
12/15-Lipoxygenase Is Required for the Early Onset of
High Fat Diet-Induced Adipose Tissue Inflammation and
Insulin Resistance in Mice
Dorothy D. Sears1*, Philip D. Miles1, Justin Chapman2, Jachelle M. Ofrecio1, Felicidad Almazan1, Divya

Thapar1, Yury I. Miller1

1 Division of Endocrinology and Metabolism, Department of Medicine, University of California San Diego, La Jolla, California, United States of America, 2 Pfizer Inc., La Jolla,

California, United States of America

Abstract

Background: Recent understanding that insulin resistance is an inflammatory condition necessitates searching for genes
that regulate inflammation in insulin sensitive tissues. 12/15-lipoxygenase (12/15LO) regulates the expression of
proinflammatory cytokines and chemokines and is implicated in the early development of diet-induced atherosclerosis.
Thus, we tested the hypothesis that 12/15LO is involved in the onset of high fat diet (HFD)-induced insulin resistance.

Methodology/Principal Findings: Cells over-expressing 12/15LO secreted two potent chemokines, MCP-1 and osteopontin,
implicated in the development of insulin resistance. We assessed adipose tissue inflammation and whole body insulin
resistance in wild type (WT) and 12/15LO knockout (KO) mice after 2–4 weeks on HFD. In adipose tissue from WT mice, HFD
resulted in recruitment of CD11b+, F4/80+ macrophages and elevated protein levels of the inflammatory markers IL-1b, IL-6,
IL-10, IL-12, IFNc, Cxcl1 and TNFa. Remarkably, adipose tissue from HFD-fed 12/15LO KO mice was not infiltrated by
macrophages and did not display any increase in the inflammatory markers compared to adipose tissue from normal chow-
fed mice. WT mice developed severe whole body (hepatic and skeletal muscle) insulin resistance after HFD, as measured by
hyperinsulinemic euglycemic clamp. In contrast, 12/15LO KO mice exhibited no HFD-induced change in insulin-stimulated
glucose disposal rate or hepatic glucose output during clamp studies. Insulin-stimulated Akt phosphorylation in muscle
tissue from HFD-fed mice was significantly greater in 12/15LO KO mice than in WT mice.

Conclusions: These results demonstrate that 12/15LO mediates early stages of adipose tissue inflammation and whole body
insulin resistance induced by high fat feeding.

Citation: Sears DD, Miles PD, Chapman J, Ofrecio JM, Almazan F, et al. (2009) 12/15-Lipoxygenase Is Required for the Early Onset of High Fat Diet-Induced
Adipose Tissue Inflammation and Insulin Resistance in Mice. PLoS ONE 4(9): e7250. doi:10.1371/journal.pone.0007250

Editor: Kathrin Maedler, University of Bremen, Germany

Received April 23, 2009; Accepted August 3, 2009; Published September 29, 2009

Copyright: � 2009 Sears et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: Support for this research was provided by NIH grants K01-DK62025 (DDS) and R01HL081862 (DDS, PDM, YIM), American Heart Association grant
0530159N (YIM), and the University of California Discovery Program Project #bio03-10383 with matching grant funds provided by Pfizer, Inc. (JMO, DDS). JC is an
employee of Pfizer and participated in sample and data analysis for the project. The terms of this arrangement have been reviewed and approved by the
University of California, San Diego in accordance with its conflict of interest policies. JC participated as described above, no other person or entity of Pfizer, Inc.
had a role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: Support for this research was provided, in part, by the University of California Discovery Program Project #bio03-10383 with matching
grant funds provided by Pfizer, Inc (DDS, JMO). JC is an employee of Pfizer and participated as a collaborator in sample and data analysis for the project. The terms
of this arrangement have been reviewed and approved by the University of California, San Diego in accordance with its conflict of interest policies. JC participated
as described above, no other person or entity of Pfizer, Inc. had a role in study design, data collection and analysis, decision to publish, or preparation of the
manuscript. There are no other competing interests (as listed in the PLoS Competing Interests Policy) known to us.

