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Kinetic instability, symmetry 
breaking and role of geometric 
constraints on the upper bounds 
of disorder in two dimensional 
packings
Raj Kishore1, Shreeja Das1, Zohar Nussinov2 & Kisor K. Sahu1

Although the energetics of grain boundaries are more or less understood, their mechanical description 
remains challenging primarily because of very fast dynamics in the atomic length scale. By contrast, 
granular dynamics are extraordinarily sluggish. In this study, two dimensional centripetal packings 
of macroscopic granular particles are employed to investigate the role of geometric aspects of grain 
boundary formation. Using a novel sampling scheme, the extensive configuration space is well 
represented by a few prominent structures. Our results suggest that cohesive effects “iron out” any 
disorder present and enforce a transition towards a “fixed point” basin associated with a universal high 
density jammed hexagonal structure. Two main conjectures are advanced: (i) the appearance of grain 
boundary like structures is the manifestation of the kinetic instabilities of the densification process and 
has its origin in the structural rearrangement and (ii) the departure from six-fold coordination in the final 
packing is bounded from above by a sixth of the angular dispersion present in the initial configuration. 
If similar predictive consequences are further developed for three dimensional cases, this may have far 
reaching consequences in many areas of science and technology.

Grain boundaries are fascinating entities that may significantly alter material properties. While, typically, their 
influence on the electrical1–3 and thermal properties4 is moderate, the mechanical5,6 and optical7,8 properties 
may be spectacularly impacted by grain boundaries. Although the energetics (thermodynamic aspects) of 
grain boundary are more or less well understood9, their mechanical description is still lacking. The very rapid 
atomic scale dynamics during solidification from the liquid state10 renders many such questions not too crucial. 
Glassy dynamics, on the other hand, are orders of magnitude slower as these occur in a (semi-)rigid state11,12. 
Glassy dynamics are notoriously difficult as they include many complicating factors, whose effects are poorly 
understood13,14. In this study, centripetal packing is used to investigate the role of geometric constraints in the 
mechanical description of grain boundary formation, particularly the initial stages, because of its slow dynamics. 
Slow dynamics primarily arise due to the low energy densities of granular particle assemblies as compared to 
their atomic counterparts (roughly five orders of magnitude smaller). Additionally, the potential energy land-
scape (PEL) in atomic systems possess relatively deep minima near the crystalline (ordered) configurations15,16. 
Therefore, in the configuration space, if a system is in the neighbourhood of any such ordered state, the system 
inevitably veers towards it. These minima act as local attractors in PEL and it is very difficult to study dynamics in 
this space without falling into these steep and deep wells. The main objective of this work is to study the effects of 
geometric constraints, particularly those imposed by the linear dimensions of the finite atoms, on the mechanical 
description of grain boundary formation. In order to eliminate complexities arising from pair-wise interactions 
of long range potentials, cohesion is modelled via an externally applied simple centripetal force field. This is 
particularly advantageous as the absence of pairwise interactions moderates the depth of these wells in the PEL; 
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proximate systems therefore can be readily studied. Monoatomic systems are ideal starting point as they involve 
fewer geometrical complexities. 

The present study relates to a monodisperse sphere packing problem17,18, which is an interesting science in its 
own right. Sphere packing is presumably one of the oldest problems mankind has ever attempted to study dating 
back to pre-historic times because of its implication in measurement of food grains by pouring them in a basket19. 
A precise and complete understanding of such an apparently simple problem (the structure of the heap) is still out 
of reach for modern science. However, considerable simplicity can be achieved by imposing the constraint that all 
the constituent particles consist of monodispersed spheres alone. With the advent of X-ray crystallography, the 
intricate details of atomic packing in crystals could be obtained and those atomic ensembles were almost always 
modeled using sphere packing. The aperiodic arrangement of sphere packing also gained importance as it was 
shown that hand-made ball-and-stick models of monodisperse spheres have significant structural similarity with 
the atomic structure of metallic (pure) liquids as studied by X-ray diffraction20–22. Mathematical treatment for 
mono-disperse sphere ensembles, on the other hand, faced considerable challenge both for periodic and aperi-
odic arrangements. “While all the physicist and engineers knew” that using mono-dispersed spheres, a denser 
packing than hexagonal close packed or face-centered cubic systems, both having 74% packing density, could not 
be achieved for large volumes. Proving this mathematically turned out to be a formidable challenge23. So much so, 
that it featured in the list of greatest unsolved problems in mathematics24. Only in 1998, a mathematical proof to 
this conjecture was presented25. Another important development has taken place in the theoretical formulation 
of jamming26–31. Other than those limits, generalized predictions without resorting to detailed numerical experi-
ments about sphere systems have largely remained elusive.

