takahashi et  al., 
2019). These factors contribute to the beneficial effects of exercise, including reduction of 
adipose mass and inflammation, maintenance of muscle mass, improvement of cardiovascular 
fitness, and promotion of brain plasticity, as discussed in many previous studies (Hawley et  al., 
2014). Various types of exercise change whole-body metabolism in both clinical and animal 
models (Huffman et  al., 2014; Starnes et  al., 2017; Sato et  al., 2019; Schranner et  al., 2020). 
Metabolism plays a crucial role in human health and disease, and is modulated by intrinsic 
and extrinsic factors. Several exercise-induced metabolites mediate metabolic functions including 
thermogenesis, glucose homeostasis, and lipolysis (Roberts et  al., 2014; Stanford et  al., 2018; 
Yuan et  al., 2020). The list of novel metabolites released by exercise continues to grow, aided 
by advanced omics technologies. However, the roles of many metabolites remain to be  tested 
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in murine and human in vivo models. Elucidation of the 
mechanism underlying interorgan crosstalk and biological 
networking involving exercise factors will help to identify 
potential therapeutic targets. In this review, we  selected six 
metabolites that have been extensively characterized and have 
therapeutic potential in metabolic disorders, neurodegenerative 
diseases, osteosarcoma, or sarcopenia. We summarize our current 
knowledge of these metabolites, focusing on their biological 
functions (Figure  1, Table  1).

α-KETOGLUTARIC ACID

α-Ketoglutaric acid (AKG) is a crucial intermediate in the TCA 
cycle required for a rate limiting step (Krebs and Johnson, 
1980). AKG is involved in various types of cellular energy 
metabolism and a variety of metabolic pathways. AKG can 
be  decarboxylated to succinyl-CoA and CO2 by AKG 
dehydrogenase in the TCA cycle. In addition, AKG is generated 
from isocitrate by oxidative decarboxylation catalyzed by isocitrate 
dehydrogenase or anaplerotically from glutamate by oxidative 
deamination using glutamate dehydrogenase. AKG is a key 
metabolite in the TCA cycle and is therefore mostly present 
in mitochondria and the cytoplasm of cells. In addition,  
AKG is also found in blood (Rocchiccioli et  al., 1984; 
Wagner et al., 2010). Yuan et al. (2020) recently analyzed serum 
metabolites after acute resistance exercise and found that TCA 

cycle intermediates are upregulated. Notably, the serum level 
of AKG is significantly elevated in response to exercise. In 
humans, physical exercise increases serum levels of AKG (Lewis 
et al., 2010; Brugnara et al., 2012). AKG elicits exercise-induced 
beneficial effects, including muscle hypertrophy and fat loss, 
through 2-oxoglutarate receptor 1 (OXGR1)-dependent adrenal 
activation (Yuan et  al., 2020). Several studies have shown that 
AKG activates the mammalian target of rapamycin (mTOR) 
signaling pathway, resulting in protein synthesis and skeletal 
muscle hypertrophy (Yao et  al., 2012; Cai et  al., 2016). AKG 
inhibits protein degradation and skeletal muscle atrophy through 
a prolyl hydroxylase 3 (PHD3)/β2 adrenergic receptor (ADRB2)-
mediated mechanism (Cai et  al., 2018). In addition to skeletal 
muscle, AKG has positive effects on several tissues. AKG injection 
protects against bone loss in ovariectomized rats (Radzki et  al., 
2012). AKG supplementation promotes beige adipogenesis through 
AKG-mediated demethylation in the Prdm16 promoter (Tian 
et  al., 2020). These beneficial effects induced by AKG resemble 
several changes induced by resistance exercise (Lesinski et  al., 
2016). These studies suggest that exercise-induced AKG partially 
contributes to the metabolic effects of exercise.

