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Abstract

Background The safety assessment of foods and feeds from genetically modified (GM) crops includes the comparison of
key characteristics, such as crop composition, agronomic phenotype and observations from animal feeding studies compared
to conventional counterpart varieties that have a history of safe consumption, often including a near isogenic variety. The
comparative compositional analysis of GM crops has been based on targeted, validated, quantitative analytical methods for
the key food and feed nutrients and antinutrients for each crop, as identified by Organization of Economic Co-operation
and Development (OCED). As technologies for untargeted metabolomic methods have evolved, proposals have emerged for
their use to complement or replace targeted compositional analytical methods in regulatory risk assessments of GM crops
to increase the number of analyzed metabolites.

Aim of Review The technical opportunities, challenges and strategies of including untargeted metabolomics analysis in the
comparative safety assessment of GM crops are reviewed. The results from metabolomics studies of GM and conventional
crops published over the last eight years provide context to enable the discussion of whether metabolomics can materially
improve the risk assessment of food and feed from GM crops beyond that possible by the Codex-defined practices used
worldwide for more than 25 years.

Key Scientific Concepts of Review Published studies to date show that environmental and genetic factors affect plant metabo-
lomics profiles. In contrast, the plant biotechnology process used to make GM crops has little, if any consequence, unless the
inserted GM trait is intended to alter food or feed composition. The nutritional value and safety of food and feed from GM
crops is well informed by the quantitative, validated compositional methods for list of key analytes defined by crop-specific
OECD consensus documents. Untargeted metabolic profiling has yet to provide data that better informs the safety assess-
ment of GM crops than the already rigorous Codex-defined quantitative comparative assessment. Furthermore, technical
challenges limit the implementation of untargeted metabolomics for regulatory purposes: no single extraction method or
analytical technique captures the complete plant metabolome; a large percentage of metabolites features are unknown, requir-
ing additional research to understand if differences for such unknowns affect food/feed safety; and standardized methods are
needed to provide reproducible data over time and laboratories.

Keywords Crop safety assessment - Genetically modified crops - Untargeted metabolomics

1 Introduction

The 1975 Asilomar Conference on Recombinant DNA ini-
tiated a public discussion of the potential benefits and haz-
ards for the emerging field of molecular biotechnology (Berg
et al. 1975). Building from the Asilomar conference, in 1992
the US FDA conjectured, in the absence of direct experience
or data, that the process of making GM crops might induce
5< Mohamed Bedair inadvertent mutations that could, in turn, activate dormant

mohamed.bedair@bayer.com metabolic pathways (Kessler et al., 1992). Further speculat-
ing whether GM plants might gain an ability to make toxins
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or toxic intermediates as an unintended consequence of
recombinant DNA technology being applied to crop plants.
In 1993, the OECD developed a basis for assessing GM
crops by stating that there should be “...a reasonable cer-
tainty that no harm will result from intended uses under the
anticipated conditions of consumption...”(OECD, 1993). In
support of this principle, the OECD developed a series of
crop-specific guidance documents defining key analytes to
be assessed for each crop, based on food/feed safety and/or
nutritional perspectives. Subsequently, a number of guidance
documents and regulations were developed for GM crops to
evaluate both their safety for the environment and for food/
feed safety for human and animal consumption (Codex Ali-
mentarius 2009; EFSA 2006).

Since the first commercialization of GM crops in 1995,
the rapid adoption rates of GM crops reflect the value farm-
ers have derived from this technology (ISAAA, 2017). The
commercial production of GM crops uses multiple inter-
woven steps throughout the process to develop new varieties
that help ensure safety (Glenn et al. 2017; Herman et al.
2019). Therefore, it is noteworthy that 44 years after the
Asilomar conference attendees first debated the risks and
benefits of biotechnology, over 6000 peer-reviewed publi-
cations have not documented examples of unsafe effects of
commercialized GM crops. Globally from 1992 to 2017,
40 countries (including the EU 28, counted as one) have
granted 1,995 food approvals 1,338 feed approvals, and 800
cultivation approvals for 498 events of 29 crops (ISAAA,
2017). In each approval, the conclusion has been that, out-
side of the intended change from the GM trait(s), the GM
crop is “as safe as” the conventional varieties for that crop
species, with no findings of adverse unintended changes
resulting from the use of biotechnology to improve plants.
Importantly, a recent meta-analysis of publications over the
past 21 years with GM maize documented increased yields
accompanied by reductions in dangerous food contamina-
tion, such as mycotoxins, fumonisin, and trichothecenes.
(Pellegrino et al. 2018).

