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A B S T R A C T

Our understanding of the antiviral actions of IFIT1, one of the most strongly induced interferon

stimulated genes (ISGs), has advanced remarkably within the last few years. This review focuses on the

recent cellular, biochemical, and structural discoveries that have provided new insight as to how IFIT1

functions as both a sensor and effector molecule of the cellular innate immune system. IFIT1 can detect

viral RNA lacking 20-O methylation on their cap structures or displaying a 50-triphosphate moiety and

inhibit their translation or sequester them from active replication. Because of these inhibitory actions,

many viruses have evolved unique mechanisms to evade IFIT1 to facilitate replication, spread of

infection, and disease pathogenesis.
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1. Introduction

After virus infection, most mammalian cells develop an
antiviral response that is triggered by detection of pathogen-
associated molecular patterns (PAMPs), including single-stranded
and double-stranded viral nucleic acids. Viral PAMPs are detected
by specific host pattern recognition receptors (PRRs) including
Toll-like receptors (TLR3, TLR7, TLR8 and TLR9), RIG-I-like
receptors (MDA5 and RIG-I) and DNA sensors (cGAS, DAI, IFI16,
Abbreviations: IFN, interferon; ISG, interferon-stimulated gene; IFIT, interferon-

induced protein with tetratricopeptide repeats; PAMP, pathogen-associated

molecular pattern; PRR, pathogen recognition receptor; TLR, toll-like receptor;

IFNAR, interferon a/b receptor; TPR, tetratricopeptide repeat; IRF, interferon

regulatory factor; ISRE, interferon stimulated response element; VSV, vesicular

stomatitis virus; IAV, influenza A virus; EMSA, electrophoretic mobility shift assay;

WNV, West Nile virus; JEV, Japanese encephalitis virus; DENV, dengue virus; SARS-

CoV, Severe acute respiratory syndrome coronavirus; eiF4, eukaryotic initiation

factor 4; HCV, hepatitis C virus; RVFV, Rift Valley Fever virus; 50-ppp, 50-
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DHX9, and DHX36) in the endosome and within the cytoplasm
[1–3]. Binding of viral PAMPs to PRRs triggers signaling pathways
that induce the expression of virus-responsive genes and antiviral
cytokines (e.g., type I interferon (IFN)), which limit virus replication
and shape adaptive immunity.

Type I IFNs comprise a family of functionally and genetically
related cytokines, with IFNa and IFNb the most extensively
studied [4]. Type I IFN signaling is mediated through the
heterodimeric IFNa/b receptor (IFNAR), which is composed of
IFNAR1 and IFNAR2 subunits [5]. Signal transduction following the
binding of type I IFN to IFNAR occurs via Janus kinase (JAK) and
Signal transducer and activator of transcription (STAT) proteins
and results in nuclear translocation of the transcription factor
complex IFN-stimulated gene factor 3 (ISGF3, which is comprised
of IFN regulatory factor 9 (IRF9) and phoshorylated STAT1 and
STAT2), and induction of hundreds [6–9] of different IFN-
stimulated genes (ISGs). These ISGs encode distinct proteins with
diverse biological functions that block multiple stages of the viral
lifecycle including entry, translation, replication, assembly and
spread. Additionally, some ISGs have immunomodulatory activity
including effects on leukocyte recruitment and priming of adaptive
immunity.

Until recently, most effort was focused on defining the
mechanism of action of a very limited number of antiviral ISGs

http://crossmark.crossref.org/dialog/?doi=10.1016/j.cytogfr.2014.05.002&domain=pdf
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with well-established antiviral phenotypes (e.g., PKR, RNAse L,
Mx1, and OAS). Recent ectopic expression and gene silencing
screens [9–13] have identified many novel antiviral ISGs with
inhibitory activity against different families of RNA and
DNA viruses (reviewed in [14,15]). Here, I describe the advances
in our understanding of the broad-spectrum antiviral activity of
one ISG, IFIT1, and how it functions both as a sensor and effector
molecule to inhibit the disease pathogenesis of several virus
families.

