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Alzheimer’s disease (AD) is the most common form of dementia. The pathological hallmarks of AD are amyloid plaques
[aggregates of amyloid-beta (A3)] and neurofibrillary tangles (aggregates of tau). Growing evidence suggests that tau accumulation
is pathologically more relevant to the development of neurodegeneration and cognitive decline in AD patients than Apf
plaques. Oxidative stress is a prominent early event in the pathogenesis of AD and is therefore believed to contribute to tau
hyperphosphorylation. Several studies have shown that the autophagic pathway in neurons is important under physiological and
pathological conditions. Therefore, this pathway plays a crucial role for the degradation of endogenous soluble tau. However, the
relationship between oxidative stress, tau protein hyperphosphorylation, autophagy dysregulation, and neuronal cell death in AD
remains unclear. Here, we review the latest progress in AD, with a special emphasis on oxidative stress, tau hyperphosphorylation,

and autophagy. We also discuss the relationship of these three factors in AD.

1. Introduction

Alzheimer’s disease (AD) is the most common form of
dementia in the elderly and a chronic neurodegenerative dis-
ease characterized by widespread degeneration of neurons.
An estimated 37 million people worldwide currently have
AD, which is estimated to increase to 65.7 million by 2030 and
115.4 million by 2050 [1, 2]. AD is a growing health concern
in society because patients suffer from progressive functional
impairments, emotional distress, loss of independence, and
behavioral deficits. It is characterized by the presence of
two types of neuropathological hallmarks: senile plaques
(SPs) and intracellular neurofibrillary tangles (NFTs). SPs
predominantly consist of extracellular amyloid S-peptide
(Ap) deposits. NFTs are formed by intraneuronal aggregation
of hyperphosphorylated tau. The amyloid cascade hypothesis

theory proposes a dysregulation of amyloid precursor protein
processing. This event leads to AD pathogenesis, which
involves the aggregation of Af3 (particularly Af42), neuritic
plaque formation, and consequently the formation of NFTs
followed by the disruption of synaptic connections, neuronal
death, and cognitive deficits (dementia) [3]. Increasing evi-
dence suggests that A8 oligomers (A30s) may be the primary
cause of AD because they have a greater correlation with
dementia than insoluble AB42 [4]. These ABOs bind to a
putative receptor and activate the receptor tyrosine kinase
EphA4 and Fyn. ABOs binding triggers aberrant activation
of NMDARs and abnormal increase in postsynaptic Ca*".
The following events include increased generation of reactive
oxygen species (ROS), and membrane lipid peroxidation;
mitochondrial fragmentation, Ca** induced Ca** release
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(CICR), then produces altered surface expression and dys-
regulation of receptor function, excitotoxicity, dendritic spine
retraction, and elimination [4-6].

Apalso plays a crucial role in inducing neuronal oxidative
stress [7, 8]. ApB-mediated mitochondrial oxidative stress
causes hyperphosphorylation of tau in AD brains [8-10].
Mounting evidence clearly links tau to neurodegeneration,
indicating that tau hyperphosphorylation may be the nec-
essary point in neural dysfunction and death. However,
whether autophagic dysfunction is involved in neuronal
death during this event still remains unknown. Recent studies
have indicated the importance of defective autophagy in
the pathogenesis of aging and neurodegenerative diseases
[11-14], especially in AD [15-17]. Autophagy may increase
the formation of autophagosome in AD, and autophagic
dysfunction may induce the pathogenesis of AD, particularly
at the late stage of AD [18-22]. However, the relationship
between oxidative stress, tau protein hyperphosphorylation,
autophagic dysfunction, and neuronal cells death in AD
remains elusive. In this review, we summarize the latest
progress in research focused on oxidative stress, tau hyper-
phosphorylation, and autophagic dysfunction and their rela-
tionship with AD.