To assess the safety and nutritional value of foods and
feeds from GM crops, a comparative process is followed
in which the composition of the GM crop is compared to a
near isogenic conventional counterpart (Codex Alimentarius
2009; Paoletti et al. 2008; Prado et al. 2014; Privalle et al.
2012). The specific compositional components assessed
in these comparative studies are defined by crop-specific
OECD consensus documents that identify the critical food
and feed nutritional and anti-nutritional components that
need to be quantified. The OECD recommended compo-
nents include crop macronutrients and micronutrients and
comprise greater than 95% dry matter of the crop composi-
tion (Chassy 2010). These comparative composition studies
are used to assess whether levels of nutritionally important
components and/or components that can affect the safety
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of the food and feed have not been altered in a manner that
would adversely impact human or animal health.

The compositional studies are conducted using targeted
analytical methods that are validated for accuracy and preci-
sion and performed under good laboratory practices (GLP)
for each specific crop and tissue matrix analyzed. This tar-
geted analysis approach ensures the accuracy and reproduc-
ibility of the quantitation of all nutrients and anti-nutrients to
provide regulatory agencies with the data required to ensure
a safe and nutritious food and feed supply. The data from
crop composition studies have repeatedly shown that the GM
varieties selected for commercialization are compositionally
equivalent to their conventional counterpart (Curran et al.
2015; Herman and Price 2013; Ladics et al. 2015a, b; Par-
rott et al. 2012; Ricroch 2013; Venkatesh et al. 2014, 2015;
Xu et al. 2014). The exceptions are a few cases where the
desired trait is an intentional change in composition, such as
improved nutrition (Chassy et al. 2008).

Omics (e.g., genomics, transcriptomics, proteomics,
metabolomics) refers to profiling technologies that aim to
characterize biological systems holistically. Advances in
genomics and transcriptomics currently provide high cov-
erage of biological systems, however gene sequence and
gene expression data are distal from endpoint phenotypes
and, therefore are distant from affecting the levels of nutri-
ents, antinutrients and other factors that contribute to food
and feed quality and safety. Proteomics and metabolomics
are closer to such endpoint phenotypes, but the diversity
of physicochemical properties of the molecules within the
proteome and metabolome fundamentally limit the ability
of analytical methods to provide full coverage for complex
biological systems such as crop plants. Metabolomics com-
bines analytical chemistry with bioinformatics to attempt to
comprehensively characterize the small molecules of bio-
logical systems. The main metabolomic analytical platforms
are mass spectrometry (MS) and nuclear magnetic resonance
(NMR). MS is typically more sensitive and provides more
coverage of the metabolome than NMR. MS methods are
usually combined with a separation technique, such as liquid
chromatography (LC), gas chromatography (GC) or capil-
lary electrophoresis (CE), depending on the class of small
molecules of interest to be analyzed. However, no single
analytical platform and separation technique can comprehen-
sively characterize the full metabolome. Nonetheless, with
the continuous development of highly sensitive analytical
instruments and improved bioinformatic tools, calls for the
use of metabolomics for compositional analysis of GM crops
are proposed in order to comparatively assess more metabo-
lites than outlined by the OECD consensus documents (Agu-
ilera et al. 2018; Christ et al. 2018NAS, 2016).

This review provides an overview of: (1) the learnings
to date from metabolomics studies of GM and conven-
tional crops; (2) the technical opportunities, challenges and
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strategies facing implementation of metabolomic analyti-
cal tools for GM crop safety assessments; and (3) whether
metabolomics can better inform the safety and nutritional
assessment of GM crops than the quantitative and vali-
dated compositional analytical methods used for more than
20 years as defined by the Codex and OECD guidelines.