2. IFIT1 is a member of a family of inhibitory ISGs

2.1. IFIT1 gene family

IFIT1 is a member of a family of related genes that arose by
gene duplication and are induced after type I IFN treatment
or viral infection [16]. Four IFIT family members have been
characterized extensively in humans (IFIT1 (also known as ISG56),
IFIT2 (ISG54), IFIT3 (ISG60) and IFIT5 (ISG58)) and are localized to
chromosome 10q23. Three members are expressed in mice: Ifit1

(Isg56), Ifit2 (Isg54), Ifit3 (Isg49) and are located on chromosome
19qC1. Additional less characterized yet highly related IFIT genes
(IFIT1B (human) and Ifit1b, Ifit1c and Ifit3b (mouse)) in syntenic
regions of the chromosome exist, although their functional
significance remain undefined. A non-transcribed IFIT1-related
pseudogene is present on human chromosome 13 [17]. IFIT
genes share a similar genomic structure with most composed of
two exons, with the second exon containing the vast majority
of the coding sequence. IFIT1 gene homologs exist in other
mammalian species as well as birds, fish and amphibians
(reviewed in [18]).

IFIT1 proteins localize within the cytoplasm and lack any
enzymatic domains or activity. They contain multiple tetratrico-
peptide repeats (TPR); this motif is composed of 34 amino acids
that adopt a helix–turn–helix structure and mediate protein–
protein interactions. Proteins containing TPR motifs regulate the
cell cycle, transcription, protein transport, and protein folding [19].
Different IFIT family members have distinct numbers and
arrangements of TPR motifs (Fig. 2B), which likely dictate unique
functions; for example, IFIT1 has six and IFIT2 has four. Human and
mouse IFIT1 share a sequence identity of 53% at the amino acid
level, and have varied relatedness (�38–57%) to other IFIT
homologs within a given species. Although the sequence similarity
between the different IFIT proteins within a species is high [18],
their distinct effects on replication of individual viruses suggest
they serve non-redundant functions in the host response to viral
infections [20–22].

2.2. Expression pattern of IFIT proteins

Although most cell types do not express IFIT proteins under
basal conditions, they are induced rapidly and to high levels in
many cells following virus infection [23]. This expression pattern
is determined in part by the upstream promoter regions of IFIT
genes, which contain IFN-stimulated response elements (ISRE)
[24–26]. Ifit1 and Ifit2 are induced within two hours of exogenous
IFNa treatment [25]. In some cells, subsets of IFIT genes are
induced selectively after stimulation with type I IFN or viral
infection [27]. Cell-type and tissue-specific kinetics of expression
of individual IFIT genes [20,21,28,29] may contribute to the
distinctive antiviral functions that have been observed in vivo

[22,30–33].
IFIT gene expression also can be triggered independently of

type I IFN, through signals generated directly after the ligation
of PRRs (such as TLR3, TLR4, MDA5, RIG-I, and cGAS) by PAMPs
(such as double-stranded RNA, DNA, and lipopolysaccharide
(LPS)). IFIT genes were described as viral stress-inducible genes
[23] and are induced at the transcriptional level directly by IRF3
[34,35], which is activated soon after viral infection (via a MAVS
or STING-dependent signal), often prior to the induction of type I
IFN. Other IRF proteins (such as IRF1, IRF5, and IRF7) can induce
the expression of IFIT genes directly [36,37], although these
pathways remain less well defined. Some IFIT genes, including
human IFIT1B, lack ISRE-containing promoters and presumably
are not induced by type I IFN or IRF-dependent signals [38].
Human IFIT genes also are induced by retinoic acid [39], though
the kinetics are slower and might be regulated by IFNa induction
[37].

2.3. Structure and RNA binding activity of IFIT proteins

Although an atomic structure of a full-length mouse or human
IFIT1 has not been described, four studies have reported high-
resolution X-ray crystallographic structures of other IFIT family
members, including human IFIT2 [40] and IFIT5 [41–43]. In the
2.8 Å resolution IFIT2 structure, monomers of IFIT2 had nine TPR
motifs and formed domain-swapped homodimers. IFIT2 had an
extensively positively charged C-terminal region that supported
RNA binding with or without 50 triphosphorylation (50-ppp) [40].
Mutation or deletion of charged residues in this region that altered
RNA binding to IFIT2 negatively affected antiviral activity against
Newcastle disease and Sendai viruses when these IFIT2 variants
were expressed ectopically in 293T cells [40]. This study also
suggested that IFIT2 binds to RNA containing adenylate uridylate
(AU)-rich elements. These are found in mRNA of some genes that
encode cytokines or apoptotic factors and their targeting could
contribute to how IFIT2 regulates inflammatory responses
[44,45].

