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Abstract: Chronic low-back pain (CLBP) is a common disease with several negative consequences
on the quality of life, work and activity ability and increased costs to the health-care system. When
pharmacological, psychological, physical and occupational therapies or surgery fail to reduce CLBP,
patients may be a candidate for Spinal Cord Stimulation (SCS). SCS consists of the transcutaneous
or surgical implantation of different types of electrodes in the epidural space; electrodes are then
connected to an Implanted Pulse Generator (IPG) that generates stimulating currents. Through spinal
and supraspinal mechanisms based on the “gate control theory for pain transmission”, SCS reduces
symptoms of CLBP in the almost totality of well-selected patients and its effect lasts up to eight years
in around 75% of patients. However, the evidence in favor of SCS still remains weak, mainly due to
poor trial methodology and design. This narrative review is mainly addressed to those professionals
that may encounter patients with CLBP failing conventional treatments. For this reason, we report
the mechanisms of pain relief during SCS, the technical features and some clinical considerations
about the application of SCS in patients with CLBP.
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1. Introduction

Pain is a subjective unpleasant sensory and emotional experience associated with
actual or potential tissue damage, or described in terms of such damage [1]. Pain is
defined as chronic when lasting at least three months or more over the normal time of
healing [2,3]. Chronic pain is a major public health concern, that affects hundreds of millions
of patients and it costs hundreds of billions of dollars in associated medical charges and
lost productivity [4]. By altering the nerve activity through electrical or chemical stimulus
targeted to specific neurological sites in the body, neuromodulation is increasingly used in
patients with chronic pain of varying etiology [5].

Chronic low-back pain (CLBP) is very common. CLBP prevalence has been reported
by several studies and it increases with the age of the population. In particular, CLBP affects
up to 4.2% of patients aged between 24 and 39 years old, and its prevalence increased up to
20% in the more aged population [5]. In addition, it varies among different regions and
countries. This has been associated with several factors like lifestyle, occupational activities
and the income level of the country [5].

The presence of CLBP causes activity limitation, with negative consequences on
the daily quality of life, the ability to work, and increased and costly demand on the
health-care system [6]. Strategies to treat CLBP aim to improve daily functioning by
reducing the disability [1]. When not eligible for surgery, the approach to CLBP includes
drugs (i.e., non-steroidal anti-inflammatory drugs, opiates, antidepressant drugs, local
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anesthetics), combined with psychological, physical and occupational therapies. If these
strategies fail, the physician may assess the indication to combine Spinal Cord Stimulation
(SCS) with other treatments (i.e., occupational therapy, rehabilitation and medications).

SCS is a modern neuromodulation technique to treat and reduce CLBP. It consists of an
implanted generator of pulsed electrical signals conveyed to a precise region of the spinal cord
through electrodes [7]. SCS is widely used to treat different forms of CLBP, including failed
back surgery syndrome (FBSS), complex regional pain syndrome, peripheral neuropathic pain,
ischemic disease and residual pain after joint replacement [8–10].

Although several authors have recently published reviews about the use of neuro-
modulation in chronic pain relief [5,11–13], none of them has specifically focused on the
application of SCS in CLBP. We have therefore designed this narrative review to provide
the rationale and clinical guidance for those professionals, including physicians, involved
in CLBP treatment who need to refer patients to specialized facilities for SCS implantation.
In the attempt to provide a valuable tool, we describe the underlying mechanisms of pain
relief of SCS, the technical features and the procedure of implantation; finally, we analyze
the clinical indications of SCS in CLBP.

2. Mechanisms of Pain Relief during Spinal Cord Stimulation

SCS relies on neurophysiological and neurochemical mechanisms of action, based on
the “gate control theory for pain transmission” [14]. Two neurophysiological mechanisms
are involved: the spinal segmental and the suprasegmental mechanisms [15].

2.1. Spinal Segmental Mechanisms

Painful stimulations are transmitted through the nociceptive afferent neurons to the
dorsal root ganglia, and, at the end, to the superficial (I/II) and deep (V) laminae, where
they are modulated before being dispatched to the supraspinal centers. The dorsal column
of the spinal cord contains large diameter fibers, carrying highly specific and detailed
cutaneous and proprioceptive afferences, which do participate to the gate control of pain.
Small diameter fibers (Aδ and C) ascend as a spinothalamic tract in the antero-lateral
column and they carry the nociceptive stimuli to the supraspinal centers. In addition, the
dorsal horn works as a relay station and integration site for nociceptive signals before
ascending the pain control pathways [16,17].