1.1 What have we learned from metabolomics
studies of GM and conventional crops?

Results from both targeted and untargeted omics technolo-
gies have been published that assess the environmental
safety and safety of food and feed from GM crops, with
reviews summarizing their findings (Ricroch 2013; Ricroch
etal. 2011). These reviews summarize 60 omics studies that
compared GM to conventional varieties in eight major crops.
One key conclusion of these reviews is that conventional
breeding and environmental factors have a greater impact on
the endpoints measured by the various omics methods (e.g.,
transcriptomics, proteomics, metabolomics) than from the
use of modern genetic modification methods to introduce
new traits into crops. A review of the challenges of using
omics in food safety assessments of GM crops concluded
that untargeted metabolic profiling is unlikely to provide
interpretable data that would enhance the already rigorously
quantitative comparative assessment of GM crops (Harrigan
and Chassy 2012).

As additional studies are published, the results reported
in many publications continue to support the conclusion
that the effect of trait insertion on the metabolomics of GM
crops is small compared to the effect of naturally occur-
ring factors associated with the cultivation, environmental
and/or genetic changes arising from conventional breeding
practices (Table 1). Environmental factors, such as planting
location and season, had a greater impact on the metabo-
lome than genetic background, and the environmental effect
was more pronounced with forages than grain (Asiago et al.
2012; Baniasadi et al. 2014; Chang et al. 2012; Chen et al.
2016; Frank et al. 2012; Tang et al. 2017).

Several recent publications have also demonstrated that
experimental design affects the interpretability of metabo-
lomics studies. The results from the studies listed in Table 2
are difficult to interpret due to limitations in one or more
study design aspects: (1) not using validated and/or suitably
replicated test materials (e.g., samples from single, non-
replicated growing conditions), (2) test samples that do not
align with the intended topic of investigation (e.g., food/feed
safety inquiries that analyze non-consumed plant tissues),
and/or (3) lack of data to characterize natural variability of
the components that were analyzed.

Two studies in Table 2 warrant additional discussion of
their results. One of these studies reported that two plant
endogenous metabolites, aminoadipate and tryptophan, are

acetylated in GM plants with the Bialoaphos resistance gene
(bar), conferring resistant to the broad-spectrum herbicide
glufosinate (Christ et al. 2017). However, the results of this
metabolomics study are not unexpected since BAR confers
glufosinate resistance to plants through its acetylation func-
tionality. The authors reported in the supplemental informa-
tion that the levels of acetylated tryptophan were around
0.25 and 0.1 nmole/g fresh weight for GM soybean seed
and wild type soybean seed respectively. Those values are
four orders of magnitude lower than free tryptophan values
reported in wildtype soybean seeds (Ishimoto et al. 2010;
Kita et al. 2010). Importantly, GM crops with glufosinate
resistance have been through extensive regulatory review
over decades (ILSI-CERA 2011) and regulatory agencies
have consistently concluded that this GM crops are as safe as
conventional crops. Therefore, although this metabolomics
study detected these two acetylated metabolites in the GM
crop seed that was not present in the conventional compara-
tor, the presence of those trace metabolites did not confer
anything that was determined to be unsafe to food and feed
from these glufosinate-resistant crops.

The second study in Table 2 that warrants further discus-
sion is related to the lack of experimental details in the study
prompted publication of secondary assessments of their
results and conclusions. In 2016, a multi-omics analysis of
the NK603 glyphosate-tolerant GM maize was published
in which the authors claimed that NK603 was substantially
non-equivalent to its conventional comparator, thereby chal-
lenging the many regulatory agency reviews of this GM vari-
ety that had concluded that it was “as safe as” conventional
maize (Mesnage et al. 2016). Scientists independent of the
publication’s authors reviewed the design of this study to
better understand the seeming disconnect between its con-
clusions compared to regulatory agency conclusions (EFSA
et al. 2017; Eriksson et al. 2018). These scientists concluded
that the conclusions of Mesnage et al. were not supported
by their results due to several factors: (1) lack of replication
of grain samples that were analyzed, (2) lack of informa-
tion on the genetic relatedness between the GM line and the
non-GM comparator, and (3) lack of data to characterize
natural variability of the components that were analyzed.
Therefore, any differences that they detected may have been
due to environmental or genetic differences.