Abbas et al. described the crystal structures of IFIT5 alone or in
complex with 50-ppp RNA as well as a separate structure of the N-
terminal, protease resistant fragment (amino acid residues 10–
279) of human IFIT1 [41]. In IFIT5, 18 of its 24 a-helices form
canonical TPRs with the remaining helices intervening between
TPRs. This results in the formation of three distinct bundles of TPRs
oriented in a V-like configuration to give the overall protein a
clamp-shaped structure (Fig. 1). Structural analysis also revealed a
helical domain containing a positively charged cavity that engaged
a single-stranded 50-ppp RNA. Binding of 50-ppp RNA to IFIT1 and
IFIT5 occurs in a non-sequence specific manner and requires an
overhang of five and three 50 nucleotides, respectively. Mutation of
residues that altered 50-ppp RNA binding to IFIT5 reduced antiviral
activity against vesicular stomatitis (VSV) or influenza (IAV)
viruses when variant IFIT5 proteins were expressed ectopically in
293T cells.

IFIT5 also may bind endogenous 50-monophosphate-capped
RNA including tRNA and other single-stranded RNA moieties.
Katibah et al. reported that RNA recognition by IFIT5 requires a
convoluted intramolecular fold of the TPRs, which scaffolds
additional helices to form an RNA binding cleft [42]. Analogous
to studies with IFIT2, IFIT5 co-purification of cellular RNA or
binding to tRNA was reduced by C-terminal truncation and
mutation of positively charged residues in the cleft also diminished
RNA binding activity [42]. Feng et al. described electrophoresis
mobility shift assay (EMSA) experiments in which IFIT5 bound
with high-affinity (10–100 nM) to poly A, poly U, and poly C single-
stranded RNA and AT-rich double-stranded DNA [43]. C-terminal
truncations and site-specific mutations of positively charged
residues abolished the poly A single-stranded RNA and AT-rich
double-stranded DNA binding activity of IFIT5. Collectively, these
structural and biochemical studies show that IFIT5 binds to several
types of RNA, and that its RNA binding ability contributes to its
antiviral activity.



Fig. 1. Structure of IFIT5 and N-terminal protease resistant fragment of IFIT1. Cartoon diagram of the structure of the IFIT5 monomer (PDB 4HOR) and N-terminal protease

resistant fragment of IFIT1 (PDB 4HOU). a-helical structural elements are shown as cylinders. The subdomains are labeled: subdomain 1 (yellow), subdomain 2 (green), pivot

region (light blue), and subdomain 3 (blue). In the IFIT5 structure, the 50-ppp RNA is shown in red with the phosphate atoms in orange. The Figure was prepared with PyMOL

(http://pymol.org/) and is adapted from the original publication [41].
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3. IFIT1 is a sensor and recognizes 20-O unmethylated RNA

3.1. IFIT1 restricts infection of viruses lacking 20-O methylation

of viral RNA

The cellular mRNA of higher eukaryotes and many viral RNAs
are methylated at the N-7 and 20-O positions of the 50 guanosine
cap by host methyltransferases. Whereas N-7 methylation is
essential for RNA translation and stability, until recently, the
function of 20-O methylation was uncertain [46,47]. My group
showed that a West Nile virus (WNV) mutant in the viral NS5
gene (WNV-NS5-E218A) lacking 20-O methyltransferase activity
[48] was attenuated in wild type cells and mice but was
pathogenic in the absence of Ifit1 expression [30,49]. The mutant
virus lacking 20-O methyltransferase activity showed increased
replication in peripheral and central nervous system tissues of
Ifit1�/� mice compared with wild type mice. 20-O methylation of
viral RNA did not affect IFNb induction in WNV-infected cells but
instead modulated the antiviral activity of IFIT genes including
IFIT1.

This finding has been confirmed with several related flavi-
viruses. Two groups made identical or analogous mutations in the
NS5 gene (NS5-E218A or NS5-K61A) of Japanese encephalitis virus
(JEV), which resulted in abrogation of 20-O methylation, attenua-
tion in wild type mice, and enhanced sensitivity and restriction by
type I IFN and IFIT1 [50,51]. Another report describes similar
mutations in Dengue virus serotype 1 (DENV-1) and serotype 2
(DENV-2) in which substitutions were engineered (NS5-E216A
(DENV-1) and NS5-E217A and NS5-K61A (DENV-2)) that abrogate
20-O methyltransferase activity [52]. DENV strains lacking 20-O

methylation were attenuated in mice and macaques and more
sensitive to the antiviral effects of IFIT1. As both the mutant JEV
and DENV retained immunogenicity in animal models, 20-O-
methyltransferase mutant flaviviruses have been proposed as
novel live-attenuated vaccines that are self-limited due to the
enhanced restriction by IFIT1 and the host innate immune
response.