* E-mail: dsears@ucsd.edu

Introduction

Insulin resistance is a pathophysiological condition associated

with obesity, aging, and type 2 diabetes that affects skeletal muscle,

liver, adipose tissue, and immune cells. Obesity and insulin

resistance are associated with macrophage infiltration and

inflammation in the adipose tissue of humans and rodent models

where a feed-forward cycle of reciprocal adipocyte and macro-

phage activation results in the secretion of inflammatory proteins

and further macrophage recruitment [1,2]. Pro-inflammatory

factors secreted by macrophages and adipocytes are elevated in

adipose tissue from obese and type 2 diabetic patients [3]. Adipose

tissue inflammation induces insulin resistance through inactivation

of insulin receptor substrates (IRS) by cytokine-activated JNK,

IKKb and SOCS [1]. High fat diet (HFD) feeding, a commonly

studied model of insulin resistance in rodents, rapidly causes

progressive metabolic maladies [4,5]. Insulin resistance in heart,

adipose tissue, liver, and muscle, adipose tissue hypertrophy and

inflammatory cell infiltration, and hyperinsulinemia are signifi-

cantly robust phenotypes observed as early as 1–3 weeks of HFD,

with minimal to no total body weight gain [4,6–8]. After 16–20

weeks of HFD, these phenotypes are much more pronounced and

additional severe metabolic dysregulations are present including

dyslipidemia & ectopic triglyceride storage, hypo-adiponectinemia,

adipose tissue hypoxia, cell death and remodeling, beta-cell

decompensation, mild hyperglycemia, and deterioration of cardiac
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function [4–6]. The key molecules involved in initiating HFD-

induced adipose tissue inflammation and macrophage infiltration

are not well characterized. Recent studies suggest an important

role for 12/15-lipoxygenase (12/15LO) in monocyte recruitment

to and regulation of inflammation in vascular and adipose tissue.

The family of 12/15LO enzymes catalyzes the insertion of

molecular oxygen in arachidonic acid (20:4) at the 12th and/or 15th

carbon, resulting in a fatty acid hydroperoxide. 12/15LO

oxygenates linoleic acid (18:2) at the 9th and/or 13th carbon. Free

unsaturated fatty acids as well as fatty acids esterified in

phospholipids and cholesteryl esters are substrates for 12/15LO.

The 12/15LO enzymes are conserved among many plant and

animal species and include soybean 15LO, human 15LO (Entrez

Gene ID 246), and mouse 12/15LO (Entrez Gene ID 11687). In

mammals, 12/15LO is expressed in differentiated macrophages,

dendritic cells, inflamed endothelial and smooth muscle cells, and in

certain tumors [9–14]. There is an emerging understanding that, in

both plants and mammals, 12/15LO products are involved in the

signaling processes of defense response and inflammation. In plants,

12/15LO initiates the synthesis of jasmonic acid, which regulates

defensive genes that respond to wound- and insect-inflicted damage

[15,16]. In mammalian cells, 12/15LO products regulate small

GTPases Ras and RhoA, MAP kinases, PKC, and transcription

factor NF-kB [12,17]. Our previous studies suggest that 12/15LO

oxidation products activate toll-like receptor-4 (TLR4) in macro-

phages [18,19]. Cells that express 12/15LO or are activated with

12/15LO oxidation products produce MCP-1, IL-6, IL-8 and

TNFa and induce monocyte binding to endothelial cells [20–26].

12/15LO has been implicated in the development of autoimmune

diabetes and in vascular complications of diabetes. Arachidonic acid

stimulates insulin secretion by b-cells and this process is inhibited by

the 12/15LO activity [27]. Moreover, 12/15LO mediates cytokine-

induced b-cell damage [28]. Other data suggest that non-obese

diabetic (NOD) mice congenic for a targeted deletion of 12/15LO

are in fact protected from autoimmune diabetes [29]. A recent study

has shown that long-term (8–24 weeks) high fat feeding induces 12/

15LO activation and beta cell damage in pancreatic islets, both of

which were prevented in 12/15LO KO mice [30]. 12/15LO is also

involved in vascular complications of advanced diabetes, such as

atherosclerosis and nephropathy, which manifest life-threatening

conditions. Specifically under diabetic conditions, vascular smooth

muscle cells (VSMC) express 12/15LO which in turn mediates a

VSMC switch from a contractile phenotype to a migratory and

inflammatory phenotype [9,22,31,32]. This change together with

12/15LO-mediated lipoprotein oxidation and monocyte adhesion to

endothelial cells explains the involvement of 12/15LO in the

pathogenesis of high fat diet (HFD)-induced atherosclerosis [33–36].