2 What is needed for metabolomics to be
ready for risk assessments of GM crops?

As a biomarker discovery tool, metabolomic studies (and
other omics studies) and their related statistical analysis
strategies are constructed to detect potential differences
between a test group and an appropriate comparator to facili-
tate discovery of metabolic genes and pathways pivotal to

@ Springer
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their respective parental lines were fewer than those
observed between samples of conventional varieties
collected from plants cultivated in different envi-
ronments (e.g., different Chinese provinces)

from various labs

TOF-MS based
Metabolomics

glyphosate tolerance

GM maize, single and

stacked

Data analysis: HCA

key biological processes (e.g., improved crop yield, plant,
animal and human diseases) (Ren et al. 2015). Therefore, for
discovery purposes, metabolomic studies are a good start-
ing point for additional research to understand whether any
detected differences are of sufficient biological significance
to warrant further study. By comparison, scientific studies
that support regulatory safety assessments and approvals of
new products (e.g., GM crops, pharmaceuticals) are the final
research studies needed to evaluate the efficacy and safety
of the new product before that product can be commercially
released for public use.

Regulatory studies, therefore, must reliably characterize
biological endpoints critical to ensuring that the product
achieves the intended outcomes while assuring that unsafe
changes have not been inadvertently introduced (Codex
Alimentarius 2009; EFSA 2006). Regulatory agencies have
rigorous experimental criteria for data derived from stud-
ies used for safety assessment purposes (e.g., US FDA and
EPA Good Laboratory Practices, ISO 9000). For regulatory
assessments of GM crop safety, a comparative assessment
process has been used for more than 25 years (Codex Ali-
mentarius 2009; EFSA 2006). The goal of this compara-
tive assessment is to determine whether components of a
GM crop measured by validated analytical methods are
statistically different from near isogenic controls that have
a history of safe use. One fundamental feature to this com-
parative assessment is determining whether any detected
differences are outside natural variation observed with con-
ventional crops. Also critical is establishing whether any
detected change(s) would affect food and feed safety. From
1992 to 2017, 40 countries (including the EU 28, counted
as one) have given 1,995 food approvals 1338 feed approv-
als, and 800 cultivation approvals for 498 events of 29 crops
(ISAAA, 2017). It is noteworthy that no approved GM crop
has caused any adverse environmental or human/animal
health occurrence (ISAAA, 2017; NAS, 2016). Given this
robust track record, if metabolomic studies were to be added
to GM safety assessments, it would be advisable to use the
same experimental criteria in order for them to meet the
rigorous end-point requirements for regulatory safety assess-
ment purposes.

2.1 Tools to interpret metabolomics data for GM
comparative safety assessments

One key hurdle to using data from omics studies with GM
crops, including metabolomics, is the difficulty to assess
whether there is any impact on safety in the observed dif-
ferences amongst the 1000’ s of signals characterized by
the untargeted profiling method(s). In 2014, a proposal
was published to use a one-class SIMCA (Soft Independ-
ent Modelling of Class Analogies) model to quantify omic
comparisons (van Dijk et al. 2014). A multivariate one-class
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classification model was built using transcriptomic profiles
of six commercial potato varieties with a history of safe use.
The profile of a new test variety would either fall inside the
model and be regarded as “similar” to the reference varieties
considered as “safe”, or outside the model and be regarded
as “different” from the reference varieties, resulting in the
need for further safety assessment.