Coronavirus mutants lacking 20-O methyltransferase activity
also show enhanced sensitivity to the antiviral actions of IFIT
proteins [49,53–55]. Human and mouse coronavirus nsp16
mutants (e.g., mouse hepatitis virus (MHV) nsp16-D130A) lacking
20-O methylation induced higher levels and were more sensitive to
type I IFN. The absence of 20-O-methylation on MHV-D130A viral
RNA preferentially activated the MDA5-MAVS signaling pathway
and also resulted in enhanced sensitivity to IFIT1 [53]. IFN-a
treatment preferentially inhibited infection of a human coronavi-
rus (strain 229E) 20-O methyltransferase mutant (nsp16 D129A) in
HeLa cells, and this restriction was linked to IFIT1 expression [54].
Consistent with this cell culture data, growth of MHV-D130A was
partially restored in Ifit1�/� animals. In studies with an analogously
mutated SARS coronavirus (SARS-CoV), an nsp16-D130A mutation
showed attenuated replication in human airway epithelial cells
and wild type mice but was virulent in Ifit1�/� mice [55]. These
studies establish that IFIT1 has a central role in restraining the
growth of 20-O methyltransferase-deficient flaviviruses and
coronaviruses (Table 1).

3.2. IFIT1 binds mRNA lacking 20-O methylation

Studies have begun to define how IFIT1 inhibits viruses that
lack 20-O methylation on their 50 cap structures. EMSA experi-
ments revealed that IFIT1 retarded the electrophoretic mobility

http://pymol.org/


Table 1
Viruses lacking 20-O methylation of mRNA are restricted by IFIT1.

Virus Family Mutationa References

West Nile virus Flaviviridae NS5-E218A [30,49]

Dengue virus serotype-1 Flaviviridae NS5-E216A [52]

Dengue virus serotype-2 Flaviviridae NS5-E217A; NS5-K61A [52]

Japanese encephalitis virus Flaviviridae NS5-E218A; NS5-K61A [50,51]

Mouse hepatitis virus Coronaviridae nsp16-D130A [49,53,54]

Human 229E Coronavirus Coronaviridae nsp16-D129A [54]

SARS-CoV Coronaviridae nsp16-D130A [55]

Vaccinia virus Poxviridae J3-K175R [49] and unpublished results

Venezuelan equine encephalitis virus (strain TC-83) Togaviridae Nucleotide 3 (G ! A), 50-UTR [56]

Sindbis virus Togaviridae Nucleotide 8 (G ! U), 50-UTR [56]

Hepatitis C virus Flaviviridae [64,65]

a The indicated mutation enhances the sensitivity of the virus to IFIT1-dependent restriction.
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of viral RNA displaying cap 0 (without 20-O methylation) but not
cap 1 (with 20-O methylation) structures [51,56]. The preferential
binding of IFIT1 to cap 0 RNA was corroborated by RNA
immunoprecipitation experiments [51]. A separate group ectop-
ically expressed IFIT proteins and performed affinity purifica-
tions using capped RNA. Among the IFIT family members only
human and murine IFIT1 were detected when capped RNA was
used as bait [54]. Using affinity purification and mass spectrom-
etry, this group showed that IFIT1 bound efficiently to cap 0
RNA but poorly to cap 1 RNA [54]. Primer extension assays
showed that recombinant human and rabbit IFIT1 and IFIT1B
bind cap-proximal regions of cap 0 mRNAs with high affinity
(K1/2,app 9–23 nM). Methylation at the 20-O position abrogated
IFIT1-mRNA interaction, whereas IFIT1B retained the ability to
bind cap 1 mRNA with reduced affinity (K1/2,app � 450 nM) [57].
These data suggest that IFIT1 can sense the methylation state of
capped RNA.