Although these previous studies show that 12/15LO plays a role

in regulating b-cell survival, advanced diabetic complications and,

in a very recent publication, chronic (8–24 weeks) HFD-induced

insulin resistance and inflammation [30], the possible involvement

of 12/15LO in the early development of insulin resistance has not

been studied. Given that 12/15LO is an inflammatory modulator,

we asked whether it is required for the onset of HFD-induced

insulin resistance. We found that 12/15LO deficiency protected

mice from exhibiting elevated inflammatory markers in adipose

tissue and, remarkably, prevented whole-body insulin resistance

induced by 2–4 weeks of high fat feeding.

Methods

Cells
Murine fibroblast cell lines stably over-expressing human 15LO

or b-galactosidase (LacZ) [37,38] were cultured in 10% FBS/

DMEM/gentamicin with 0.5 mg/ml G418 (Calbiochem, San

Diego, CA) to maintain selection.

Animals
Male C57BL6 wild type mice were from Jackson Laboratories.

Male 12/15LO knockout mice, backcrossed in a C57BL6

background for 10 generations, were a generous gift from Dr.

Colin Funk (Queen’s University). Starting 16 weeks of age, mice

were fed either normal chow (12% kcal from fat; Purina 5001 Lab

Diet) of high fat diet (41% kcal from fat; TD96132, Harlan

Teklad) for 2 or 4 weeks. All mice involved in clamp studies (wild

type and 12/15LO KO, n = 20 each) were singly housed during

the two weeks of dietary intervention. This was done in order to

ensure equal food access, protect the implanted catheters, and

prevent fighting between mice. Mice used for other experiments

(acute insulin and adipose tissue FACS studies, n = 20 per strain)

were housed 1–3 in a cage. There were infrequent circumstances

(,5 mice total in these studies) when a non-clamp study mouse

was singly-housed (for example, an aggressor had to be separated

from cage mates to prevent stress and injury to the other mice and

to ensure access to food. Mice were housed under controlled light

(12:12 light:dark) and climate conditions with unlimited access to

food and water. All procedures were performed in accordance

with the Guide for Care and Use of Laboratory Animals of the National

Institutes of Health and were approved by the University of

California, San Diego, Animal Subjects Committee.

Analytical methods
Total RNA was isolated from cell lysates using an RNeasy kit

from Quiagen (Valencia, CA). Quantitative RT-PCR was

performed to measure MCP-1, OPN and GAPDH mRNA levels

using a Rotor-Gene RG3000 qPCR machine (Corbett Research,

Brisbane, Australia). Primers and probes were from Applied

Biosystems (Foster City, CA). The protein levels of MCP-1 in

conditioned media were measured by ELISA using a kit from

R&D Systems (Minneapolis, MN). The protein levels of OPN in

conditioned media were assayed by immunoblot using a primary

antibody from Santa Cruz Biotechnology (Santa Cruz, CA).

In vivo metabolic studies
Insulin sensitivity was assessed in mice fed HFD for 2 weeks using

a sub-maximal hyperinsulinemic euglycemic glucose clamp tech-

nique as previously described (34), with the following modifications:

1) isoflurane was used for anesthesia during the catheter insertion

surgery three days prior to clamp, 2) glucose tracer was infused at

2 mCi/hr during the clamp, and 3) insulin was infused at 3 mU/kg/

min during the clamp. The mice were conscious during the clamp

and fully recovered after the procedure. Four days later, the mice

were fasted for 5 hr, anesthetized (isoflurane) to collect blood by

cardiac puncture, and then euthanized (pentobarbital) to collect

gastrocnemius muscle, liver, and epididymal adipose tissues.

Excised tissues were flash-frozen in liquid nitrogen. Plasma glucose

specific activity, glucose disposal rate (GDR), and hepatic glucose

output (HGO) were calculated as previously described [39]. In a

separate group of mice, acute insulin stimulation was achieved by

intraperitoneal injection of 6 hr-fasted mice with 0.85 U/kg insulin.

After 15 min, the mice were sacrificed and muscle was harvested as

described above.