β-AMINOISOBUTYRIC ACID

β-Aminoisobutyric acid (BAIBA) is a non-proteinogenic amino 
acid. It is a natural catabolite of thymine and valine metabolism 

FIGURE 1 | A general summary of exercise-induced metabolites and their effects on the body. AKG: α-ketoglutaric acid, BAIBA: β-aminoisobutyric acid,  
BHB: β-hydroxybutyrate, KYNA: kynurenic acid, and 12,13-diHOME: 12,13-dihydroxy-9Z-octadecenoic acid.
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in mammals. There are two enantiomers of BAIBA in biological 
systems: D-BAIBA (R-BAIBA) and L-BAIBA (S-BAIBA). L-BAIBA 
is produced via catabolic reactions of L-valine, while D-BAIBA 
is generated in the cytosol as an intermediate product of thymine 
degradation (Fink et al., 1956; Kupiecki and Coon, 1957). However, 
the systemic regulation of their levels is not clearly understood. 
BAIBA is an exercise-responsive metabolite. Roberts et al. (2014) 
found that chronic exercise and muscle-specific peroxisome 
proliferator-activated receptor (PPAR) γ coactivator 1α (PGC-1α) 
overexpression increase the plasma level of BAIBA in mice. 
Stautemas et al. (2019) found that acute aerobic exercise increases 
the plasma levels of D-BAIBA and L-BAIBA by 13 and 20%, 
respectively, and that alanine-glyoxylate aminotransferase 2 
(AGXT2) polymorphism only affects the plasma level of D-BAIBA. 
BAIBA increases expression of brown adipocyte-specific genes 
in primary adipogenic precursor cells and induces browning in 
white adipose tissue (WAT) through a PPARα-dependent pathway. 
BAIBA also increases hepatic fatty acid β-oxidation. These effects 
of BAIBA on adipose and liver tissues reduce weight gain and 
improve glucose tolerance in mice (Roberts et  al., 2014). 
Consistently, BAIBA protects against obesity and related metabolic 
disorders in mice with partial leptin deficiency (Begriche et  al., 
2008). In type 2 diabetes model mice, BAIBA ameliorates hepatic 
endoplasmic reticulum stress, apoptosis, and glucose/lipid 
metabolic disturbance (Shi et  al., 2016). In addition, BAIBA 
improves palmitate‐ and high-fat feeding-induced insulin resistance 
and inflammation, via its action on AMP-activated protein kinase 
(AMPK) and PPARδ in skeletal muscle (Jung et  al., 2015). In 
addition to its metabolic effects, L-BAIBA prevents reactive 
oxygen species (ROS)-induced apoptosis of osteocytes and loss 
of bone and muscle. The effects of L-BAIBA are mediated via 
Mas-related G protein-coupled receptor type D (MRGPRD), and 
reduced MRGPRD expression with age results in loss of the 
protective effect of L-BAIBA (Kitase et  al., 2018). BAIBA also 
ameliorates fibrotic responses and renal functional impairment 
in obstructed kidneys by downregulating the angiotensin (Ang) 
II/interleukin (IL)-17/ROS signaling pathway (Wang et al., 2017). 
These reports suggest that BAIBA affects diverse tissues as a 
mediator of the beneficial effects of exercise.