4. IFIT1 is an effector molecule that restricts viral translation

4.1. IFIT1 blocks translation of viral RNA lacking 20-O methylation

After establishing that IFIT1 preferentially binds cap 0 RNA
lacking 20-O methylation, four groups have shown independently
that IFIT1 mediates its antiviral effect by inhibiting viral RNA
translation [51,54,56,57]. Kimura et al. and Hyde et al. transfected
luciferase reporter gene RNA with different 50 cap structures into
IFN-primed wild type or Ifit1�/� MEFs and measured luicferase
activity. Whereas cap 0 RNA showed reduced translation in wild
type compared to Ifit1�/� cells, addition of 20-O methylation
resulted in equivalent levels of translation in both wild type and
Ifit1�/� cells [51]. Habjan et al. used pulsed stable isotope labeling
in cell culture to assess the impact of IFIT1 on global translation.
Ifit1+/+ and Ifit1�/� macrophages were infected with either MHV-
WT or MHV-nsp16-D130A and analyzed by whole-proteome
shotgun mass spectrometry. Translation of viral proteins was
reduced selectively in Ifit1+/+ cells infected with MHV-nsp16-
D130A [54]. Kumar et al. investigated the influence of IFIT1 on
translation initiation using an in vitro reconstituted translation
system and a toe-printing assay. 48S ribosomal complexes were
assembled from individual purified 40S subunits, Met-tRNA, eIF2,
eIF3, eIF1, eIF1A, eIF4A, eIF4B and eIF4F on cap 0 and cap 1 mRNA in
the presence and absence of different IFIT proteins. At 800 nM,
IFIT1 nearly abrogated 48S complex formation on cap 0 mRNA,
whereas IFIT2, IFIT3 and IFIT5 did not affect 48S complex
formation. Titration experiments showed that 48S complex
formation on cap 0 mRNA was sensitive even to low (�50 nM)
concentrations of IFIT1 [57]. Collectively, these data indicate that
synthesis of proteins encoded by viral RNA lacking 20-O methyl-
ation is inhibited by IFIT1.
4.2. IFIT1 competes with eIF4E and eIF4F for binding to cap 0 mRNA

Further studies have defined how IFIT1 restricts translation of
cap 0 RNA. As translation of cellular mRNA requires binding of the
cap-binding protein eIF4E [58], initial experiments tested whether
IFIT1 could compete with eIF4E for binding to cap 0 mRNA as a
means of selectively inhibiting translation. Cap 0 and cap 1 mRNA
were coupled to beads and assayed for binding to recombinant
eIF4E in the presence or absence of recombinant IFIT1. eIF4E
interaction with bead-bound cap 0 but not cap 1 RNA was reduced
by IFIT1, suggesting that the two proteins compete for the RNA
target [54]. A subsequent study confirmed these results as IFIT1
binding to cap 0 mRNA was unaffected by a 10-fold excess of eIF4E
or eIF4F [57]. Thus, the affinity of IFIT1 for cap 0 RNA enables it to
outcompete eIF4E and eIF4F for binding and selectively prevents
translation initiation (Fig. 2).

4.3. IFIT proteins inhibit other steps in translation initiation

Eukaryotic initiation factor 3 (eIF3) is a multi-subunit protein
complex that functions in translation initiation at several steps
including formation of the 43S pre-initiation complex, mRNA
recruitment to the 43S pre-initiation complex, and scanning of the
mRNA for AUG (start codon) recognition (reviewed in [59]).
Biochemical studies suggest that some IFIT family members reduce
the efficiency of cap-dependent protein translation more generally
by binding subunits of the eIF3 translation initiation complex [60].
Human IFIT1 and IFIT2 reportedly blocks binding of eIF3-mediated
recruitment of the eIF2–GTP–Met-tRNA ternary complex to 40S
ribosomes by interacting with eIF3e. In addition, human IFIT2, and
mouse IFIT1 and IFIT2 reportedly inhibit the formation of the 48S
pre-initiation complex by binding to eIF3c [20,60,61]. Recently,
some of these results were questioned as addition of human IFIT1
failed to affect 43S complex formation irrespective of whether
Met-tRNA, 40S subunits, or Met-tRNA and eIF2 were pre-incubated
with excess IFIT1 [57].

Hepatitis C virus (HCV), a positive-stranded RNA virus, contains
an internal ribosome entry site (IRES), which regulates the
assembly of cap-independent translation initiation complexes
on viral mRNA by a sequential pathway requiring eIF3 [62]. Type I
IFN inhibits HCV infection in part, by blocking its translation
[63,64]. Examination of the cellular proteins associated with HCV-
translation complexes in IFN-treated human cells showed that
human IFIT1 is an eIF3-associated factor that fractionates with the
initiator ribosome-HCV RNA complex [64]. IFIT1 suppressed IRES-
dependent translation of HCV, whereas a mutant IFIT1 protein
reportedly lacking eIF3-binding activity failed to inhibit HCV.
Moreover, ectopic expression of IFIT1 decreased HCV infection in
human hepatocytes [65]. Thus, IFIT1 may block HCV replication by
targeting eIF3-dependent steps in the viral RNA translation
initiation process; these include HCV IRES-dependent recognition



Fig. 2. IFIT1 inhibits translation initiation by competing with eIF4E for binding to viral mRNA lacking 20-O methylation. Assembly of the ribosome initiation complex at the 50

end of a viral mRNA. eIF4E, as part of the eIF4F complex, binds the m7G-cap structure. eIF4G binds eIF3, which recruits the 40S ribosomal subunit and its associated ternary

complex (eIF2-Met-tRNA-GTP). (Left) Viral mRNA with cap 1 structures (N-7 and 20-O methylation) recruit eIF4E and initiates translation and polyribosome formation. IFIT1

binds poorly to cap 1 mRNA. (Right) Viral mRNA with cap 0 structures lacking 20-O methylation are recognized by preferentially by IFIT1, which prevents binding of eIF4E and

efficient translation. This Figure was adapted from published models [54,85].
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of the 43S pre-initiation complex and assembly of the 43S-mRNA
complex.