Fluorescence-activated cell sorting (FACS) of adipose
tissue SVCs

Adipose tissue stromal vascular cells (SVCs) were isolated and

analyzed by FACS as previously reported [6] with minor
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modifications. Briefly, freshly harvested epididymal fat pads were

separately rinsed and minced in DPBS +1% BSA and then treated

with 1 mg/mL type II collagenase (Sigma, St. Louis, MO) for

25 min in a 37uC shaking water bath. Adipose tissue cell

suspensions were filtered through a 100 mm mesh. SVCs were

separated from floating adipocytes by centrifugation, incubated in

RBC lysis buffer (eBioscience, San Diego, CA) for 5 min, and re-

suspended in fresh DPBS +1% BSA. SVCs were incubated with Fc

Block (BD Biosciences, San Jose, CA) for 15 min and then stained

for 30 min with fluorescent-conjugated antibodies against F4/80

(Ab Serotec, Raleigh, NC) and CD11b (BD Biosciences). Cells

were washed two times and re-suspended in DPBS +1% BSA and

propidium iodide (Sigma). Presence of the fluorescent stains in the

SVCs was analyzed using a FACS Calibur flow cytometer (BD

Biosciences). Control SVCs preparations included unstained cells,

PI-only stained cells, and fluorescence-minus-one (FMO) stained

cells and were used to set gatings and compensation.

Plasma and tissue analyses
Plasma insulin levels were measured using the Insulin

Ultrasensitive (Mouse) EIA method (Alpco, Salem, NH). Muscle

lysates were analyzed by western blotting with antibodies against

total Akt and phospho-serine Akt (Cell Signaling, Danvers, MA).

Signal intensities on chemiluminescence-exposed autoradiographs

were densitometrically quantified using a digital Kodak 3D Image

station and associated digital image analysis software (Kodak, New

Haven, CT). The protein levels of IL-1b, IL-12p70, IFNc, IL-6,

IL-10, Cxcl1 and TNFa in adipose tissue lysates were measured

using a multiplex (7-plex) ELISA (Meso Scale Discovery,

Gaithersburg, MD).

Statistical analyses
Student’s t-test and ANOVA (and Tukey’s post hoc test) were

applied for statistical analyses. A p-value cutoff of 0.05 was used to

determine statistical significance.

Results

12/15LO expression increases chemokine production
Expression of 12/15LO in various smooth muscle cells and

macrophages induces the expression of proinflammatory genes

[21,22,24,26]. We used fibroblast cell lines that stably express

human 15LO or LacZ (as a negative control) [37] to test whether

our 15LO-expressing cells (15LO cells) produce excess pro-

inflammatory proteins compared to LacZ-expressing control cells

(LacZ cells). We focused on chemokines that could attract

monocytes to adipose tissue and have been shown to be involved

in the pathogenesis of insulin resistance. Monocyte chemoattrac-

tant protein-1 (MCP-1) contributes to macrophage infiltration in

adipose tissue and insulin resistance [40,41]. Osteopontin (OPN) is

a proinflammatory cytokine and monocyte chemotactic factor that

also mediates obesity-induced insulin resistance [42]. We found

that the 15LO cells expressed significantly higher levels of MCP-1

and OPN (mRNA and protein) than the LacZ cells (Figure 1).

Expression of other inflammatory mediators TNFa, MIP-2, MIP-

1a and IkBf was not different between the 15LO and LacZ cells

(not shown).

HFD-induced inflammation in adipose tissue is absent in
12/15LO KO mice

Because 12/15LO regulates the expression of monocytic

chemokines (Figure 1 and refs. [21,22,24]), we compared the

effects of short-term high fat feeding on adipose tissue inflamma-

tion in C57BL6 wild type (WT) and strain-, gender-, and age-

matched 12/15LO knockout (KO) mice. We assessed adipose

tissue macrophage infiltration in isolated epididymal white adipose

tissue-derived stromal vascular cells (SVCs) using fluorescence-

activated cell sorting (FACS), which is a more sensitive and

comprehensive method compared to immuno-histochemistry.

