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Abstract: In this paper, we theoretically investigate the stability of spin-wave solitons in Bose-Einstein
condensates of repulsive magnons, confined by an inhomogeneous external magnetic field described
by a Gaussian well. For this purpose, we use the quasi-one-dimensional Gross-Pitaevskii equation to
describe the behavior of the condensate. In order to solve the Gross-Pitaevskii equation, we used
two different approaches: one analytical (variational method) and another numerical (split-step
Crank-Nicolson method). The stability of the solutions and the validation of the numerical results
were confirmed, respectively, through the anti-VK criterion and the virial theorem. Furthermore, the
simulations described the behavior of physical quantities of interest such as chemical potential, energy
per magnon and central density as a function of the nonlinearity of the model (magnon-magnon
interactions). The theoretical results provide subsidies for a better understanding of the nonlinear
phenomena related to the Bose-Einstein condensates of magnons in ferromagnetic films.

Keywords: Bose-Einstein condensates of magnons; Gross-Pitaevskii equation; spin-wave solitons;
ferromagnetic films

1. Introduction

Bose-Einstein condensates (BEC), which were experimentally produced in 1995 for
alkaline atomic gases of 87Rb [1], 23Na [2] and 7Li [3], provided unique opportunities to
investigate macroscopic quantum phenomena in the ultracold temperature regime, both
from the point of view of theoretical and experimental physics. Furthermore, recent
experiments have demonstrated the possibility of obtaining BECs from quasiparticles, such
as excitons [4], polaritons [5] and magnons [6].

Compared to atomic BECs, quasi-particle BECs have two advantages: First, the
effective mass of quasiparticles is generally much smaller than the mass of atoms (close
to the mass of an electron). This makes the transition temperature higher (in relation to
atomic gases) due to inverse proportionality to the effective mass. Second, the density
of the quasi-particle system can be increased easily by increasing the external pumping,
without worrying about the formation of molecules.

In 1999, Bose-Einstein condensation of magnons was demonstrated in the antiferromagnet
TlCuCl3 [6] at temperatures around 14 K. In 2006, condensation on a yttrium-iron-garnet
(YIG) ferromagnetic film—Y3Fe2O12—was performed even at room temperature and by
means of Brillouin light scattering, they were able to map the density of the magnons
as a function of space, frequency, time, and the wave vector on the YIG film, while
injecting magnons in an energy state close to that of ferromagnetic resonance by pumping
parametric [7]. Since then, BECs of magnons in YIG films have been intensively investigated
by Demokritov’s group (Institut für Angewandte Physik (https://www.uni-muenster.de/
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Physik.AP/Demokritov/Forschen/Forschungsschwerpunkte/mBECfnP.html (accessed on
3 February 2022)). Furthermore, it can be stated that this group is currently demonstrating
the formation of BECs of magnons through spin-orbit coupling and the direct spin-Hall
effect [8–12].

Recently, Borisenko et al. [10] provided direct experimental evidence that magnon
BECs in YIG films are stable with respect to collapse; the origin of this stability being
governed by the repulsive magnon-magnon interaction of magnetodipolar nature. However,
theoretical studies involving the behavior of chemical potential, energy per magnon, central
density, mean square width and nonlinearity coefficient of magnon BECs in YIG films are
scarce in the literature.

Therefore, motivated by Ref. [10] and in order to corroborate its results, we propose
in this paper, a study on the stability of spin-wave solitons in one-dimensional repulsive
magnon BECs trapped by an inhomogeneous external magnetic field, described by a
Gaussian well. We will use EGP, within the scope of mean field theory, to describe the BEC
of magnons. In order to solve the GPE, we will use two distinct approaches: an analytical
approach (variational method) [13,14] and a numerical approach (split-step Crank-Nicolson
method) [14,15].

2. The Model

In this paper, we propose a scenario where a one-dimensional BEC of magnons,
trapped by an external potential, can be described, within the scope of mean field theory,
by the following one-dimensional Gross-Pitaevskii equation (GPE):

ih̄
∂ψ

∂t
= − h̄2

2m
∂2ψ

∂x2 + Vextψ + Γ|ψ|2ψ. (1)

Here, i =
√
−1 is the imaginary unit, h̄ = h/2π is the reduced Planck constant, m is

the effective mass of each magnon, Γ is the magnitude of the magnon-magnon interaction,
Vext ≡ Vext(x) is the trapping potential, determined by an inhomogeneous magnetic field
given by Vext = gµB H, where g is the Landé factor, µB is the Bohr magneton and H ≡ H(x)
describes the profile of the inhomogeneous magnetic field. The quantity ψ ≡ ψ(x, t) is the
wavefunction referring to the BEC and is normalized to the total number of magnos:∫

|ψ|2dx = N. (2)