In the present study, the overall symmetry of disparate systems will be dictated by the initial structure because 
of rotational invariance of the centripetal force field. It is observed that, packing is achieved by breaking this 
symmetry and making a transition to a denser topological class which is hexagonal for 2-D disks. A kinetic 
instability underlies this phenomenon and leads to symmetry breaking. New (dis)order parameters also enable 
predictions for final structures without resorting to detailed experiments/simulations, which have thus far eluded 
sphere-packing studies. In addition, this article aims to obtain fundamental insights about the role of geometric 
constraints on the mechanism of grain boundary formation in 2D, using simple systems consisting of monodis-
persed disks where, cohesion is not because of complex pairwise interactions, but because of a global hypothetical 
force field acting toward the center of the system. Real materials are three dimensional and hence findings of this 
study will not have immediate applicability. It, however, attempts to chart a path towards that goal. If such pre-
dictive capabilities are further developed for the three dimensional cases, it will have far reaching consequences 
to earthquake and avalanche studies32,33 and to industries such as pharmaceutical34,35, minerals36, agricultural37, 
cement and concrete38, chemicals39 etc.

The Model System
Each simulation involves roughly 10000 mono-dispersed particles distributed in a 2-D box with low initial den-
sity (~12% packing fraction). At time t =  0, all of the particles are subjected to an externally applied centripetal 
force (magnitude set equal to gravitational force) directed towards the center of the box. The particles lose energy 
during collisions among themselves owing to the friction and damping, which are typical for realistic granular 
particles. Finally a packing is obtained. The present study aims to capture the effect of initial state sampled any-
where from the entire configuration space that encompasses both periodic as well as aperiodic regimes having 
similar (~12%) packing density. It is established that for 2-D monodispersed ordered states, only five types of 
Bravais nets (namely square, hexagon, rectangle, centred rectangle and oblique) belonging to four crystal systems 
(namely square, hexagon, rectangle and oblique) do exist40. The present study involves all five Bravais nets as well 
as random structure as initial configurations. More details concerning the uniqueness of random configuration 
are provided in the Supplementary S1.

We will study the effect of the perturbation of initial particle positions relative to an initial order (i.e., posi-
tional disorder). In two dimensions, there are only two crystal classes, namely ‘compact-hexagonal’ (defined 
below) and ‘compact-square’ lattices having a unique length scale (both basis vectors have same length). The word 
‘compact’ in this article implies regularly packed structures, where neighboring particles touch each other (unlike 
the low density configurations prior to inward collapse in present study wherein neighbors are widely separated). 
However, the first neighbor distances between the lattice points for both these compact crystals are also identical. 
The perturbation is quantified by the difference in the distance between second neighboring particles in those 
two lattices. The difference in the second neighboring distances in compact hexagon and square structures is  
2(√ 3−√ 2)r =  0.6537r and this value will be referred to as a perturbation of size 100% . Four different perturba-
tion levels were used in the present work: none, 50%, 100% and 150%. Though the perturbations used in present 
study in this scale are high, they are roughly one order of magnitude smaller than the initial inter-particle separa-
tion. Because of this, after adding perturbations the derived structures are assumed to belong to the original class 
for easy classification purpose (nomenclature) though these structures no longer possess the original symmetries 
in a strict mathematical sense.