The one-class SIMCA model was recently revised using
transcriptomic and metabolomic profiles of a larger set of
potato varieties including commercial conventional varie-
ties, experimental varieties and one GM variety (Kok et al.
2019). This study was part of the European GRACE (GMO
Risk Assessment and Communication of Evidence) project
in which the central objective was to evaluate all aspects of
the current EFSA GMO risk assessment procedures. Using
the statistical model, the GM variety was found to be “as
similar as” the conventional varieties, having no detected
differences. The authors submit that this one-class classi-
fication model is a more useful tool to assess any potential
unintended effects in GM crops compared to the current sta-
tistical model assessing both differences and equivalence
of GM crops used results from targeted compositional
analyses. The authors also cite the metabolomic analysis
as being more holistic than the targeted compositional end
points recommended by OECD consensus documents for
each crop. However, the authors suggest that metabolomic
studies with the one-class SIMCA model might be used in
a tiered approach where only GM varieties shown to be dif-
ferent from conventional varieties by the current targeted
compositional analyses would be subjected to assessment
by this one-class omics method.

One proposed advantage to a tiered approach is that it
could reduce the need for animal feeding trials with whole
foods that are currently an obligatory part of the risk assess-
ment process in Europe, since it is perceived that “omics”
analysis provides a more comprehensive assessment of
the GM variety for unintended changes than is possible by
targeted analyses (Kok et al. 2019). Moreover, it has also
been claimed that omics techniques are more sensitive than
the 90-day animal feeding studies with whole foods/feeds
(Corujo et al. 2019). This claim is from a study using the
one-class model with results from transcriptomic, proteomic
and metabolomic analysis of grain samples from two insect
resistant MON 810 maize varieties compared to their near
isolines and compared to several other conventional refer-
ence maize varieties. The grain samples used in this study
had limited representation of natural variation because they
were derived from the GRACE 90-day feeding trials that
had involved six conventional maize varieties planted at a
single location (Zeljenkova et al. 2014). Data were analyzed
either by direct comparison of the GM to the conventional
materials or by the one-class SIMCA model. Although the
threshold for acceptance or rejection for the GM tested

variety within the model is unclear, the observed differ-
ences between GM and their isolines did not exceed differ-
ences typically observed between conventional varieties. It
is important to observe, therefore, that the outcome of using
the one-model SIMCA analysis of untargeted omics results
was no different than the outcome of the targeted composi-
tional assessment of MON 810 grain based on the analytes
defined for maize by the OECD that showed that MON 810
was as safe and nutritious as conventional varieties prior to
commercialization in the EU and elsewhere (Sanders et al.
1998).

Beyond the observation mentioned above that the one-
class model with metabolomics data does not provide
insights different from standard statistical analysis of
results from targeted compositional studies, two additional
scientific questions need to be answered prior to consider-
ing implementation of the one-class model metabolomics
method. First, can the model identify the metabolomic sig-
nals responsible for rejecting a GM variety from the safe
classification for further follow-up studies? That would be
essential to enable follow-up on whether these noted metab-
olite differences affect the safety of food/feed from the GM
variety. This is critical since most metabolomic studies
of crops (Ricroch 2013; Ricroch et al. 2011) and Table 1
have shown that most observed differences are the result of
natural environmental factors and yet food and feed have
a history of safe consumption, regardless of where it was
produced. Second, would a model be constructed for each
GM study from commercial varieties grown in the same con-
ditions as the GM and its isogeneic control? Constructing
a model for each experiment, “self-contained” model, will
allow each new study to take advantage of the continuous
development in instrumentation and data processing tech-
nologies. However, it will provide only a snap shot of the
natural variability captured within each study. If the model is
adapted to allow cumulative acquisition of data from “safe”
varieties over time, this allows a better representation of
natural variability of metabolites captured over multiple
years and environments. However, the downside to a cumu-
lative acquisition model is that the methods would need to
be locked and would, therefore, lose the ability to integrate
new technologies as they are developed.

A similar approach for interpreting metabolomics data
for GM comparative risk assessments would be to build crop
specific metabolomics databases constructed from conven-
tional varieties with a history of safe use to represent the
natural variability of metabolites over different cultivation
environments. Differences detected between the GM variety
and its near isogenic variety would be evaluated in the con-
text of the natural variability represented in the crop-specific
metabolomics database to establish whether any observed
differences are outside of the natural variation currently
part of the history of safe consumption of foods/feeds from
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crops. Building such a crop-specific database would require
establishing globally accepted standard method(s) and would
possibly be needed to be constructed under good laboratory
practice (GLP) or ISO protocols for quality assurance. Chal-
lenges to construct such a method will be discussed in the
following section.