Moreover, magnon-magnon interactions will be considered repulsive (Γ > 0) and the
inhomogeneous magnetic field profile described by a Gaussian well:

H(x) = −H0e−x2/ν2
, (3)

where H0 and ν is the amplitude and width of the inhomogeneous magnetic field, respectively.
The use of the one-dimensional GPE is justified by the fact that the cubic nonlinearity

in this equation causes solutions of the solitons type. Furthermore, it has been shown
that nonlinear dynamical behaviors of spin-wave solitons in ferromagnetic films can be
described by a nonlinear Schrödinger equation whose nonlinearity is derived within
the scope of the dipole exchange spin-wave spectrum theory [16–18]; and a theoretical
description of the coherent state of magnons emerging in YIG films for sufficiently strong
microwave pumping required an extension of the usual “S-theory” including the GPE for
the expected values referring to the magnon operators [19].

Equation (1) can be rewritten using the following dimensionless variables:

x ≡ νx̃, t ≡ mν2

h̄
t̃, ψ ≡

√
N
ν

ψ̃. (4)

https://www.uni-muenster.de/Physik.AP/Demokritov/Forschen/Forschungsschwerpunkte/mBECfnP.html
https://www.uni-muenster.de/Physik.AP/Demokritov/Forschen/Forschungsschwerpunkte/mBECfnP.html
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Thus, the dimensionless Equation (1) that governs the proposed model becomes (The
tilde (˜) has been omitted from dimensionless variables to simplify notation.)

i
∂ψ

∂t
= −1

2
∂2ψ

∂x2 −V0e−x2
ψ + η|ψ|2ψ, (5)

where

V0 ≡
mν2gµBH0

h̄2 , η ≡ mνN
h̄2 Γ, (6)

and the wave function is normalized to unity:∫
|ψ|2dx = 1. (7)

It’s important to highlight that the dimensionless values obtained in the simulations
can be resized through Eqations (4) and (6) so that they have physical meaning and can be
compared with possible experimental observations.

3. Methodology

The analytical (variational approach) and numerical (split-step Crank-Nicolson
discretization) methods proposed in this paper are motivated by the following attributes:
(i) the variational approach can demonstrate in a simple and elegant way some behaviors
observed in experiments related to Bose-Einstein condensation. In particular, it quite
accurately predicts low-energy nonlinear phenomena in both attractive and repulsive
condensates [13,20]. (ii) The split-step Crank-Nicolson method is widely used to solve
nonlinear partial differential equations like the GPE associated with BECs and provides
highly stable and accurate results while also conserving normalization of the wave function
at each iteration [21,22].

3.1. Variational Formulation

The problem of solving Equation (5) can be considered as a variational problem
corresponding to the minimization of the action S :

S =
∫ ∫

Ldxdt, (8)

where Equation (5) can be derived from the following Lagrangian density:

L =
i
2
(ψψ̇∗ − ψ∗ψ̇) +

1
2
(
ψ′
)2 −V0e−x2

ψ2 +
η

2
ψ4. (9)

through the Euler-Lagrange equation:

∂L
∂ψ∗
− ∂

∂t

(
∂L
∂ψ̇∗

)
− ∂

∂x

(
∂L

∂ψ′∗

)
= 0, (10)

where ψ∗ is the conjugate complex of ψ, and the quantities ψ′ ≡ ∂ψ/∂x and ψ̇ ≡ ∂ψ/∂t
are the spatial and temporal derivatives, respectively. The choice of ansatz format is very
important [13]. According to the experimental results reported in Ref. [10], the magnon
density profile is similar to a Gaussian one. So, we opted for the Gaussian ansatz:

ψ(x, t) =

√
M

π1/2σ
e−x2/2σ2

e−iµt, (11)

where µ is the chemical potential and both the norm M and the width σ are
variational parameters.
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Now, our intention is to find the Euler-Lagrange equations that govern the evolution
of the variational parameters. For this purpose, we calculate the effective Lagrangian L by
averaging the Lagrangian density 〈L〉:

L = 〈L〉 =
∫
Ldx =

∫ [ i
2
(ψψ̇∗ − ψ∗ψ̇) +

1
2
(
ψ′
)2 −V0e−x2

ψ2 +
η

2
ψ4
]

dx. (12)

where the chemical potential µ was introduced to ensure that the parameter M maintains the
correct normalization of the wave function ψ. Thus, replacing Equation (11) in Equation (12),
the following effective Lagrangian is obtained:

L = (1−M)µ +
M

4σ2 −
MV0√
1 + σ2

+
ηM2

2
√

2πσ
. (13)