One might suspect that the PEL of 2D atomic ensembles might contain deep wells near the five Bravais nets 
and hence transitions from one to other might be energetically costly. The absence of interatomic force in present 
simulations is a clear distinction from the atomic analogues; the motivation for avoiding such local trapping led 
to the choice of uniform perturbation (meaning all particles are displaced by identical value decided by pertur-
bation level but in random directions). To generate sufficient statistics, for each symmetry type and perturbation 
levels, five simulations were performed, which were realized by random assignment of perturbation directions. 
Generating other instances of simulation is trivial for perturbed systems because of random assignment of pertur-
bation directions for individual particles. For unperturbed systems, lack of such movement and the requirement 
of fixed initial packing density is an issue as it does not allow any change of inter-particle distance for ordered 
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structures. Also, for these cases, one cannot expect to generate other instances of simulation by rotating an orig-
inal configuration because of rotational invariance of central force field. The central nature of the force, however, 
destroys the translational invariance and thus distinct instances of initial configurations for unperturbed systems 
were generated by translating the original configurations by small values (~0.1r) [see Supplementary S2].

Since the initial densities and hence the average inter-particle distances are kept constant during all the sim-
ulations, one of the key parameters of the initial configuration that is expected to influence the final packed 
structure is the distribution of angles between “neighboring particles”. An objective definition of “neighborhood” 
is provided by a Voronoi diagram. A Voronoi diagram centered about sphere i encloses all points P that are 
closer to it than any other sphere j. Spheres i and j whose respective Voronoi regions share a face are termed 
“natural neighbors”. Delaunay triangulation41 produces a graph of connected natural neighbors by constructing 
the geometrical dual of the Voronoi tessellation. Therefore, the distribution of angles of a Delaunay net is one of 
the best representation schemes for the three body distribution function and will be used in the present article. 
An advantage of this approach is the insensitivity to scaling (the results are only function of angular distribution 
and are independent to the inter-particle distances) making the method applicable for dilute (gas-like) and dense 
(solid-like) phases and even for a mixture of both, which is difficult to analyze by other methods. The distribution 
of angles of Delaunay nets is shown in Fig. 1. At higher perturbation levels, the differences in angular distributions 
between Bravais nets and random configurations get effectively blurred ensuring a smooth transition from crystal 
geometries to random configurations. The sampling scheme presented here using different levels of perturbation 
helps interpolate between lattice types and enables probing the entire configuration space for low initial system 
density using only 21 configurations [see Supplementary S3] though more than 120 configurations were studied 
for statistical considerations. This methodology of using perturbation as an interpolation scheme between Bravais 
lattices can be easily extended to three dimensions for representing the extensive configuration space (particularly 
for low density regimes) using limited numbers of samples. Since an arbitrary displacement of any particle results 
in a different configuration, the configuration space itself is ‘uncountably infinite’ and the present scheme allows 
to completely sample the entire configuration space (for the invariant density) by as low as few tens of discrete 
structures.

Methods
Distinct Element Modeling (DEM) is a method of choice for realistic simulation of ‘soft’ particles and has been 
implemented in the standard form42–46 for the present study. Here, particle motions are calculated by numerical 
integration of the Newtonian equations of motion. Normal component of pairwise contact dynamics is modeled 
by Hertz method modified for viscoelastic spheres47,48 and tangential component is based on Haff and Werner49 

Figure 1. Angular distribution of Delaunay triangles for different initial configurations: (a) 0% perturbation 
(b) 50% perturbation (c) 100% perturbation (d) 150% perturbation applied to various reference states (centered 
rectangle, … , square lattice) . For high perturbations, the angular distributions for different lattice-classes 
become similar. This property underlies the basis of an interpolation scheme between different lattice-classes 
and random configurations (See text).
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model. A time step of 1 μsec is used for the present simulation. Contact detection is performed using a Verlet 
list50,51. Numerical integrations are performed by the fifth order predictor corrector method52. The details of 
mathematical formulations and numerical schemes are discussed in details in Supplementary S4.