5. IFIT1 is a sensor and recognizes 50-ppp RNA

Human IFIT1 also can function as a sensor for viral RNA by
recognizing an uncapped 50-ppp and sequestering it from the
actively replicating pool [32]. Using a proteomics approach with 50-
ppp RNA as bait, mass spectrometry analysis identified IFIT1 as a
primary binding partner. Subsequent experiments showed that
IFIT1 and IFIT5 interact directly with 50-ppp on RNA, whereas IFIT2
and IFIT3 form a complex with IFIT1 that may be required for its
function [41]. These IFIT-dependent interactions were relevant
against RNA viruses displaying a 50-ppp, as silencing of IFIT1, IFIT2
and IFIT3 in HeLa cells to varying degrees enhanced replication of
the negative strand Rift Valley fever virus (RVFV), VSV, and IAV.
Studies with Ifit1�/� mouse fibroblasts and myeloid cells also
showed enhanced replication of VSV despite wild-type production
levels of type I IFN and other inflammatory cytokines. In vivo, Ifit1�/

� mice were more vulnerable to infection with VSV, with higher
virus-induced mortality observed. This result, however, has been
questioned, as experiments by a second group with the same VSV
strain but an independently generated Ifit1�/� mouse revealed no
difference in mortality compared with wild type mice over a wide
range of VSV doses [22].

Biochemical and structural studies have begun to elucidate the
characteristics of IFIT1 binding to 50-ppp RNA. EMSA studies
revealed that IFIT1 could bind 50-ppp RNA in a non-sequence
specific manner with a requirement of at least a five-nucleotide
single-stranded overhang [41]. The affinity of IFIT1 for 50-ppp RNA
has been measured at �250–500 nM by surface plasmon
resonance or filter binding assays [32,56], which is at least 10-
fold lower than that observed for cap 0 RNA, although one group
failed to measure stable binding of IFIT1 to 50-ppp mRNA using
a primer extension technique even at higher (1 mM) concentra-
tions [57]. IFIT1 is hypothesized to have antiviral activity against
viruses that generate 50-ppp RNA through translation-independent
mechanisms including sequestration of RNA from the replicating
pool [32].

6. Mechanisms of viral evasion of IFIT1

The cap structure of host mRNA is formed through a canonical
series of sequential enzymatic reactions that occur in the nucleus
[66,67]: (i) an RNA triphosphatase removes the �-phosphate from
the 50-ppp end of the nascent RNA to generate 50-diphosphate RNA
(ppN-RNA); (ii) an RNA guanylyltransferase transfers the GMP
moiety from GTP to ppN-RNA to yield the core cap structure
(GpppN-RNA); and (iii) an RNA guanine-N-7-methyltransferase
methylates the guanine at the N-7 position to produce a cap 0
structure (m7GpppN-RNA). In higher eukaryotes, m7GpppN-RNA
also is methylated at the ribose 20-O position of the nascent mRNA
by a 20-O methyltransferase to form cap 1 (m7GpppNm) and cap 2
(m7GpppNmNm) structures. Host capping of mRNA at the 50 end
allows for efficient mRNA translation, directs pre-mRNA splicing
and mRNA export from the nucleus, limits mRNA degradation by
cellular exonucleases, and allows recognition of foreign RNA as
‘non-self’ [68]. As IFIT1 is one of the most strongly induced genes
by the cell-intrinsic innate immune responses, ‘‘successful’’ viruses
infecting vertebrate cells have evolved specific and efficient
mechanisms to overcome its inhibitory action (Fig. 3).