Because macrophages expressing F4/80 and/or CD11b are

increased in adipose tissue after HFD [5,40,43], we measured

the percentage of live SVCs that express F4/80 or CD11b and the

percentage of live SVCs that express both F4/80 and CD11b. The

percentage of adipose tissue-derived SVCs expressing F4/80 and/

or CD11b was significantly increased in WT mice fed HFD for

two weeks (Figure 2) compared to WT mice fed normal chow

(NC). This trend of increased macrophage presence also existed

after four weeks of HFD. In contrast, adipose tissue-derived SVCs

isolated from 12/15LO KO mice fed HFD for four weeks

exhibited no change in the percentage of cells expressing F4/80

and CD11b compared with NC-fed 12/15LO KO mice.

We next measured cytokine protein levels in epididymal white

adipose tissue (eWAT) lysates from WT and 12/15LO KO mice

fed NC or HFD for two weeks. We observed significantly elevated

levels of IL-1b, IL-12p70, IFNc, IL-6, and IL-10 in eWAT lysates

from HFD-fed WT mice compared to NC-fed WT mice (Figure 3).

Cxcl1 (KC) and TNFa levels also tended to increase after HFD in

WT mice but this increase did not reach statistical significance.

None of these cytokines were elevated in the plasma of WT mice

Figure 1. Proinflammatory chemokine production by 15LO-
expressing cells. A. Fold difference in OPN and MCP-1 mRNA
expression in murine fibroblasts constitutively expressing human 15LO
or LacZ. OPN and MCP-1 mRNA levels were measured by qPCR of total
RNA and were normalized to GAPDH mRNA. B. Levels of MCP-1 protein
in conditioned media from 15LO and LacZ cells, as assayed by ELISA. C.
Autoradiograph of OPN protein in conditioned media from 15LO and
LacZ cells, as determined by western blotting.
doi:10.1371/journal.pone.0007250.g001
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fed 2-week HFD compared to NC controls. In contrast to WT

mice, 12/15LO KO mice were completely protected from HFD-

induced increases in IL-1b, IL-12p70, IFNc, IL-6, IL-10, Cxcl1

and TNFa levels in eWAT. The absence of HFD-induced

cytokine elevation in the adipose tissue of 12/15LO KO mice

(Figure 3) corresponds with the absence of HFD-induced

macrophage infiltration in the adipose tissue of these mice

(Figure 2) and supports the notion that, in contrast to WT mice,

12/15LO KO mice fed HFD for two to four weeks do not exhibit

macrophage-mediated, adipose tissue inflammation.

12/15LO KO mice are protected from HFD-induced
insulin resistance

We investigated whether the absence of HFD-induced adipose

tissue inflammation in 12/15LO KO mice correlated with

protection from whole body insulin resistance. We conducted

euglycemic hyperinsulinemic clamp studies on WT and 12/

15LO KO mice fed NC or HFD for two weeks. High fat feeding

induced significant differences in clamp data from HFD-fed

compared to NC-fed WT mice, specifically, 76% lower glucose

infusion rate (Ginf), 60% lower glucose disposal rate (GDR), and

76% higher hepatic glucose output rate (HGO) (Figure 4A–C).

12/15LO KO mice were completely protected from the severe

HFD-induced changes in Ginf, GDR, and HGO that we

observed in WT mice. There was no significant difference in

basal glucose turnover rate (basal HGO = basal GDR) between

the NC-fed WT (15.962.2 mg/kg/min) and 12/15LO KO mice

(16.061.9 mg/kg/min) or between the WT NC-fed and WT

HFD-fed mice (15.761.9 mg/kg/min). The clamp study data

indicate that 12/15LO deficiency provides protection from

HFD-induced hepatic and skeletal muscle insulin resistance.

HFD-fed 12/15LO KO mice did exhibit a similar fold increase

in eWAT mass but not hyperinsulinemia, compared to HFD-fed

WT mice (Table 1). To demonstrate that there was no direct

dependency between adiposity and insulin resistance in WT and

12/15LO KO mice, we normalized the GDR values to the fat

pad mass as a % of body weight. Figure 4D shows that, even after

this normalization, there remains a dramatically different insulin

sensitivity between WT and 12/15LO KO mice fed chow or

high-fat diet.