2. Oxidative Stress in AD

In experimental models and human brain studies of AD,
oxidative stress has been shown to play an important role
in neurodegeneration [10, 23, 24]. Generally, oxidative stress
is caused by the imbalance between reactive oxygen species
(ROS) (0,7, H,0,, HO,, and -OH) and the breakdown of
chemically reactive species, by reducing agents and antiox-
idant enzymes, such as manganese superoxide dismutase
(SOD,) [25, 26]. This disequilibrium may result from disease,
stressors, or environmental factors. High ROS levels lead to
the accumulation of oxidized proteins, lipids, and nucleic
acids, thereby directly impairing cellular function if not
removed or neutralized [27]. Oxidative damage to cellular
components is likely to result in the alteration of membrane
properties, such as fluidity, ion transport, enzyme activities,
protein cross-linking, and eventually cell death.

Oxidative stress has been reported to be one of the earliest
events in AD. Several risk factors for AD may cause or
promote oxidative damage, such as advanced age [28, 29]
and apolipoprotein E (APOE) &4 alleles [30, 31]. Medical risk
factors include traumatic brain injury [32], stroke [33], hyper-
tension [34], diabetes mellitus [35], hypercholesterolemia
[36], and hyperhomocysteinemia [37]. Environmental and
lifestyle-related risk factors include aluminum exposure [38],
smoking [39], high calorie intake [40], vitamin D deficiency
[41], lack of exercise [42], and lack of intellectual activities
[43-45]. Mitochondrial dysfunction is known to be associ-
ated with oxidative stress and thus may be an initial trigger for
enhanced A production during the aging process [46-48].
Both soluble and fibrillar A5 may further accelerate oxidative
stress, as well as mitochondrial dysfunction [49, 50]. The
transgenic (Tg) Thyl-APP751 (SL) mouse model of AD shows
increased proteolytic cleavage of APP, increased production
of Af, and impaired Cu/Zn-SOD activity [51]. Furthermore,
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oxidative stress is considered as a primary factor of NFT
formation in AD [10, 24, 52, 53]. However, the relation-
ship between oxidative stress and tau hyperphosphorylation
remains unclear. Okadaic acid is used as a research model
to induce tau phosphorylation and neuronal death in AD.
Oxidative stress combined with okadaic acid results in tau
hyperphosphorylation [54]. Mitochondrial SOD, deficiency
increases the levels of Ser396 phosphorylated tau in the
Tg2576 mouse model of AD [55].

3. Tau Protein in AD

3.1. Tau Protein Physiology and Pathology. Tau protein
(known as neuronal microtubule associated protein tau) plays
a large role in the outgrowth of neuronal processes and the
development of neuronal polarity [56-58]. Tau protein in the
central nervous system is predominantly expressed in neu-
rons [59, 60], with its main function to promote microtubule
assembly, stabilize microtubules, affect the dynamics of
microtubules in neurons [61, 62], and inhibit apoptosis [63],
particularly in axons [64, 65]. However, recent reports suggest
that excess intracellular tau is released into the extracellular
culture medium via membrane vesicles [66]. In the adult
human brain, tau consists of six isoforms, and the tau gene
contains 16 exons. These isoforms are generated by alternative
splicing of exons 2, 3, and 10 of its pre-mRNA [67, 68]. The six
tau isoforms differ from each other by the presence or absence
of one or two inserts (coded by exon 2 or exons 2 and 3) in the
N-terminal part and the presence or absence of the second
microtubule-binding repeat (encoded by exon 10) in the C-
terminal portion. Depending on the alternative splicing of
exon 10, tau isoforms are termed 4R (four microtubule-
binding domains, with exon 10) or 3R (three microtubule-
binding domains, without exon 10). Adult human brain
expresses both 3R-tau and 4R-tau, whereas fetal human brain
expresses only 3R-tau [69, 70]. Immunocytochemistry and
biochemical analysis indicate that the ratio of 3R- to 4R-tau
altered in AD and other neurodegenerative brain disorders
[71-73], although in the normal adult human brain the level
of 3R-tau is approximately equal to that of 4R-tau [74].