2.2. Suprasegmental Mechanisms

SCS also interferes with the processing of the nociceptive signal through the lateral
spinothalamic tract, modulating supraspinal brain centers such as the ventral posterior
nucleus of the thalamus, somatosensory cortex, cingulate cortex, and insula [18,19]. Ortho-
dromically, SCS can depolarize Aβ fibers in the cranial direction, therefore controlling the
supraspinal centers like the cuneate and the gracile nuclei [16,17]. After supraspinal inte-
gration of the signal, descending feedback loops originating from the locus coeruleus [20],
the nucleus raphe magnus [21] and the rostral ventromedial medulla [22] can modulate
and control the spinal nociceptive signal at the “spinal gate” through both serotonergic and
noradrenergic projections to the dorsal horn [16,17].

Concerning neurochemical mechanisms of action, SCS modulates neurochemicals
such as gamma-aminobutyric acid (GABA) [23], serotonin [24], acetylcholine and nore-
pinephrine [25,26]. In animal models, SCS was shown to increase the intraspinal release
of GABA [27,28] and attenuate the excitatory response of glutamate and aspartate [29].
In addition, it has also been demonstrated that the most important type of GABA recep-
tors involved in the inhibition of the nociceptive stimulation are type “b”, opening the
possibility of intrathecal administration of sub effective doses of baclofen to enhance SCS
analgesia [30].

SCS also increases the release of serotonin and substance P [24] and the expression
and synthesis of dynorphin, and enkephalin within the dorsal horn of the spinal cord [31].
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Of note, SCS decreases neuronal excitability and spinal pain transmission also by activating
the 5-HT2A, 5-HT3 and 5-HT4 receptors [32].

Finally, SCS analgesia is also promoted by modulation of the cholinergic and adrener-
gic neurotransmission, by releasing acetylcholine and noradrenaline in the dorsal horn of
the spinal cord [25,26].

3. Technical Features
3.1. Stimulation Waveform

The first application of SCS has been described in 1967 by Shealy et al. [33], now known
as “conventional SCS”. A vitallium covered 3-4 mm electrode was surgically implanted
after D2-D3 laminectomy and the patient reported the benefit of pain relief. Unfortunately,
the patients died after 1.5 days from unexpected subacute endocarditis complicated by an
embolism of the left side of the brain [33]. Conventional SCS consists in a tonic electrical
stimulation of large Aβ sensory fibers with a moderate frequency range between 40 to 60 Hz.
At this frequency, the stimulation produces paresthesia with the aim to cover the pain of the
interested area. In particular, the excitation of Aβ fibers inhibits the neurons of the dorsal
horn intended for nociception and its transmission to the supraspinal centers [16]. Settings
of the stimulator (including amplitude, pulse width, frequency, stimulation configuration)
are regulated to overlap the painful area with paresthesia [34]. For this reason, conventional
SCS is also called paresthesia-based SCS [35].

Thereafter, the type of stimulation has evolved to a “burst-SCS”. This approach
consists of intermittent bursts of electrical pulses (five pulses at 500 Hz, delivered 40 times
per second) to mimic thalamic bursting within the nervous system. Compared to the
conventional SCS, burst-SCS activates also the dorsal anterior cingulate and the dorsolateral
prefrontal cortex [36], which mediate pain-related affect and attention [36,37] and the medial
thalamic activity [38]. As a clinical advantage, burst-SCS improves pain relief by avoiding
paresthesia, which is uncomfortable for the patient [36,39].

More recently, kilohertz-frequency SCS has been introduced in clinical practice. This
latter is a tonic stimulation with a rate > 1kHz, up to 10Khz. This type of stimulation
guarantees optimal (around 80%) pain relief without paresthesia [40]. In fact, this type of
stimulation is programmed (i.e., pulse width and amplitude) to not produce paresthesia
and to assure a subparesthetic stimulation [17]. Although a promising technique, there
are conflicting data. Tiede et al. reported that high-frequency stimulation significantly
improved the overall and back pain scores from baseline, and a higher responder rate, as
compared to conventional SCS [41]. On the opposite, another recent study has demon-
strated that pain relief is similar among different rates of stimulation (from 1 to 10 kHz) [42].
However, the body of evidence is more in favor of high-frequency rather than conventional
low frequency stimulation [41,43–46].