KYNURENIC ACID

Tryptophan is not only an α-amino acid used to biosynthesize 
proteins, but is also a precursor of many biologically active 
compounds such as serotonin, melatonin, and indole. The main 
route for tryptophan catabolism is through the kynurenine (KYN) 
pathway. In this pathway, a product of one branch is kynurenic 
acid (KYNA) and the final product is nicotinamide adenine 
nucleotide (NAD+). KYNA is generated in diverse types of 
peripheral tissues and cells, and is also present in various products 
consumed by humans. The KYN pathway is responsible for 
over 90% of peripheral tryptophan metabolism (Leklem, 1971). 
KYN and its metabolites are involved in many fundamental 
biological and pathophysiological processes. Agudelo et al. (2014) 
found that overexpression of PGC-1α1 in muscle (mck-PGC-1α1) 
elevates expression of KYN amino transferases (KATs) 1, 2, and 3,  
and that exercise training increases KAT expression in skeletal 
muscle. Importantly, the plasma KYNA level is increased in 
exercise-trained mice. Interestingly, mck-PGC-1α1 transgenic 
mice are resistant to depression. Agudelo et  al. suggested that 
elevated peripheral conversion of KYN to KYNA in skeletal 
muscle blocks accumulation of neurotoxic KYN metabolites that 
contribute to the pathogenesis of depression in the brain. 
Consistently, Schlittler et  al. (2016) showed that endurance 
exercise, but not resistance exercise, increases the plasma KYNA 
level. In addition to depression, accumulation of KYN and its 
metabolites in the central nervous system is associated with 
several psychiatric disorders (Miller et  al., 2006; Sellgren et  al., 
2016). In the brain, KYNA is an antagonist of N-methyl-D-
aspartate (NMDA) receptors, α-amino-3-hydroxy-5-methyl-4-
isoxazolepropionic acid receptors, kainate receptors, and α7 
nicotinic acetylcholine receptor (α7nAChR; Perkins and Stone, 
1982; Hilmas et al., 2001). By contrast, KYNA acts as an agonist 
of the G-protein-coupled receptor GPR35 (Wang et  al., 2006). 
Furthermore, KYNA has antioxidant properties (Lugo-Huitron 
et al., 2011; Perez-Gonzalez et al., 2015). Although the underlying 
molecular mechanism remains unclear, accumulating evidence 
suggests that KYNA has neuroprotective properties and there 
is great therapeutic potential in targeting the muscle KAT-KYN 

TABLE 1 | Summary of plasma metabolites induced by exercise.

Metabolites Classes of metabolites Subjects Exercise protocol Main tissue(s) of origin References

α-Ketoglutaric acid A product of glycolysis
Mouse

Acute resistance exercise (ladder-
climbing)

Skeletal muscle
Yuan et al., 2020

Human
26.2-mile marathon Brugnara et al., 2012
Short-term intensive exercise Lewis et al., 2010

β-Aminoisobutyric acid
A product of pyrimidine 
metabolism

Human Short-term intensive exercise
Skeletal muscle

Stautemas et al., 2019
Mouse 3 week free wheel running exercise Roberts et al., 2014

Kynurenic acid
A product of tryptophan 
metabolism

Human
Endurance exercise (a 150-km road 
cycling time trial) Skeletal muscle

Schlittler et al., 2016

Mouse 8 weeks of free wheel running Agudelo et al., 2014

β-Hydroxybutyrate
A product of the normal 
metabolism of fatty acid

Mouse 4 weeks of free wheel running
Liver

Sleiman et al., 2016
Human Acute exercise (Treadmill running) Kim et al., 2013

Lactate
A product of anaerobic 
glycolysis

Human Short-term intensive exercise
Skeletal muscle

Juel et al., 1990
Mouse Acute exercise (Treadmill running) Lonbro et al., 2019

12,13-Dihydroxy-9Z-
octadecenoic

A product of linoleic acid 
metabolism

Human Acute exercise (cycle ergometer) Brown adipose tissue Stanford et al., 2018
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pathway in psychiatric disorders. In addition to the brain, Agudelo 
et al. (2018) found that KYNA functions as a ligand of GPR35 in 
adipose tissue. A single daily dose of KYNA, which elevates its 
plasma level to that observed upon exercise, increases systemic 
energy expenditure through GPR35, which enhances expression 
of lipid metabolism, thermogenic, and anti-inflammatory genes 
in adipose tissue. These reports suggest that the beneficial effects 
of exercise on the brain and adipose tissue might be attributable 
to an increased level of circulating KYNA.