Tau protein normally stabilizes axonal microtubules in
the cytoskeleton and plays a vital role in regulating the
morphology of neurons. It has more than 30 phosphoryla-
tion sites. When tau is abnormally hyperphosphorylated, it
destabilizes microtubules by decreasing the binding affinity
of tau, affecting its axonal transport and resulting in its
aggregation in NFTs [64]. NFTs are composed of paired
helical filaments (PHF) of abnormally hyperphosphorylated
tau. The pathogenesis of tau-mediated neurodegeneration
is unclear but hyperphosphorylation, oligomerization, fib-
rillization, and propagation of tau pathology have been
proposed as the likely pathological processes that induce
the loss of function or gain of tau toxicity, which caused
neurodegeneration [75]. Tau phosphorylation has been inves-
tigated at AD-related sites by using recombinant human tau
phosphorylated by DNA damage-activated checkpoint kinase
1 (Chkl) and checkpoint kinase 2 (Chk2) in vitro [76]. This
study identified a total of 27 Ser/Thr residues as Chkl or
Chk2 target sites. Among these sites, 13 have been identified
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to be phosphorylated in AD brains [77]. The generation of
a Tg mouse line overexpressing human tau441 via V337M
and R406W tau mutations has been shown to accelerate
the phosphorylation of human tau, inducing tau pathology
and cognitive deficits [78]. Pseudophosphorylation of tau
reduces microtubule interactions, disrupts the microtubule
network, and exerts neurotoxicity [79]. Interestingly, doubly
pseudophosphorylated tau proteins enhance microtubule
assembly activity and are more potent at regulating dynamic
instability [80]. However, four singly pseudophosphorylated
tau proteins exhibit a loss of function at the same sites (Thr
[231], Ser [262], Ser [396], and Ser [404]) [80].

3.2. Tau Protein Kinases and Phosphatase. Tau phosphoryla-
tion is mainly determined by a balance between the activation
of various tau protein kinases and phosphatases and its
disruption results in the abnormal phosphorylation of tau,
which is observed in AD. Each tau site is phosphorylated
by one or more protein kinases. Tau kinases are grouped
into three classes: (1) proline-directed protein kinases
(PDPK) containing glycogen synthase kinase-3 (GSK3), dual
specificity tyrosine-phosphorylation-regulated kinase 1A/B
(DyrklA/B), cyclin-dependent protein kinase-5 (CDK5), and
mitogen activated protein kinases (MAPK) (e.g., p38, Erkl/2,
and JNK1/2/3); (2) non-PDPXK, including tau-tubulin kinase
1/2 (e.g., casein kinase 1a/18/1e/2), microtubule affinity
regulating kinases, phosphorylase kinase, cAMP-dependent
protein kinase A (PKA), PKB/AKT, protein kinase C, protein
kinase N, and Ca**/calmodulin-dependent protein kinase I
(CaM kinase II); and (3) tyrosine protein kinases, including
Src family kinase (SFK) members (e.g., Src, Lck, Syk, and Fyn)
and Abelson family kinase members, ABL1 and ABL2 (ARG).

GSK3 (particularly GSK3p) plays a key role in the
pathogenesis of AD, contributing to A production and Af3-
mediated neuronal death by phosphorylating tau in most
serine and threonine residues and inducing hyperphospho-
rylation in paired helical filaments [81]. Inhibition of GSK3
prevents Af aggregation and tau hyperphosphorylation [82,
83]. The involvement of CDKS5 in tau phosphorylation is
shown by the increase in its enzymatic activity and the
absence of MT-2 cells neurite retraction in the presence of
roscovitine or CDKS5 siRNA [84]. Therefore, CDK5 may be a
key candidate target for therapeutic gene silencing [85]. p38
MAPK has been identified as one of the kinases involved in
the regulation of tau phosphorylation. Thus, under patho-
logical conditions this kinase is likely to play a role in the
hyperphosphorylation of tau [86]. CDKs and casein kinase
1 (CK1) are involved in the aggregation of A peptides
(forming extracellular plaques) and hyperphosphorylation of
tau (forming intracellular NFTs). The expression pattern of
CKI§ (an isoform of CK1) plays an important role in tau
aggregation in AD [87]. Ser214, Ser262, and Ser409 are major
phosphorylation sites of tau that are affected by PKA [88]. In
P19 cells stably expressing human tau441, CaM kinase II has
been shown to be involved in retinoic acid- (RA-) induced tau
phosphorylation-mediated apoptosis [89].