The Euler-Lagrange equations for the variational parameters can be obtained via

∂L
∂q

= 0, (14)

where q are the generalized coordinates q ≡ {µ, σ, M}. The first variational equation,
∂L/∂µ = 0, recovers the unit normalization, that is, M = 1; which is substituted in the
other equations below, except for the equation ∂L/∂M = 0, where M = 1 is substituted
after differentiation. The other equations, ∂L/∂σ = 0 and ∂L/∂M = 0, yield a set of
coupled nonlinear equations:

0 =
1

2σ2 −
V0σ√
1 + σ2

+
V0

(1 + σ2)
3/2 +

η

2
√

2πσ
, (15)

µ =
1

4σ2 −
V0√

1 + σ2
+

η√
2πσ

. (16)

3.2. Numerical Discretization

In order to confirm the predictions of variational results, we also searched for numerical
solutions referring to Equation (5) through the split-step Crank-Nicolson method. First,
Equation (5) is discretized in space and time using the finite difference method [23]. The
idea is to divide the spatial (temporal) domain xinicial ≤ x ≤ xfinal (tinicial ≤ t ≤ tfinal) into
m + 1 (n + 1) points equally spaced by a spatial (temporal) step ∆x = xm−x0

m

(
∆t = tn−t0

n

)
,

where x0 ≡ xinicial and xm ≡ xfinal (t0 ≡ tinicial e tn ≡ tfinal). Consequently, a mesh
consisting of (m + 1) × (n + 1) points is formed. In general, any point

(
xj, tk

)
can be

obtained via xj = x0 + j∆x and tk = t0 + k∆t, j = 0, 1, . . . , m and k = 0, 1, . . . , n.
The algorithm for the split-step Crank-Nicolson method with imaginary temporal

evolution and wave function renormalization can be summarized below [15]:

ψk+1/3
j ← exp

[(
V0e−x2

j − ηk

∣∣∣ψk
j

∣∣∣2)∆t
2

]
ψk

j ; (17)

ψk+2/3
j ← ψk+1/3

j + Λ
[(

ψk+2/3
j+1 − 2ψk+2/3

j + ψk+2/3
j−1

)
+
(

ψk+1/3
j+1 − 2ψk+1/3

j + ψk+1/3
j−1

)]
; (18)

ψk+1
j ← exp

[(
V0e−x2

j − ηk

∣∣∣ψk+2/3
j

∣∣∣2)∆t
2

]
ψk+2/3

j ; (19)

ψk+1
j ← ψk+1

j

[∫ ∣∣∣ψk+1
j

∣∣∣2dx
]−1/2

, (20)
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where we take ψk
j ≡ ψ(xj, tk) for simplicity of notation and the parameter Λ is given

by Λ ≡ ∆t
4(∆x)2 . Furthermore, we use the boundary conditions ψk

0 = ψk
m = 0 to satisfy

lim
x→±∞

ψ(x, t) = 0 and the following initial condition (Gaussian normalized to unity):

ψ(x, 0) =

√
1

π1/2σ
e−x2/2σ2

. (21)

It’s important to note that propagation in imaginary time does not preserve normalization.
However, this problem can be overcome by restoring the normalization of the wave function
(Equation (20)) after each Crank-Nicolson propagation operation (Equation (18)) [15,24].

Assuming that the wave function is normalized to the unit
∫
|ψ|2dx = 1, the chemical

potential can be calculated from the following expression:

µ =
∫ [1

2

(
dψ

dx

)2
−V0e−x2

ψ2 + ηψ4

]
dx. (22)

The analytical expression for energy per magnon is practically the same as for chemical
potential, but with the nonlinear term multiplied by the factor 1/2:

E
N

=
∫ [1

2

(
dψ

dx

)2
−V0e−x2

ψ2 +
η

2
ψ4

]
dx, (23)

where Ekin =
∫ 1

2

(
dψ
dx

)2
dx, Epot =

∫
−V0e−x2

ψ2dx and Eint =
∫ η

2 ψ4dx the kinetic,
potential and interaction energies, respectively.

Finally, the parameter σ2 (mean square width) can be calculated using expression [25]:

σ2 = 2
∫

x2ψ2dx. (24)

An important relationship that allows testing the accuracy of the numerical algorithm
can be derived through the virial theorem [26,27]:

2Ekin + Eint − 2V0

∫
x2e−x2

ψ2dx = 0. (25)

4. Results and Discussion

The Figures 1 and 2 shows, respectively, the behavior of the chemical potential µ,
energy per magnon E/N, mean square width σ2 and central density ρc = lim

x→0
|ψ|2 as a

function of nonlinearity η.
Regarding the confining potential, the Gaussian well described very well the confining

potential created by a spatially inhomogeneous magnetic field induced by a dc electric
current flowing in a control line as proposed by Ref. [10].