β-HYDROXYBUTYRATE

Ketone bodies are small lipid-derived molecules produced by 
the liver during fasting and upon prolonged exercise. They are 
distributed via the circulation to peripheral tissues including 
skeletal muscle and the brain, where they can be  converted to 
acetyl-CoA (Newman and Verdin, 2014). β-Hydroxybutyrate 
(BHB) is the most prevalent ketone body in mammals and 
plays pivotal roles in whole-body energy metabolism. Much 
evidence suggests that BHB is a biologically active metabolite 
with a broad range of signaling and regulatory effects. BHB is 
an inhibitor of histone deacetylases (HDACs) and its plasma 
level is increased after a single bout of acute exercise in mice 
and human (Kim et  al., 2013). Sleiman et  al. (2016) revealed 
that exercise induces brain-derived neurotrophic factor (BDNF) 
expression in the hippocampus via the action of BHB. They 
found that BHB released in response to exercise induces BDNF 
expression by inhibiting HDACs and increases in neurotransmitter 
release in hippocampus. BDNF has positive effects on memory, 
cognition, and synaptic transmission. Thus, it is highly conceivable 
that BHB can enhance plasticity and improve cognition through 
BDNF expression. Accumulating evidence suggest that HDAC 
inhibitors can improve cognitive impairment resulting from 
neurodegenerative disorders (Graff and Tsai, 2013). Similarly, a 
recent report revealed that BHB improves cognitive function in 
5XFAD mouse, a widely used AD mouse model, by attenuating 
Aβ accumulation and microglia overactivation (Wu et al., 2020). 
BHB elicits neuroprotective effects against hypoxic and hypoglycemic 
insults and N-methyl-D-aspartate-induced excitotoxicity (Masuda 
et  al., 2005; Samoilova et  al., 2010). BHB attenuates 
neuroinflammation pathology by inhibiting NLRP3 inflammasome 
activation in Alzheimer’s disease or the spinal cord injury model 
(Kong et  al., 2020; Shippy et  al., 2020). Also, BHB prevents post-
sepsis cognitive impairment (Wang et  al., 2020). These multiple 
studies suggest that BHB may be  beneficial in preventing 
neurodegenerative diseases.

It is noteworthy that butyrate, a broad HDAC inhibitor, 
improves insulin sensitivity and increases the metabolic rate 
and oxidative metabolism in a mouse diabetes model (Galmozzi 
et  al., 2013). Thus, the metabolic effects of exercise may 
be  partially attributable to BHB-induced adipocyte browning 
through a change in the intracellular redox state (Carriere 
et  al., 2014). Ketogenic diets increase the levels of circulating 
BHB. Ketogenic diets, which contain much fat and little 
carbohydrate, elevate uncoupling protein 1 (UCP1) expression 
in brown adipose tissue (BAT) of mice and reduce body 

weight (Kennedy et al., 2007; Moreno et al., 2014). Additionally, 
ketogenic diets increase the exercise capacity and show a 
preventive effect on organ injury caused by acute exercise 
in mice despite the decrease of absolute muscle volume (Ma 
et al., 2018). Accumulating evidence indicate that the observed 
benefit of ketogenic diets might be  attributed elevation of 
circulating BHB. Of note, circulating BHB is also elevated 
during caloric restriction (CR) or fasting. CR is widely accepted 
as positive control of anti-aging intervention (Fontana et  al., 
2010; Swindell, 2012). BHB has been proposed as a mediator 
of the beneficial anti-aging effects associated with CR. BHB 
extends the lifespan of C. elegans through inhibiting HDACs 
and the DAF16/FOXO and SKN-1/Nrf pathways (Edwards 
et  al., 2014). Han et  al. (2018) found that BHB prevents p53 
independent and octamer-binding transcriptional factor (Oct) 
four dependent senescence in mouse vascular cells. BHB 
upregulates Oct4 expression via interacting with heterogeneous 
nuclear ribonucleoprotein A1 (hnRNP A1), inducing cell 
quiescence. Intraperitoneal injection of BHB alleviates vascular 
aging in mice (Han et  al., 2018). Because of the BHB roles, 
it can be  considered as a potential mediator of the anti-aging 
effects of CR and exercise. Recently, numerous studies have 
shown that BHB is involved in a variety of cellular functions. 
BHB promotes generation of claudin-5 and attenuates diabetes-
associated cardiac microvascular hyperpermeablility by 
inhibiting HDAC3 (Li et  al., 2020). In aged mice, BHB 
ameliorated hepatic ER stress and lipid accumulation through 
the GPR109A/AMPK pathway (Lee et  al., 2020). BHB 
supplementation has also been shown to improve exercise 
capacity by altering mitochondrial morphology and functions 
(Monsalves-Alvarez et al., 2020). Taken together, these studies 
suggest that BHB released upon physical exercise contributes 
to a wide-range of positive health effects via a number of 
potential cellular mechanisms.