2.2 Challenges with a metabolomics method
that captures the diversity of the plant
metabolome

A single plant species is estimated to produce tens of thou-
sands of metabolites, far more than those produced by most
other organisms (Fang et al. 2019; Kessler and Kalske 2018).
Those metabolites are present at a wide range of concen-
trations and are produced at different developmental stages
and in a diversity of tissues or as a response to biotic and
abiotic environmental stress. No single extraction method or
analytical technique can capture the complete metabolome
of a plant because of the physiochemical diversity of their
metabolites (e.g., aqueous solubility, degree of ionization,
degree of electronegativity, volatility, stability, molecular
size/complexity). Multiple extraction systems and ana-
lytical platforms are required to approximate full coverage
of the metabolome. Attempting 100% coverage would be
technically impractical, regardless of the array of methods
employed. The analytical platforms used in metabolomics
analyses are either based on MS or NMR, with MS being
more sensitive than NMR and often coupled with a separa-
tion method to increase metabolite coverage and reduce ion
suppression.

Sample quenching that stops metabolic activity to pre-
serve the array of metabolites at the time of collection plus
the extraction conditions has a great effect on enriching
certain classes of metabolites and their stability during
extraction (Lu et al. 2017). Lipids and highly hydrophobic
compounds are usually extracted in organic solvent, while
many other secondary metabolites are extracted in aqueous
methanol or aqueous acetonitrile solutions. Primary metabo-
lites are more polar and are usually extracted with aqueous
solutions. Other components of plants that are either storage
(e.g., starch) or structural (e.g., cellulose, lignin) materials
are hard to extract or unextractable, yet they constitute a con-
siderable amount of the overall mass of a plant and require
targeted methods for analysis.

Untargeted metabolomics data are highly dependent
on the acquisition platform, whether LC-MS, GC-MS or
CE-MS as well as the high-resolution mass analyzer used.
Each acquisition platform is most suitable for a specific class
of metabolites. No single analytical technique will be able to
cover the breadth of the plant metabolome. Alternatively, a
targeted metabolomics approach would be more applicable
when a class of metabolites or a specific pathway of interest

@ Springer

is investigated due to the mode of action of the inserted GM
gene. Furthermore, targeted metabolomics is a semi-quanti-
tative technique and can be standardized across acquisition
platforms using standard substances compared to the relative
quantitative untargeted metabolomics.

It is worth noting that the quantitative, validated compo-
sitional methods for analytes defined by crop-specific OECD
consensus documents already well inform the nutritional
quality and safety of food/feed from each crop. Adding more
metabolites to comparisons of GM to conventional crops
does not necessarily add information that better informs the
safety assessment since the OECD documents are based on
close examination of the components of each crop that con-
tribute to food and feed safety and nutrition, often derived
from millennia of human experience with the crop. In addi-
tion, many of the important end points identified by the
OECD are not captured by metabolomic profiling, such as
proximate, minerals and fiber analysis.

2.3 Standardization of the metabolomics method

The metabolomics standards initiative (MSI) was intro-
duced in 2007 to align on the minimal reporting standards
for a metabolomics study including the plant biology context
and parameters for chemical analysis (Fiehn et al., 2007a, b;
Sumner et al. 2007). For example, a minimum set of report-
ing standards for metabolite identification have been pro-
posed (Sumner et al. 2007) and include four categories: (A)
Confident identifications are based upon a minimum of two
different pieces of confirmatory data relative to an authentic
standard. (B) Putatively annotated compounds based upon
physicochemical properties and/or spectral similarity with
public/commercial spectral libraries. (C) Putatively charac-
terized compound classes based upon characteristic phys-
icochemical properties of a chemical class of compounds,
or by spectral similarity to known compounds of a chemical
class. (D) Unknown compounds.