The profiles of the density |ψ|2 of the condensate obtained from the numerical solutions
(Here, the dimensionless parameters used in the numerical simulations were: x0 = −10,
xm = 10, t0 = 0, tn = 1000, ∆x = 0.02 and ∆t = 0.005.) (solid lines) and variational (string
of symbols) of Equation (5) for a Gaussian well of amplitude V0 = 5 are shown in Figure 3a
and, also, illustrates the effects of repulsive nonlinearity on the density distribution:
increasing the nonlinearity coefficient η inevitably causes an exponential decay of the
peak (central density ρc) and a enlargement of the density |ψ|2.
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η
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µ

-4
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0
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(a)

η
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-2

-1

num
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(b)

Figure 1. Numerical and variational results illustrating the behavior of (a) chemical potential µ and
(b) energy per magnon E/N as a function of the nonlinearity coefficient η. Solid lines represent
numerical solutions while dotted lines represent variational solutions. Stability was confirmed by the
anti-VK criterion (dµ/dN > 0) observed in (a).

η

0 2 4 6 8 10

σ
2

0

1

2

3

4

num

var

(a)

η

0 2 4 6 8 10

ρc

0.4

0.6

0.8

1

num

var

(b)

Figure 2. Numerical and variational results illustrating the behavior of (a) mean square width σ2 and
(b) central density ρc as a function of the nonlinearity coefficient η. Solid lines represent numerical
solutions while dotted lines represent variational solutions.

The stability of stationary solutions, both variational and numerical, can be observed
in Figure 1a through the anti-VK criterion [28], which says that stable solutions are always
found in regions where dµ/dN > 0 for repulsive BECs. Furthermore, both the precision
and the validation of these results were supported by the Virial theorem, as illustrated in
Figure 3b.

Due to the increase in nonlinearity η, the shape of the condensate deviates slightly
from the Gaussian. This discrepancy is evident when we compare the mean square
width obtained variationally and numerically, according to Figure 2a. Furthermore, this
discrepancy was also observed in numerical and variational results obtained in a superfluid
Fermi gas model in optical lattice by Adhikari et al. [29].

The results report that any increase in the coefficient of nonlinearity—which corresponds
to the density of magnons via Equation (6)—causes an increase in energy per magnon due
to magnon-magnon repulsion. Furthermore, we observe that the chemical potential also
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increases as the nonlinearity increases. Similar behavior was reported in Ref. [7]; increase in
chemical potential causing the increase in the density of magnons caused by the microwave
pumping technique.

It’s important to emphasize that all the results obtained in this paper describe very
well the behaviors that were observed experimentally in BECs of repulsive magnons (η > 0)
in YIG films created by the Demokritov group and reported in Ref. [10].

x

-5 -4 -3 -2 -1 0 1 2 3 4 5

|ψ|2

0

0.2

0.4

0.6

0.8

1
ηnum = 0

ηnum = 2

ηnum = 4

ηnum = 6

ηnum = 8

ηnum = 10

ηvar = 0

ηvar = 2

ηvar = 4

ηvar = 6

ηvar = 8

ηvar = 10

V0 = 5

(a)

η
0 2 4 6 8 10

-1

-0.5

0

0.5

1

Virial theorem

2Ekin + Eint − 2V0

∫
x
2
e
−x2ψ2

dx = 0

num

var

(b)

Figure 3. (a) Ground states obtained numerically and variationally from Equation (5) for a repulsive
BEC of magnons trapped by a Gaussian well for different coefficients of nonlinearity η. Solid lines
represent numerical solutions while strings of symbols represent variational solutions. (b) Validation
of numerical and variational results through the Virial theorem given by Equation (25).

5. Conclusions

This paper was based on the study of the stability of spin-wave solitons in Bose-
Einstein condensates of magnons subjected to repulsive interactions, confined by an
inhomogeneous Gaussian-well magnetic field. For this purpose, we use the Gross-Pitaevskii
equation to describe the condensate. In order to solve the EGP, we used two different
approaches: one analytical (variational method) and another numerical (split-step Crank-
Nicolson method). In both approaches, we used the Gaussian function to describe the
ansatz, referring to the variational method, and the initial condition, referring to the split-
step method. In general, we obtained a reasonable agreement between the variational
results and the numerical results related to the EGP associated with the proposed model.
Furthermore, the stability of the solutions was verified through the anti-VK criterion and
the validation of the results were supported by the virial theorem, in addition to being in
accordance with experimental results obtained recently. Finally, we strongly believe that
the theoretical results reported in this paper can open doors to better understand nonlinear
phenomena referring to Bose-Einstein condensates of magnons in YIG films.
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