3.2. Arrays and Electrodes

In addition to the type of electrical stimulation, the design of the lead is fundamental to
optimizing pain relief. In principle, the electrical field should be shaped in order to optimize
the stimulation. Increasing the number of electrodes improves the pain-to-paresthesia overlap
and ameliorates pain relief [47,48]. At the beginning of its clinical application, SCS used
intrathecal or subdural stimulation by means of arrays with four electrodes [48–50]. The
development of cylindrical percutaneous arrays has increased the number of electrodes up
to 16 [51]. Finally, paddle arrays may include from 16 to 32 electrodes, that are distributed
in 2 to 5 columns, to improve the mediolateral resolution of the stimulation and to better
focus the neuromodulation on the chosen dermatomes of the spinal cord [7,51].

With the continuous implementation of the SCS technique, the epidural stimulation
has been preferred over the intrathecal or subdural one, due to reduced incidence of
complications such as cerebrospinal fluid leakage and acute neurological deficit [7]. More
recently, dedicated flexible lead arrays have been developed for subdural stimulation,
to reduce the over mentioned complications, including damage to the spinal cord. The
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flexibility of these last leads allows the possibility of implantation directly near or on the
spinal cord, and improves the targeting stimulation at lower amplitudes [52–54].

The choice of the type of electrode (i.e., percutaneous cylindrical versus paddle/plate
electrodes) is an important issue in SCS implantation [55]. The choice of the technique of
implantation varies among centers and it primarily depends on different protocols among
centers [56–58]. A survey conducted in the United Kingdom aimed to assess the criteria of
choice of the technique of SCS implementation [57]. Among the responders, 54% stated
that the indication of implantation and the choice of the electrode were based on internal
protocol and guidelines [57], which were in line with the key points suggested by the
coeval European Pain Federation (EFIC) statements [59]. In a study by Kinfe et el., paddle
electrodes were preferred in patients owing to a preoperative pain distribution requiring
an electrode placement at a higher vertebral level to guarantee sufficient pain control [60].
The objective evidence to indicate which of the two electrodes is better, remains uncertain,
although the percutaneous technique has the inner advantage to be minimally invasive [61].
Some authors have reported that paddle electrodes reduce the unwanted current spread
and power consumption, while providing better coverage of the low back [58,62].

3.3. Pulse Generator

Implanted pulse generators (IPG) stimulate the spinal cord through precise extracel-
lular voltages. However, the heterogeneity of impedance of electrodes may impair the
ability to provide an optimal stimulation [7]. This drawback plays a major role in IPG
with voltage-controlled stimulation, requiring specific and personalized adjustments [63].
Technical advances have created IPG based on current-applied stimulation. These systems
are less affected by variations of impedance, guaranteeing a more stable stimulation of the
spinal cord [51].

Another important technical advance in IPG are the multi-source systems. Most of
the available IPG uses a single-source system, allowing the user to select the configuration
for every single catheter as cathodes, anodes, or inactive [7]. In an attempt to improve the
stimulation of the target areas, multi-source systems have been developed. An experimental
model has proved that a multi-source system can target more central points of stimulation
on the spinal cord, as compared to a single source system; this advantage may translate
into a better paresthesia-pain overlap in patients with CLBP [64].

The innovations in rechargeable and longevity (up to 25 years) batteries also reduces
the invasiveness and sizes of IPG [65,66]. Wireless systems have also been developed: a
specifically design epidural passive electrode array, with a microprocessor receiver and
an antenna, is implanted in the patient, whereas the pulse generator is not implanted, but
worn by the patient [7]. The generator will transmit across the skin the parameters of the
stimulation and the power to stimulate the spinal cord [7].