Driven by the progress in clinical metabolomics, quality
control and quality assurance measures proposed for untar-
geted metabolomics studies have been recently discussed
(Beger et al. 2019; Broadhurst et al. 2018; Dudzik et al.
2018). QC samples and QC blanks can be used for system
suitability to monitor the performance of the metabolomics
workflow and ensure that high quality data is collected. Use
of multiple internal standards and pooled QC samples can
help compensate for intra-study bias and drifts in instrument
response. An international interlaboratory ring trial for tar-
geted metabolomics and lipidomics heighted the importance
of using system suitability and quality controls to understand
and control variability of targeted mass spectrometry-based
metabolomics (Thompson et al. 2019).

Development of a global standard for reference materials
for inter-study and inter-laboratories comparison is required
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to compare data sets between experiments. Furthermore,
these global standards will help to address the need to under-
stand natural variability of metabolites assessed by untar-
geted metabolomic studies. It is noteworthy that the majority
of signals in a typical MS-based metabolomics study are
for unknown metabolites. Therefore, having standardized
methods will help to determine the range of variability for
these unknowns to identify when a specific new variety, such
as a new GM crop, might have levels of the metabolite that
are outside of the natural range. Even with such information,
however, it will be difficult to assess the food/feed safety risk
that might be associated with unknown metabolites unless
efforts and resources are allocated to identify the unknown.
Furthermore, since data generated using standardized meth-
ods needs to be reproducible over time and laboratories,
the studies might be best if conducted under GLP or ISO
standards. Therefore, initiatives are needed to align global
standardized workflows for sample processing, data acquisi-
tion and data processing for the many available hyphenated
analytical platforms manufactured by multiple vendors.
Structural elucidation of small molecules continues to be
one of the major challenges in untargeted mass-based metab-
olomics studies. Although significant progress had been
made in instrumentation development and software com-
putation capabilities (Barupal et al. 2018; Dias et al. 2016;
Viant et al. 2017), this challenge still limits the interpreta-
tion of metabolomics data to understand complex biological
systems, to map metabolites to specific pathways, and to
predict metabolic perturbation. An active area of research
is the development of spectral databases and software tools
to annotate unknown compounds by searching available
tandem MS databases (Blazenovic et al. 2018; Vaniya and
Fiehn 2015). Several metabolomics spectral databases are
available to assist in metabolite identifications. Examples are
the Human Metabolome Database (Wishart et al. 2018), The
Metabolomics Workbench (Sud et al. 2016), GOLM Metab-
olome database (Fernie et al. 2004), the Plant Natural Prod-
uct Library (Lei et al. 2015), the FiehnLib (Kind et al. 2009)
and the KNApSAck Family Database (Afendi et al. 2012).
The confidence in MS/MS-based annotation is impacted by
the parameters of instrumental data acquisitions, data pro-
cessing and library scoring algorithms (Kind et al. 2018).
Another approach is to annotate unknown compounds by
in silico fragmentation of existing structure databases using
quantum chemistry and machine learning methods.

3 Conclusion

The process of developing a GM crop includes extensive
molecular characterization to ensure that only a single copy
of an intact DNA is inserted in the genome and without dis-
ruption of endogenous genes. After a GM event containing

the desired DNA insert is chosen, the DNA insert is intro-
duced into well-characterized, conventionally bred elite
varieties through multiple backcrossing steps. The resulting
offspring will theoretically contain > 99% of the DNA from
the elite parent and < 1% from the GM event, which will
then undergo extensive phenotypic characterizations and
safety assessments prior to commercialization as required
by global regulatory authorities (Glenn et al. 2017). There-
fore, it is highly unlikely that, even if an unintended change
has occurred from the plant transformation process, this
unintended DNA change is present in the genome of a com-
mercialized GM crop. Nevertheless, Codex and regulatory
requirements are in place largely to assess the safety of food
and feed from GM crops with both the intended change and
the possible presence of such unintended changes.