Diminished insulin-activated Akt phosphorylation in
muscle from HFD-fed WT compared to 12/15LO KO mice

In order to assess the effects of 12/15LO KO on insulin signal

transduction in skeletal muscle from mice fed HFD, we examined

acute insulin-activated Akt phosphorylation in a separate group of

mice. Serine-phosphorylation of Akt in muscle lysates (phospho-

Ser473 Akt normalized to total Akt protein) was determined by

western blot using primary antibodies for total Akt protein and

phospho-Ser473 Akt. As expected, acute insulin treatment induced

phosphorylation of Akt in both groups (Figure 5). However, the

absolute level of insulin-stimulated Akt phosphorylation and the

insulin-stimulated fold change in Akt phosphorylation were both

significantly greater, two- and three-fold, respectively, in 12/15LO

KO mice compared to WT mice. Because activation (phosphor-

ylation) of Akt is a critical early event in the insulin receptor

signaling, these data corroborate our in vivo results (Figure 4B)

demonstrating greater insulin sensitivity in the muscle of HFD-fed

12/15LO KO mice compared to WT mice.

Discussion

HFD-induced and obesity-related insulin resistance is associated

with chronic low grade inflammation in adipose tissue character-

ized by macrophage infiltration and elevation of inflammatory

cytokine expression. HFD-induced effects on adipose tissue

inflammation are initiated early in the course of high fat feeding

and are coincident with insulin resistance [5,6]. Although the

known biological roles of 12/15LO include regulating inflamma-

tion, a role for 12/15LO in the early development of HFD-

induced adipose tissue inflammation and/or whole body insulin

resistance has not been described. 12/15LO is expressed in all

vascular cell types, including endothelial cells, macrophages and

VSMCs, and its expression is elevated under inflammatory

conditions. Therefore, we hypothesized that 12/15LO might

regulate HFD-induced adipose tissue inflammation. Indeed, we

found that high fat feeding induced macrophage infiltration into

adipose tissue of WT but not 12/15LO KO mice, presumably, via

12/15LO-regulated chemokine secretion. The difference in

adipose tissue macrophage infiltration between HFD-fed WT

and 12/15LO KO mice corresponded with their difference in

Figure 2. FACS analysis of macrophage content in adipose tissue SVCs. A. HFD-induced fold change in the percent of live adipose tissue
SVCs expressing surface markers F4/80, CD11b, and both F4/80 and CD11b. SVCs were isolated from eWAT of mice fed NC, two-week HFD, or four-
week HFD. *p,0.05 vs WT NC,̂ p,0.05 vs WT two-week HFD, $p,0.05 vs WT four-week HFD.
doi:10.1371/journal.pone.0007250.g002
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Figure 3. Adipose tissue cytokine levels. Cytokine protein levels measured in eWAT lysates from WT (black bars) and 12/15LO KO (gray bars)
mice fed NC or two-week HFD. Values are mean6standard error. 8–10 animals per group. *p,0.05 vs diet-matched WT, #p,0.05 vs strain-matched
NC.
doi:10.1371/journal.pone.0007250.g003
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adipose tissue inflammatory cytokine elevation. In addition to

being protected from adipose tissue inflammation, HFD-fed 12/

15LO KO mice were also dramatically protected from hepatic

and skeletal muscle insulin resistance compared to HFD-fed WT

mice.

Adipose tissue macrophages are derived from circulating

monocytes that attach to and migrate through endothelial cells

(ECs) in the tissue microvasculature. 12/15LO expression and

activity is increased in atherogenic and hyperglycemic diabetes

models [12,36,44,45], conditions similar to the postprandial state

of non-diabetic, diet-induced insulin resistance in which case

hyperlipidemia and hyperglycemia are more pronounced and

sustained. In these model conditions, activated 12/15LO regulates

monocyte attachment to ECs in part by increasing expression

of adhesion molecule ICAM-1 on the surface of ECs via activation

of RhoA and NF-kB [12,36]. 12/15LO increases the expression of

chemokines MCP-1 and OPN (our data presented here and

[21,24,26]). Thus, 12/15LO-mediated regulation of chemoattrac-

tants and an adhesion receptor may account for the increased

monocyte infiltration into adipose tissue that we observed in HFD-

fed WT but not 12/15LO KO mice.