6.1. Viral 20-O methytransferases

Several families of DNA and RNA viruses that replicate in the
cytoplasm have evolved their own capping machinery to carry out
N-7 and 20-O methylation of viral RNA. This includes DNA
(poxviruses), positive-sense (flaviviruses and coronaviruses),
negative-sense (rhabdoviruses and paramyxoviruses) and double-
stranded (reovirus) RNA viruses. The capping of viral mRNA can be
classified as ‘conventional’, when it follows the enzymatic steps of
the mRNA-capping pathways used by host or ‘non-conventional’,
when it does not (reviewed in [67,68]). Poxviruses (e.g., vaccinia
virus) encode a ‘conventional’ capping system, which contains a



Fig. 3. Mechanisms of evasion of IFIT1 by viruses. Different families of RNA and RNA viruses use distinct mechanisms to evade IFIT1-dependent restriction. These include: (i)

viral-encoded N-7 and 20-O methyltranferases (MTase) to generate a cap 1 structure on their mRNA (flavivirus, coronavirus, rhabdovirus, paramyxovirus, reovirus, and

poxvirus), which prevents IFIT1 binding; (ii) use of host-encoded N-7 and 20-O methyltranferases (MTase) in the nucleus to generate a cap 1 structure on their mRNA

(herpesvirus, retrovirus, bornavirus, parvovirus, polyomavirus, and papillomavirus); (iii) ‘cap-snatching’ mechanisms to cleave cap 1 structures from host mRNA (10–20

nucleotides). The capped leader RNA is used to prime transcription on the viral genome, which leads to the synthesis of capped, translatable viral mRNAs (orthomyxovirus,

arenavirus, and bunyavirus); (iv) RNA structural elements at the 50-end of type 0 capped alphavirus RNA antagonize IFIT1 binding and function; and (v) some positive sense

RNA viruses utilize IRES elements to mediate cap-independent translation. For hepaciviruses and pestiviruses the 50-end remains as an uncapped 50-ppp RNA. Picornaviruses

and caliciviruses covalently attach a viral protein (VPg) to the 50-end. This figure was adapted from a published model [68].
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multifunctional mRNA cap-synthesizing enzyme (D1 gene) that
includes an RNA triphosphatase, guanylyltransferase, and N-7

methyltransferase. After the N-7 methylguanosine type 0 cap is
added, the cap 1 structure is completed by the activity of a separate
viral protein (VP39 encoded by J3 gene) that adds a 20-O-methyl
group. The cap formation of flavivirus RNA also follows the
conventional pathway of mRNA cap formation through sequential
activities of the viral RNA triphosphatase (NS3 gene), guanylyl-
transferase (NS5 gene) and N-7 and 20-O methyltransferases (NS5
gene). Coronaviruses also are believed to produce mRNAs with a cap
1 structure through the ‘‘conventional’’ capping pathway although
all of the component enzymes have not been defined. The viral
Nsp14 and nsp16 genes encode the N-7 and 20-O coronavirus
methyltransferases, respectively.

Some virus families (e.g., Rhabdoviridae) form RNA cap structures
through a ‘non-conventional’ mechanism that is distinct from the
cellular mRNA capping pathway. During the mRNA cap formation
of VSV, an unknown NTPase hydolyzes GTP to GDP. Monopho-
sphorylated viral mRNA is transferred to GDP by a polyribonucleo-
tidyltransferase, which then generates the Gpp-pA-RNA cap
structure. This RNA cap is methylated sequentially by the L protein
of VSV first at the ribose-20-O position and then at the guanine-N-7

position, resulting in m7GpppAm-RNA cap 1 structure [69].

6.2. Cap-snatching

As an alternative to encoding capping machinery, several
negative-strand (Orthomyxoviridae) and ambisense (Arenaviridae

and Bunyaviridae) RNA viruses acquire cap structures by ‘stealing’
them from cellular mRNA. This ‘cap snatching’ mechanism was
first identified in influenza virus [70,71] and is performed by two of
its polymerase subunits (PB2 and PA). PB2 binds to the 50 end of
capped cellular mRNA and then the endonuclease activity of PA
cleaves the cellular RNA 10–13 nucleotides downstream of the cap
structure. The released short, capped mRNAs that are released are
then used as primers by the viral polymerase to synthesize nascent
viral mRNA [72]. The sequence, length and structure of the 50 end of
the mRNA that comes with the cap varies among virus families.
Most sequences are 15–20 nucleotides long but arenaviruses may
use shorter primers [73].