Phosphatases are also usually classified into three classes
according to their amino acids sequences, the structure of

their catalytic site, and their sensitivity to inhibitors. These
groups include (1) phosphoprotein phosphatase (PPP), (2)
metal-dependent protein phosphatase, and (3) protein tyro-
sine phosphatase (PTP). Tau phosphatases belong to the PPP
group (protein phosphatase [PP] 1, PP2A, PP2B, and PP5)
and PTP group tumor suppressor phosphatase and tensin
homolog (PTEN). The activity of PP2A, PP1, PP5, and PP2B
accounts for approximately 71%, 11%, 10%, and 7%, respec-
tively, in the normal human brain. However, in the AD brain,
the total phosphatase activity (and including overall activity)
for tau of PP2A, PP1, and PP5 is significantly decreased
by 50%, 20%, and 20%, respectively [90]. PP2A contributes
to abnormally hyperphosphorylated tau protein and is the
most efficient phosphatase. Moreover, the inhibition of PP2A
significantly plays a role in tau hyperphosphorylation [91-
93]. It indicated PP2A is downregulated in the Down syn-
drome (DS) brain and thus may be involved in the abnormal
hyperphosphorylation and accumulation of tau [94].

PP2A is regulated by endogenous inhibitor-1 of PP2A
(I1PP2A) and inhibitor-2 of PP2A (I2PP2A) in mammalian
tissues [95]. In AD brain, I2PP2A is translocated from
neuronal nucleus to cytoplasm where it inhibits PP2A
activity and promotes abnormal phosphorylation of tau.
With inactivation of the nuclear localization signal (NLS) of

2PP2A, KRK " — °AAA™ along with '*KR'” —

168 A A" mutations in I2PP2A (mNLS-I2PP2A), [2PP2A was
translocated from nucleus to the cytoplasm. Cytoplasmic
retention of I2PP2A physically interacted with PP2A and
inhibited its activity and induced Alzheimer-like abnormal
tau protein hyperphosphorylation by the direct interaction
of I2PP2A with PP2A and GSK-3f [96]. 12PP2A directly
inhibits the activity of PP2A without affecting its expression
[97]. GSK-3 activation significantly contributes to tau hyper-
phosphorylation by inhibiting PP2A via the upregulation of
12PP2A [98]. Okadaic acid is also considered to be a selective
and potent inhibitor of serine/threonine phosphatase-1 and
PP2A, which induces hyperphosphorylation of tau under
in vitro and in vivo conditions [99]. These data indicate
that upregulation or downregulation of the phosphorylation
system or dephosphorylation system, respectively, of tau
protein may be implicated in tau pathologies.

3.3. Tau Protein and Oxidative Stress

3.3.1. Tau Protein Hyperphosphorylation and Oxidative Stress.
Oxidative stress is believed to be a prominent early event in
the pathogenesis of AD, contributing to tau phosphorylation
and the formation of neurofibrillary tangles [48]. However,
the relationship and underlying mechanisms between oxida-
tive stress and tau hyperphosphorylation remain elusive.
Fatty acid oxidative products provide a direct link between
the mechanisms of how oxidative stress induces the forma-
tion of NFTs in AD [100]. Data from experiments show that
chronic oxidative stress increases the levels of tau phospho-
rylation at paired helical filaments (PHEF-1) epitope (serine
396/404) via the inhibition of glutathione synthesis with
buthionine sulfoximine (BSO) in an vitro model of chronic
oxidative stress [9]. In primary rat cortical neuronal cultures