Both WT and 12/15LO KO mice exhibited an approximate

two-fold increase in eWAT mass during the two-week high fat

feeding period. Although HFD-induced eWAT expansion in 12/

15LO KO mice was somewhat blunted compared to WT mice,

the fold change in mass compared to NC-fed controls was

Figure 4. Characterization of whole body insulin sensitivity. Hyperinsulinemic euglycemic clamp studies were conducted to calculate
(A) Ginf, (B) GDR, (C) HGO, and (D) GDR normalized to fat pad mass as a percent of body weight in WT (black bars) and 12/15LO KO (gray bars) mice
fed NC or two-week HFD. Values are mean6standard error. 7–9 animals per group. *p,0.05 vs WT HFD, #p,0.05 vs WT NC.
doi:10.1371/journal.pone.0007250.g004

Table 1. Mouse strain characteristics.

WT 12/15-LO KO

NC HFD Fold Change NC HFD Fold Change

Whole body weight, g 26.4 (0.5) 31.2 (0.7) # 25.2 (0.9) 25.2 (0.8) *

Epididymal fat pad weight, g 0.32 (0.02) 0.78 (0.06) # 2.45 (0.20) 0.23 (0.01) 0.43 (0.06) #, * 1.89 (0.26), ns vs WT HFD

Epididymal fat pad mass, % body weight 1.20 (0.08) 2.49 (0.19) # 2.07 (0.16) 0.89 (0.04) 1.64 (0.18) #, * 1.84 (0.20), ns vs WT HFD

Fasting plasma glucose, mg/dL 160 (5) 174 (6) 177 (5) 202 (9) #, *

Fasting plasma insulin, ng/mL 0.51 (0.18) 2.28 (0.83) # 0.63 (0.22) 0.57 (0.18) *

Data are averages6standard error. 7–10 mice per group. * p,0.05 vs diet-matched WT, # p,0.05 vs strain-matched NC. ns - not significant.
doi:10.1371/journal.pone.0007250.t001
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statistically indistinguishable from that in WT mice. Despite

similar eWAT expansion, the number of macrophages and levels

of pro-inflammatory cytokines in eWAT from 12/15LO KO mice

were completely unchanged by HFD, and significantly different

from the elevated levels we observed in HFD-fed WT mice. Our

findings suggest that the proinflammatory effects of 12/15LO

expression observed by Nunemaker, et al. after 8 and 24 weeks of

HFD [30] in fact occur significantly earlier during the initial stages

of HFD-induced insulin resistance (2–4 weeks). Chakrabarti, et al.

have recently demonstrated that 12/15LO is up-regulated in

adipose tissue from high fat fed mice and that 12/15LO products

induce inflammation and insulin resistance in 3T3-L1 adipoctyes

[46]. HFD-induced elevation of eWAT cytokine levels could

originate from macrophages, adipocytes, endothelial cells and/or

preadipocytes within adipose tissue. We speculate that pro-

inflammatory macrophages and adipocytes are the most likely

sources of elevated eWAT cytokines in high fat diet-fed WT mice.

We used a two- and four-week high fat feeding protocol because

it significantly induces the phenotypes of insulin resistance and

adipose tissue hypertrophy and inflammation in WT mice without

causing the severe metabolic dysfunctions that manifest after

longer high fat feeding [4–8]. Mouse phenotypes induced by our

high fat feeding protocol were similar to those observed in other

time course studies of HFD-induced adipose tissue inflammation

and insulin resistance [4–6]. Two-week high fat feeding induced

hyperinsulinemia and severe hepatic and skeletal muscle insulin

resistance in WT but not 12/15LO KO mice. 12/15LO KO mice

exhibited significantly greater insulin-stimulated skeletal muscle

Akt phosphorylation after HFD, compared to WT mice,

corresponding to their greater insulin sensitivity. Given the

cross-talk between adipose tissue, liver, and skeletal muscle that

affects insulin sensitivity [1,47], protection from adipose tissue

inflammation in the 12/15LO KO mice may be the primary site

of action leading to protection from whole body insulin resistance.

In summary, we find that 12/15LO is a key modulator of the

onset of high fat diet-induced insulin resistance in liver, muscle and

adipose tissue. We provide evidence that the mechanism by which

the 12/15LO KO mice are protected from the initial stages of

HFD-induced insulin resistance involves suppression of adipose

tissue pro-inflammatory macrophage infiltration and inflammato-

ry cytokine elevation. 12/15LO is a key participant in the

development of diet-induced insulin resistance and, thus, a viable

therapeutic target for the treatment of human insulin resistance

and type 2 diabetes.
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