The Codex Guidelines to assess the safety and nutritional
quality of foods and feeds from GM crops is because no food
or feed has absolute safety. Therefore, a comparative process
is followed in which the composition of the GM crop is com-
pared to a near isogenic conventional counterpart (Codex
Alimentarius 2009; Paoletti et al. 2008; Prado et al. 2014;
Privalle et al. 2012). Over 25 years, no examples of unsafe
unintended alterations have been documented for GM crops.
For example, livestock animals consume 70 to 90% of GM
crop biomass globally, and in the USA, billions of animals
have been eating GM feed for over two decades (Van Eenen-
naam and Young 2014). As reviewed, animal productivity
data over the time in which GM crops have been adopted in
the USA as the predominant source of feedstuffs for com-
mercial livestock populations has not revealed any unfavora-
ble or perturbed trends in livestock productivity. This review
notes, for example, that more than 95 billion broiler chickens
were raised in the US from 2000-2011, with nearly 100%
of their diet (excludes vitamin and mineral supplements)
coming from feed from GM crops (maize and soybean), and
yet no adverse consequences have been documented by US
regulatory agencies that oversee animal agriculture. The vast
level of real-world experience with consumption of foods
from GM crops is consistent with the lack of any observed
effects in laboratory-scale animal feeding studies, includ-
ing sub-chronic and chronic feeding studies funded by the
European Commission such as GRACE (GMO Risk Assess-
ment and Communication of Evidence) (Zeljenkova et al.
2016, 2014) and G-TwYST (GM Plant 2 Year Safety Test-
ing) (Steinberg et al. 2019). Numerous long-term and multi-
generation feeding studies with various livestock animals
have consistently demonstrated healthy animal growth and
reproduction, results that confirms Codex-defined assess-
ment of the safety of foods/feeds from GM crops. Many
of those feeding studies are reviewed by (Flachowsky and
Reuter 2017; Snell et al. 2012).

In the current state, there are major hurdles ahead of
utilizing untargeted metabolomics in regulatory safety
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assessments and thus are not considered useful in the risk
assessment of GM crops or gene-edited crops (Delaney
et al. 2019; Fedorova and Herman 2020). For hypothesis
driven risk assessment, quantitative crop-specific targeted
compositional analysis (Codex Alimentarius 2009; EFSA
2006) is central to safety reviews of food and feed from GM
crops. For GM crops with traits known to modify meta-
bolic pathways, targeted quantitative metabolomics could
provide additional useful information for safety and nutri-
tional assessment (Chassy et al. 2008). However untargeted
metabolomics, by definition, are not hypothesis driven and
are best suited for discovery research purposes. Moreover,
the perception that untargeted metabolomic methods pro-
vide comprehensive analysis of all classes of metabolites is
not supported by the current state-of-the-art. As reviewed,
most untargeted metabolomics studies use multiple ana-
lytical methods to assess different classes of metabolites.
Furthermore, assessing the differences found by untargeted
metabolomics studies comparing GM crops to their near iso-
genic conventional counterpart varieties has several tech-
nical hurdles to overcome. First, since metabolomic stud-
ies have shown that environment and conventional plant
genetics significantly affect the metabolome of plants, it is
critical to adequately characterize the natural variability of
metabolites prior to being able to interpret any observed
differences between a GM variety and its conventional
counterpart. Second, tools, such as the “one class” statisti-
cal model discussed above to analyze the copious amounts
of metabolomics data from such studies, have not been fully
developed or tested to implement in food and feed safety
studies. Third, since currently there is no body of knowledge
that represents the natural variability of crop metabolomics,
generating such data will require the development of stand-
ardized methods. The efforts by the clinical metabolomics
community have shown that developing standardized meth-
ods is currently still far from reach. Finally, structural iden-
tification of metabolites by metabolomic studies remains one
of the major challenges in the field. Given most published
metabolomic studies to date are doing well to have at most
50% of the acquired signals being putatively identified, this
indicates that metabolomics techniques are not yet appropri-
ate for utilization for GM crop food and feed safety studies
since it would be impossible to know if any of the observed
differences for unknown metabolites have any relationship
to the nutritional or safety of food/feed from the GM crop.

This weight of evidence indicates that unintended effects
of GM crops on feed and food has not been shown to be
a concern. Nevertheless, calls to use metabolomics for
supplementing compositional analyses of GM crops to
assess “potential unintended effects” are promoted though
unfounded concern that genetic modification will somehow
give rise to unsafe food or feed products.
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