stimulated by the combination of the copper chelator, cupri-
zone, and oxidative stress (Fe>*/H,0,), tau phosphorylation
is significantly increased by the elevated activity of GSK-3
[101]. Furthermore, treatment of rat hippocampal cells and
SHSY5Y human neuroblastoma cells with H,O, at the early
stages of oxidative stress exposure results in tau dephospho-
rylation at the taul epitope by CDKS5 via PP1 activation [102].
Several studies have suggested that oxidative stress is a causal
factor in tau-induced neurodegeneration in Drosophila [103-
105]. In contrast, a fragment of tau protein has been shown to
induce copper reduction, thus contributing to oxidative stress
and initiating copper-mediated generation of H,0, [106].

3.3.2. GSK3p, PP2A, and Oxidative Stress. Oxidative stress
is likely to play a critical role in tau hyperphosphorylation,
which is regulated by tau protein kinase activation and the
suppression of phosphatase. Tau hyperphosphorylation may
be induced by oxidative stress through the direct interaction
with tau protein kinase and phosphatase, particularly GSK-
33 and PP2A, respectively, because they are predominant and
play an important role. A recent study has indicated that
GSK-3p activity is upregulated under oxidative stress [107].
In human embryonic kidney 293/tau cells, H,O, increases
GSK-38 activity and tau is hyperphosphorylated at Ser396,
Ser404, and Thr231 [107]. Mitochondrial superoxide activates
the mitochondrial fraction of GSK-3a/f3, resulting in the
phosphorylation of the mitochondrial chaperone cyclophilin
D [108]. This effect also provides a link between GSK-3f and
oxidative stress. Studies have also focused on the link between
PP2A and oxidative stress. A recent report shows that rat
cortical neurons treated with okadaic acid inhibit PP2A
activity, resulting in an abnormal increase in mitochondrial
ROS and mitochondrial fission [109]. Other findings reveal
that ROS inhibits PP2A and PP5, leading to the activation
of JNK and Erkl/2 pathways and subsequently caspase-
dependent and caspase-independent apoptosis of neuronal
cells [110]. Despite these studies, the relationship of GSK3 and
PP2A with oxidative stress remains to be further investigated.

3.3.3. Antioxidants and the Tau Protein. Several epidemi-
ological studies have indicated a link between antioxidant
intake and reduced incidence of dementia (particularly AD)
and cognitive decline in elderly populations [111-113]. In
recent years, antioxidant therapy has received considerable
attention as a promising approach for slowing the progression
of AD. Research has focused on endogenous antioxidants
(e.g., vitamins, coenzyme Q10, and melatonin) and the intake
of dietary antioxidants, such as phenolic compounds that are
flavonoids or nonflavonoids [114, 115]. This increased interest
has thus strengthened the hypothesis that oxidative damage
may be responsible for the cognitive and functional decline in
AD patients. Melatonin is a free radical scavenger that blocks
tau hyperphosphorylation and microtubule disorganization
under in vivo and in vitro conditions [116-118]. It also
decreases the activity of GSK-3f [119]. Moreover, melatonin
may be a potentially useful agent in the prevention and
treatment of AD [120]. Other antioxidants, such as vitamins
E and C [121, 122], gossypin [123], curcumin [124-127], beta-
carotene [128], and Ginkgo biloba [129,130], are also reported
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to have a protective effect against neurotoxicity. In addition,
an association also exists between beta-carotene and tau in
AD patients [128]. Demethoxycurcumin has been shown to
inhibit the phosphorylation of both tau pS(262) and pS(396)
in murine neuroblastoma N2A cells [125]. Curcumin also
reduces soluble tau and elevated heat shock proteins involved
in tau clearance [126]. These results have therefore led to
further investigations of this compound as an antioxidant
therapy strategy for AD. Other experiments have shown that
the active component of Ginkgo biloba, ginkgolide A, inhibits
GSK3 and suppressed the phosphorylation level of tau [129].