LACTATE

Lactate is the ultimate final product of anaerobic glycolysis. 
Anaerobic exercise induces conversion of pyruvate into lactate 
by lactate dehydrogenase. Lactate is not metabolized further 
and is released into blood. Almost 40% of lactate in the circulation 
is generated by skeletal muscle (Juel et  al., 1990; Adeva-Andany 
et  al., 2014; Lonbro et  al., 2019). Maximal exercise can cause 
a ∼20-fold increase in circulating lactate (Goodwin et al., 2007). 
Many reports have shown that lactate is a signaling molecule 
released from muscle to communicate with other tissues, such 
as the brain, the liver, adipose tissue, and the heart (Brooks, 
2009). De Matteis et  al. (2013) reported that exercise strongly 
induces expression of the lactate importer MCT1 and increases 
the metabolic activity of brown adipocytes and suggested that 
lactate metabolism controls these cells. Carriere et  al. (2014) 
tested the effect of lactate on browning of subcutaneous WAT 
(scWAT). They found that an increase in browning correlates 
with an increase in circulating lactate and MCT1 expression in 
scWAT. Lactate increases thermogenic gene expression in 
adipocytes via PPARδ, and administration of lactate induces 
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browning in scWAT of mice. Uptake and metabolism of lactate 
have been demonstrated in the brain. Lactate uptake by neurons 
correlates with an increase in the plasma lactate level. Interestingly, 
lactate use by the brain is related to neuronal activity (Serres 
et  al., 2004; Kemppainen et  al., 2005; Dalsgaard, 2006). 
Lev-Vachnish et  al. (2019) identified L-lactate as a factor that 
promotes adult hippocampal neurogenesis. L-lactate enters neurons 
through MCT2 and induces formation of new neurons in the 
dentate gyrus. In addition to neurons, astrocytes regulate memory 
formation by controlling neuronal lactate transport (Suzuki et al., 
2011). Several studies have suggested that increased vascular 
density is critical for maintaining cognitive function in the brain 
(Ding et al., 2006; Wightman et al., 2015). Morland et al. (2017) 
demonstrate that exercise increases brain vascular endothelial 
growth factor A (VEGFA) protein and angiogenesis via the 
lactate receptor HCAR1. Moreover, lactate controls blood flow 
in the brain by increasing vasodilation to obtain more oxygen 
and glucose when the oxygen concentration is low (Gordon 
et  al., 2008). A number of recent studies implicate the role of 
lactate in the control of energy intake in rodents and humans. 
Of note, lactate inhibits both production and activation of ghrelin 
in gastric mucosal cells (Engelstoft et  al., 2013). Lactate also 
influences appetite through modulating hypothalamic neuropeptide 
expression and release (Cha and Lane, 2009; Ou et  al., 2019). 
Taken together, these data indicate that lactate is an important 
metabolic product and that circulating lactate may mediate the 
beneficial effects of exercise on metabolism and cognition.