6.3. Cap-independent translation

Viruses have developed alternative cap-independent transla-
tion programs, which to some extent avoid IFIT1-mediated
restriction. Hepaciviruses and pestiviruses of the Flaviviridae

family of RNA viruses lack a cap structure at their 50 end but
encode for an IRES to initiate viral translation in a cap-independent
manner. The HCV IRES directly recruits the 40S ribosome subunit
to the translation initiator codon of the genome and does not
require interactions with eukaryotic initiation factors eIF1, 1A, 4A,
4B and 4E [74]. Thus, in theory, HCV could still be translated even
if IFIT1 were bound to the 50 end of the genomic RNA. However,
IFIT1 may block HCV translation through an independent
mechanism by targeting eIF3-dependent steps in the viral RNA
translation initiation process (see Section 4.3). Although other RNA
viruses (e.g., picornaviruses) encode IRES elements, there are
differences in function and requirements for eukaryotic translation
initiation factors (reviewed in [75]). Indeed, in contrast to HCV,
the IRES-containing encephalomyocarditis virus (a picornavirus) is
resistant to the antiviral effects of IFIT1 [32,49].

As another possible means to prevent immune molecules
including IFIT1 from recognizing non-20-O methylated or non-capped
mRNA, Picornaviridae and Caliciviridae positive-sense RNA viruses
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covalently attach a small basic protein VPg (viral protein genome-
linked) to the 50 end of viral RNA [76,77]. For viruses of the
Picornaviridae family, the VPg ‘cap’ does not function in translation
but instead serves as a primer to synthesize RNA by the viral
polymerase and protects RNA from exonuclease degradation. In
comparison, the calicivirus VPg protein acts as a ‘cap substitute’ and
interacts directly with the cap-binding protein eIF4E to facilitate
viral mRNA translation [78].

6.4. Use of host methyltransferases in the nucleus

Viruses that synthesize their mRNA using cellular RNA
polymerase II use the host capping machinery to generate cap 1
structures on their 50 end. This occurs for most nuclear DNA viruses
(e.g., Herpesviruses, Polyomaviruses, and Papillomaviruses) and
for selected RNA viruses including those belonging to the
Retroviridae and Bornaviridae families [79].

6.5. Antagonism of IFIT1 by viral RNA structural elements

Alphaviruses are positive sense RNA viruses that replicate in the
cytoplasm, translate via a cap-dependent mechanism, and yet lack
a virally encoded 20-O-methyltransferase or cap-snatching mech-
anism, and thus should be restricted by IFIT1. Alphaviruses have a
defined cap 0 structure lacking 20-O methylation on the 50 end of
their viral genomic and subgenomic RNA [80,81], which is
synthesized through a non-conventional mechanism [67]. A recent
study shows that alphaviruses use a stable stem-loop structure in
their 50-untranslated region (UTR) to antagonize IFIT1 binding and
antiviral activity [56]. Mutations within the 50-UTR that affect
stable RNA structural elements enabled restriction by or antago-
nism of Ifit1 in vitro and in vivo. This phenomenon explains why
some alphavirus strains are more sensitive to the antiviral effects
of type I IFN [82], and links the phenotype to single nucleotide
changes in the 50-UTR of the alphavirus RNA [83]. Thus, structural
elements at the 50 end of alphavirus genome can function to evade
IFIT1-dependent restriction of non-20-O methylated viral RNA.

7. Conclusions

Triggering an effective intrinsic cellular antiviral response is
essential for the host to eliminate invading pathogens. To promote
their own survival, viruses have developed strategies to escape
host recognition by interfering with antiviral detection pathways,
signaling cascades, and effector mechanisms. IFIT1 is an IFN-
induced highly expressed protein that functions in the cytoplasm
as a dual sensor and effector molecule to restrict virus infection.
IFIT1 preferentially recognizes non-20-O methylated or uncapped
non-self viral mRNA and suppresses translation initiation or
sequesters the RNA from active replication. IFIT1 likely contributes
to a species barrier that puts evolutionary pressure on viruses to
generate mRNA with host cap structures. ‘Successful’ or pathogenic
viruses have evolved mechanisms to produce mRNA with 50-ends
that mimic host cellular mRNAs, including viral RNA with N-7 and
20-O methylation through several independent strategies (encod-
ing capping machinery, ‘cap-snatching’, or using host capping
machinery). Viruses also can avoid or attenuate IFIT1 restriction by
using cap-independent translation mechanisms, covalent binding
of viral proteins to the 50-end of the RNA, or evolving secondary
structures at their 50-end that inhibit IFIT1 binding and function. As
both host and many viral mRNA share 20-O methylation, higher
eukaryotic cells may be trapped into retaining this modification,
despite its relative lack of protective effect against viral pathogens
[84]. A deeper mechanistic understanding of IFIT1 biology could
facilitate the development of novel antiviral agents that target viral
methyltransferases or other proteins to re-sensitize pathogenic
viruses to the inhibitory activities of IFIT1.
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