4. Autophagy in AD

4.1. The Autophagic Pathway. Autophagy is an essential
lysosomal degradation pathway that turns over cytoplasmic
constituents, including misfolded or aggregated proteins and
damaged organelles, to facilitate the maintenance of cellular
homeostasis [13, 131-134]. Autophagy is usually activated
during nutrient deprivation and stress to enhance cellular
survival, and its constitutive activity is recognized to control
neuronal survival [14, 132, 135, 136]. Autophagic dysfunction
has been reported to contribute to AD [20, 64, 137, 138].
Autophagy includes macroautophagy, chaperone-
mediated autophagy, and microautophagy [13, 132, 134].
The most familiar of these types is macroautophagy,
which is a process of cellular self-cannibalism in which
portions of the cytoplasm are sequestered within double-
or multimembraned vesicles (autophagosomes) and then
delivered to lysosomes for bulk degradation [139]. Autophagy
is induced by two pathways in macroautophagy-mammalian
target of rapamycin- (mTOR-) dependent and mTOR-
independent signaling pathways [140]. mTOR is an important
convergence point in the cell signaling pathway. mTOR
kinase activity is modulated in response to various stimuli,
such as trophic factors, mitogens, hormones, amino acids,
cell energy status, and cellular stress [135, 136]. Rapamycin, as
mTOR inhibitor, is a very important tool for autophagy [140,
141]. mTOR complex (mTORC) 1 is involved in autophagy
and is the master regulator of cell growth enhancing the
cellular biomass by upregulating protein translation [142]. For
cells to control cellular homoeostasis during growth, a close
signaling interplay occurs between mTORCI and two other
protein kinases, AMP-activated protein kinase (AMPK) [143]
and Unc51-like kinase (ULK1) [144]. Autophagy is inhibited
by cytosolic p53 via the direct inhibition of AMPK [145].
mTORCI controls autophagy by directly interacting with
the Ulkl-focal adhesion kinase family-interacting protein
of 200 kDa (Atgl3-FIP200) complex [146]. Several mTOR-
independent signals affect the autophagy pathway. When
the level of free inositol and myoinositol-1,4,5-trisphosphate
IP3 decreases, autophagy is reduced [147]. Furthermore,
lower levels of Bcl-2 lead to the release of more Beclin-1,
thus forming the Beclin-1-PI3KCIII complex to activate
autophagy via the PI3K-AKT-mTOR pathway [148].

4.2. Autophagic Dysfunction in AD Pathology. A growing
body of evidence suggests a link between AD and autophagy
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(16, 17, 19, 20, 22]. Therefore, the pathological functions of
autophagy may be a critical mediator of neurotoxicity [149].
Autophagy develops in AD brains because of the ineffective
degradation of autophagosomes, which is controlled by many
kinds of autophagy-related genes (Atg), including Atgl-
Atg35. Atg8 (mammalian homolog is LC3) is an autophago-
somal membrane protein and a marker of autophagosome
formation [150]. Beclin-1 (the mammalian ortholog of yeast
Atg6) plays a pivotal role in autophagy [151]. In an in vitro
study of the pathogenesis of AD, Atg8/LC3 colocalizes with
APP and LC3-positive autophagosomes are present [152].
Beclin-1 knockdown increases APP, APP-like proteins, APP-
C-terminal fragments, and A3 [153]. Atg5, Atgl2, and LC3 are
also associated with plaque, tangle pathologies, and neuronal
death in AD [154]. Generally, autophagic vacuoles (AVs)
are rare in the normal brain but are increased in brains of
AD patients. In the early stages of AD, the expression of
lysosome-related component is significantly increased prior
to the formation of plaques and NFTs, and autophagy is
also induced at this stage; thus its activity is independent
of extracellular Af deposition and NFT formation [155]. In
the late stage of AD, AVs continue to accumulate in large
numbers in dystrophic neurites. There are several causes for
the dysfunction of autophagy in late-stage AD, including the
enhanced processing of APP and Af degradation [156] and
the toxic effect of high levels of intracellular Af3 on lysosomal
function [157]. Inhibition of the AV-lysosome fusion is caused
by impaired microtubule-associated retrograde transport,
which in turn leads to increased accumulation of AV in
dystrophic neurites [134]. Lysosomal enzyme dysfunction
may be associated with the accumulation of AVs [158].
Autophagy plays an important role in the degradation of
impaired mitochondria in AD [158, 159]. Dysfunction of the
autophagy-lysosome system causes insufficient degradation
of mitochondria [160]. Conversely, mitochondrial dysfunc-
tion may also impair this pathway [161].