Another limitation for patients with SCS was the lack of possibility to perform mag-
netic resonance imaging (MRI), a fundamental exam in patients with CLBP. Of note, up to
84% of SCS-implanted patients could require at least one MRI exam within 5 years from the
implantation [67]. The development and production of SCS systems with MRI-compatibility
has also solved this difficulty in the last few years.

Finally, SCS systems are generally implemented as “open-loop”. Although easier in
their concept, they may be ineffective during body position changes. Indeed, when a patient
changes his/her body position, the thoraco-lumbar spinal cord moves up to 3 mm in the
anterior-posterior direction [68]. Since the strength of stimulation depends on the distance
between the electrode and the neural target, little movements can invalidate the ability to
properly stimulate the target area of the spinal cord, reducing the pain relief because of
under-stimulation or inducing paresthesia for over-stimulation [69,70]. The variation of
intensity of neuromodulation at the body position change has prompted the development
of new devices which automatically adjust in real time the stimulation according to the
position of the patient [70]. Another SCS system has been developed on the basis of the
closed-loop technique. During SCS, evoked compound action potentials (ECAPs) are
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generated, representing the sum of the action potentials and providing a quantitative
measure of neural recruitment in the spinal cord [71]. Therefore, when the amplitude of
stimulation of the spinal cord varies, ECAPs accordingly modify as well. By using ECAPs
as feedback and control signals, this new IPG modulates the amplitude of stimulation to
guarantee optimal pain relief. Of note, the user is asked to define the reference ECAPs
amplitude that the IPG targets in its closed-loop process [70]. Very recently, an algorithm
for the optimization of SCS stimulation based on the Bayesian preference modeling has
been proposed and validated in 5 patients with chronic (more than 1 year) traumatic spinal
cord injury [72] and future data are expected from the ongoing randomized controlled
trial [73]. However, this algorithm has not been so far tested and validated in patients
with CLBP.

3.4. Procedure of Implantation

The procedure of SCS implantation typically implicates two consecutive stages [74].
The first one is a trial phase lasting between 3 to 10 days. As shown in Figure 1,

the electrode arrays are dorsally implanted in the epidural space, a few levels above the
segments of the spinal cord involved in painful symptoms [74]. The implantation of elec-
trode arrays is performed through a Tuohy needle, under local anesthesia and with an
X-ray check with a median or paramedian approach [4,75]. Electrodes are therefore con-
nected to an external and temporary pulse generator to test the efficacy of the pain re-
lief [74]. After the implantation procedure, a radiological check is also usually performed
(See Figure 2). During this trial, stimulator parameters are regulated to optimize the treat-
ment and control the pain [76]. In particular, the operator should adjust the amplitude,
the pulse width, the frequency and the configuration of the stimulation. If the patient
achieves pain relief equal to or greater than 50%, the treatment can be considered successful
and the second phase of implantation is performed. The electrode arrays are therefore
tunneled under the skin and connected to an implanted pulse generator (IPG), commonly
placed in the posterior hip area [76]. The IPG is finally set with the parameters tested in the
trial phase.
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The kit for SCS transcutaneous implantation is shown in panel A. The kit is constituted
by a Tuohy needle (*), a wire guide (ˆ) and the electrode (§). In panel B, the setting in the
operating room is depicted. After the identification of the correct vertebral space (panel B),
the Tuohy needle is inserted (panel C) and the electrode is positioned (panel D).

The figure shows the radiological check for the correct positioning of the electrode
at L1 and of an external and temporary pulse generator for the trial phase.

Noteworthy, SCS electrode arrays could be also surgically implanted. This is the
case of paddle- or plate-style electrode arrays, where laminotomy is required for their
implantation [33,74,77]. Although more invasive, the surgical implantation of paddle leads
has some potential advantages over the percutaneous technique, such as a more stable
configuration reducing the risk of lead migration, the possibility to provide a unidirectional
stimulation and a better clinical result at a 2-year follow-up when compared to percutaneous
technique [7,55,56,58].