12,13-DIHYDROXY-9Z-OCTADECENOIC 
ACID

Oxylipins are oxidized metabolites of long-chain polyunsaturated 
fatty acids (PUFAs). PUFAs can be  obtained directly from the 
diet or from metabolism of linoleic acid and α-linolenic acid. 
Oxylipins are detected in all tissues, urine, and blood  
(Gabbs et  al., 2015). Imbalances in oxylipins correlate with 
pathological conditions including metabolic disorders, depression, 
pain, and cardiovascular disease (Caligiuri et  al., 2017; Deol 
et  al., 2017; Hennebelle et  al., 2017). Linoleic acid can 
be  metabolized via the cytochrome P450 (CYP) pathway to 
generate 12,13-diHOME. Lipidomics analysis demonstrated that 
the plasma 12,13-diHOME level increases in response to an 
acute bout of exercise in humans and mice (Stanford et  al., 
2018). Exercise-induced 12,13-diHOME is released from BAT. 
Acute treatment of mice with 12,13-diHOME increases skeletal 
muscle fatty acid uptake and oxidation (Stanford et  al., 2018). 
Similar to exercise, cold exposure stimulates activation of BAT. 
Another lipidomic analysis revealed that the plasma 12,13-
diHOME level is elevated following cold exposure in humans 
and mice. Injection of 12,13-diHOME facilitates BAT 
thermogenesis by selectively promoting fatty acid uptake, leading 
to enhanced cold tolerance. Chronic treatment of diet-induced 
obese mice with 12,13-diHOME protects against cold challenge 
and high-fat diet-induced obesity. These results indicate that 
lipid metabolites participate in regulation of metabolic changes 
in response to exercise.

CONCLUSION

Exercise induces release of many regulatory factors into the 
circulation and these factors influence body changes. Studies 
have found many exercise factors that link exercise to beneficial 
effects. Myokines are representative exercise factors secreted 
by skeletal muscle and affect diverse peripheral tissues as 
mediators of interorgan crosstalk. Exercise induces great metabolic 
changes and release of biologically active metabolites into blood. 
Studies using diverse approaches have identified novel metabolites 
that link exercise to beneficial effects. Many exercise-induced 
factors including metabolites and myokines have been reviewed 
elsewhere (Rai and Demontis, 2016; Murphy et  al., 2020).

Investigations have mainly focused on upregulated 
metabolites that influence tissue functions. Similar to exercise-
induced metabolites, plasma metabolites whose levels are 
reduced during exercise may play important roles in regulating 
the beneficial effects of exercise. Indeed, the levels of many 
plasma metabolites increase with age and some of these 
metabolites might be  associated with aging and age-related 
diseases (Darst et  al., 2019; Yeri et  al., 2019). It will 
be  important to investigate the functional role of age-related 
metabolites whose levels are decreased by exercise. Contrepois 
et  al. (2020) recently performed longitudinal profiling of 
blood metabolites before and after acute exercise in human 
and found 728 metabolites affected by exercise. Schranner 
et  al. (2020) identified 196 metabolites that are significantly 
changed by endurance or resistance exercise in human. These 
data might be  a useful resource to investigate mechanisms 
of exercise-induced health benefits. Recently, it has been 
observed that physical exercise modulates gut microbiota in 
both humans and animals (Clarke et  al., 2014; Barton et  al., 
2018). Of note, bacteria-derived metabolites play critical roles 
in the modulation of aging and longevity in the host organism 
(Smith et  al., 2017; Shin et  al., 2020). Thus, microbiota-
derived metabolites could be  important mediators of the 
benefits of exercise. As exercise-induced metabolites have 
health benefits and reduce the risk of many diseases in 
humans, elucidation of the roles of exercise-related metabolites 
and the underlying mechanisms will help to identify novel 
therapeutic targets for metabolic diseases, including type 2 
diabetes and obesity.
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