4.3. Autophagy and the Tau Protein

4.3.1. Tau Protein Degradation via Autophagy. A variety of
forms of tau proteins have been shown to be degraded
by the ubiquitin-proteasome system (UPS) and autophagy-
lysosome system. UPS may play an important role in the
primary clearance of pathological tau. However, the impor-
tance of autophagy-mediated tau degradation, particularly at
the late stage of NFT formation, is becoming more recog-
nized. The autophagy-lysosomal system has the capacity to
engulf protein aggregates and keep tau levels at a low level
[162]. Macroautophagy is believed to be an evolutionarily
conserved mechanism for intracellular degradation of pro-
teins, such as Af and tau. mTOR in negatively regulating
autophagy is an important convergence point in cell sig-
naling. Increasing mTOR signaling and PI3K/AKT/mTOR
pathway facilitates tau pathology, but reducing this signaling
ameliorates tau pathology [11, 20, 163]. Rapamycin has been
reported to decrease tau phosphorylation at Ser214 in vitro
and reduce tau tangles and insoluble tau in vivo [164, 165].
In a tetracycline-inducible model [tauDeltaC (tauAC)], tau

is abnormally truncated at Asp**' and is cleared predomi-

nantly by macroautophagy and degraded significantly faster
than full-length tau [166]. Autophagy activation suppresses
tau aggregation and eliminates cytotoxicity [163]. Moreover,
trehalose (an enhancer of autophagy) directly inhibits tau
aggregation in primary neurons [167]. Under in vitro condi-
tions, the accumulation of tau species is increased with the
autophagic inhibitor, 3-methyladenine, and decreased with
trehalose [168]. Overall, these results suggest that tau degra-
dation involves autophagy, and this activity is beneficial for
neurons to prevent the accumulation of protein aggregates.

4.3.2. Tau Protein Hyperphosphorylation Leads to Autophagic
Dysfunction. The physiological function of tau protein is
well known to be associated with microtubule binding and
assembly. Autophagosome transport mainly depends on the
movement along microtubules in the autophagic pathway.
However, the link between tau hyperphosphorylation and
autophagic dysfunction is still under debate. Frontotempo-
ral dementia and parkinsonism linked to chromosome 17-
(FTDP-17-) mediated tau mutations can disrupt lysosomal
function in transgenic mice expressing human tau with
four tubulin-binding repeats (increased by FTDP-17 splice
donor mutations) and three FTDP-17 missense mutations:
G272V, P301L, and R406W [169]. In Tg mice expressing
mutant human (P301L) tau, axonal spheroids have been
shown to contain tau-immunoreactive filaments and AVs
[170]. A recent study has revealed that PP2A upregulation
stimulates neuronal autophagy, thus providing a link between
PP2A downregulation, autophagy disruption, and protein
aggregation [171]. Furthermore, autophagosomes have been
shown to be increased in rat neurons treated with okadaic
acid [172]. Altogether, tau is known to regulate the stability
of microtubules, and tau hyperphosphorylation may result in
the destabilization of neuronal microtubules, thus affecting
the placement and function of mitochondria and lysosomes.
Therefore, tau hyperphosphorylation is likely to play a critical
role in the process of autophagic dysfunction.