4. Clinical Considerations in Chronic Low Back Pain

The etiology of CLBP can be referred to as specific spinal cord lesions (such as radicu-
lopathies or spinal stenosis) or not related to a spinal source. In the case of CLBP, physicians
have to collect the clinical history and perform a detailed physical examination in order to
understand the possible etiologies. If symptoms may be attributable to any spinal cause,
magnetic resonance imaging or computed tomography of the spine is required to identify
possible indications for pharmacological therapies, surgical treatments or physiotherapy.
Noteworthy, the vast majority of patients with CLBP will not benefit from surgery, which
remains indicated only in selected patients with functional disabilities or with refractory
pain despite multiple nonsurgical attempted treatments [78]. If CLBP is not associated with
spinal causes, reasons should be searched in other diseases, such as neoplasia, retroperi-
toneal cancers [79], inflammatory arthritis, infections [80], or other uncommon reported
causes such as the engorgement of the epidural venous plexus secondary to inferior vena
cava thrombosis [81].

The selection of patients is fundamental for the success of SCS treatment [82]. First
of all, SCS should be considered within two years from the onset of symptoms, after the
inefficiency of all conventional therapies [83]. Second, the presence of underlying psy-
chiatric diseases, complete cognitive impairment, psychological comorbidities, or drug
abuse preclude the possibility of SCS implantation [84]. However, in case of partial cog-
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nitive impairment, SCS may be considered and non-rechargeable should be preferred
over rechargeable IPG [83]. Third, SCS should be also considered in case of neuropathic
pain (i.e., failed back surgery syndrome, arachnoiditis, complex regional pain syndrome,
causalgia, peripheral neuropathy, chronic radiculopathy), whereas in case of nociceptive
symptoms or central neuropathic pain is not effective [83]. SCS is strongly recommended in
case of [83]: failed back surgery syndrome in the absence of neurologic progression [85], ax-
ial low back pain [40] and complex regional pain syndrome [86]. SCS is also recommended
in case of [83]: chronic refractory angina not controllable by maximal medical therapy,
bypass surgery and percutaneous angioplasty of legs [87], peripheral artery disease or
non-reconstructable critical leg ischemia [88].

As mentioned above, when a patient is a good candidate for SCS, an external and
temporary stimulator is used to optimize the settings of the treatment to control the pain
(first phase). If the patient achieves good pain relief (at least 50%), an IPG can be implanted
after around 10 days (second phase). Noteworthy, a center for SCS implantations requires
specific characteristics, such as trained personnel for diagnosis, indications, implantation
and follow-up [83]. Of note, most of the centers for SCS implantation have a multidis-
ciplinary team. Anesthesiologists and neurosurgeons are the most frequently involved;
however, other professionals taking part in the team are nurses, occupation therapists,
psychologists, psychiatrists, pharmacists and physiotherapists [57,89].

Once SCS is implanted, nearly half to 80% of the patients report immediate good pain
relief with an indication of definitive implantation [10,90,91]. In these patients, SCS efficacy
lasts up to 12 months [77,92] and in one study up to 24 months [10]. Some observational
studies have also reported acceptable pain relief in 68% of the patients at a four-year follow-
up [93], and in 52 to 74% of the patients at seven to eight years [94,95]. The efficacy of SCS
may vanish over time for several reasons. The most frequent and important reasons are the
migration of the lead [77,92], lead damage [96], infection of the insertion site [96] and the
formation of scarred tissue around the lead [97–100].

Although the interest in SCS application to chronic pain is growing, to date large
studies providing strong scientifically sound evidence are few [101,102]. From systematic
reviews and meta-analysis [101,102], SCS seems to be a valid treatment when standard
medical therapy fails to relieve painful conditions. However, definitive indications are
difficult to be provided and future studies should address the effects of SCS on opioid
reduction, functional improvement, and quality of life [102]. In addition, the reporting
methods of the published literature and included populations are inhomogeneous, limiting
the possibility to provide clear recommendations [101]. In fact, the quality of evidence that
SCS is superior to re-operation (in case of failed back surgery syndrome) or conventional
medical management has been recently defined as low-to-moderate [5]. For this reason,
despite the growing literature body in this field, trials should improve their methodology
to assure validity and replicability of the findings [101].

5. Conclusions

Among different techniques of neuromodulation, SCS is increasingly used to treat
selected patients with CLBP resistant to other therapies (including drugs and physiother-
apy). Technical advances in this field have improved the efficacy of pain relief and the
treatment duration lasts up to eight years in around 75% of patients. More studies are
however required to reinforce and to better define the current evidence in favor of SCS.
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