4.3.3. Autophagic Dysfunction Induces Tau Protein Aggrega-
tion and Neurodegeneration. The autophagy-lysosome sys-
tem is well recognized to play an important role in the clear-
ance of abnormally modified proteins in cells. Several studies
have shown that dysfunction of the autophagy-lysosome
system contributes to the formation of tau oligomers and
insoluble aggregates [22, 173, 174]. Abnormal lysosomal pro-
teases are also found in brains of AD patients [173, 174]. Both
phosphorylated tau and GSK3p significantly accumulate in
Atg7 conditional knockout brains, although NFTs are absent
[20]. The hyperphosphorylation of tau and NFT formation
result in the disruption of the neuronal skeleton, thereby con-
tributing to neuronal dysfunction, cell death, and eventually
the symptoms of AD. Genetic reduction of mammalian target
of rapamycin led to an increase in autophagy induction and
ameliorates Alzheimer’s disease-like cognitive and pathologi-
cal deficits [22]. Induction autophagy adaptor protein NDP52
may reduce tau protein phosphorylation in neurons [20].
Therefore, the autophagy-lysosome system plays a crucial role
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FIGURE I: Tau protein NFTs formation and autophagic dysfunction in Alzheimer’s disease. Af oligomers and ROS production intrigue
oxidative stress and mitochondria dysfunction, in which induce tau protein hyperphosphorylation and neurofibrillary tangles formation
with protein phosphatase and kinases imbalance. These events converge to autophagic dysfunction and tau protein aggregation to lead to

neurodegeneration and cell death in AD.

in the clearance of tau, and its accumulation may be due to
autophagic dysfunction in cells.

5. Conclusion

Oxidative stress is reported to be one of the earliest events
in AD and can induce tau hyperphosphorylation, which
destabilizes microtubules by decreasing the binding affinity
of tau, thereby resulting in the formation of NFTs, which
are a major pathological hallmark of AD. Af and other risk
factors play the crucial role in neuronal oxidative stress. Af3-
mediated mitochondrial oxidative stress causes hyperphos-
phorylation of tau in AD brains, as well as mitochondrial
dysfunction. Tau hyperphosphorylation may be the necessary
point in neural dysfunction and death. Hyperphosphoryla-
tion, oligomerization, fibrillization, and propagation of tau
pathology have been proposed as the pathogenesis of tau-
mediated neurodegeneration. In addition to oxidative stress,
tau protein phosphorylation is also regulated by protein
kinase and phosphatase. It indicates the roles of mitochondria
and protein phosphatase on oxidative stress and tau protein
hyperphosphorylation. Meanwhile it strengthens the hypoth-
esis that oxidative damage is responsible for the cognitive and
functional decline in AD patients.

Dysfunctional tau protein is degraded via autophagy-
lysosomal pathway. Autophagy is an essential lysosomal
degradation process that turns over cytoplasmic constituents,
including misfolded or aggregated proteins and damaged

organelles, to facilitate the maintenance of cellular homeosta-
sis. Tau hyperphosphorylation is likely to play a critical role
in the process of autophagic dysfunction, and dysfunction
of the autophagy-lysosome system may also promote the tau
aggregation. Altogether, tau is known to regulate the stability
of microtubules, and tau hyperphosphorylation may result in
the destabilization of neuronal microtubules, thus affecting
the function of mitochondria and lysosomes.

These events initiate a series of cascades to induce
neurodegeneration and cell death in AD. A oligomers and
ROS production intrigue oxidative stress and mitochondria
dysfunction, in which they induce tau protein hyperphospho-
rylation and neurofibrillary tangles formation with protein
phosphatase and kinases imbalance. These events converge to
autophagic dysfunction and tau protein aggregation to lead
to neurodegeneration and cell death in AD (Figure 1). How-
ever, the relationships between oxidative stress, tau hyper-
phosphorylation, and autophagic dysfunction and accurate
mechanisms on neurodegeneration, especially mitochondria
and protein phosphatase in AD, still require further research.
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