Results
Dynamical analysis of packing. Different aspects of evolution of the configurations with no perturbation 
are presented in Fig. 2(a–c). While the average velocity and force (Fig. 2a,b) display nearly identical patterns 
(with the exception of rectangle in Fig. 2b); in the interval between 0.6 to 1 second, the density (Fig. 2c) exhibits 
different trends. This disparity is indicative of varying structural rearrangements. The results reflect the fact that 
kinetic evolution of the systems is independent of the symmetry of the original state apart for weak signatures of 
structural rearrangements. For a better understanding of the origin of structural rearrangements, the trajectories 
of all the particles for two configurations that exhibit the largest discrepancy (namely those systems with initial 
hexagonal and random structures) are depicted in Fig. 3a,b respectively. The random system is more mobile 
as compared to the hexagonal system (Fig. 3a,b respectively). A particularly striking feature is the presence of 
domain like structure for the system with a random initial configuration and their absence in the hexagonal case. 
Further implications of such structures will be discussed later.

Statistical analysis of final packing (Statics). The final packed structures for six different initial config-
urations (one set) are shown in Fig. 4. Irrespective of the symmetry of initial configurations, the final packings for 
all cases are predominately hexagonal with minor but varying degrees of departures from six fold coordination. 
Such departures are of the form of point and line defects. The line defects are reminiscent of grain boundary like 
structures one typically finds in metallic microstructures (ceramic/polymer microstructures are rather complex 
compared to the atomic description of grain boundaries in pure elemental metals). It is observed that the packing 
obtained from initial hexagonal configurations have the least disordered regions. It is interesting to compare the 
trajectories depicted in Fig. 3 with the final configurations of random and hexagonal packings shown in Fig. 4. 
One can immediately establish the connection between the domain boundaries in Fig. 3a and the grain boundary 
like structure for random configuration in Fig. 4d (and the corresponding absence of similar features for hexagon 
in the Figs 3b and 4b). Therefore, it can be concluded that line defects corresponding to departures from six fold 
coordination, manifest as grain boundary-like structures, are generally correlated to differing degrees of struc-
tural rearrangements and have a kinetic origin. This establishes a connection between kinetic evolution and final 
structure.

Figure 2. Temporal evolution for each symmetry class in the absence of a perturbation. (a) Average velocity 
and (b) force on particles (c) the density (measured via Delaunay nets) as a function of time. Two vertical lines 
in 0.6 s and 1.0 s indicate the time span where the evolution of density is different and is indicative of varying 
degrees of structural rearrangements. The trajectories of all the particles for two systems exhibiting maximum 
differences, namely hexagonal and random systems are plotted in Fig. 3. The error bars mark the standard 
deviations.
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The evolution of the rotational symmetries during the course of simulation is of particular interest. Each sim-
ulation in the present study captures three distinct aspects: (i) the central force, which is rotationally invariant, 
(ii) the initial structures which show limited rotational symmetries as dictated by the corresponding Bravais nets 

Figure 3. Trajectory of particles between 0.6 s and 1.0 s for (a) random and (b) hexagonal systems. The 
trajectories are updated each 0.05 s. Bar represents color coding used for the length of both trajectories and 
displacements in particle diameter unit for each particle during the time interval of 0.6 to 1 sec.

Figure 4. Coordination number distribution in final packed structure with initial configuration as (a) Centered 
rectangle (b) Hexagon (c) Oblique (d) Random (e) Rectangle (f) Square. Color bar shows particles with 
different coordination numbers.
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(for random, there is none) and, (iii) the governing laws (e.g., Newton’s laws, collisions, etc.), which are rotation-
ally invariant. An entire simulation for a particular configuration is thus limited by the symmetries of the initial 
configuration. Hence the appearance of line defects that breaks the rotational symmetries even for Bravais nets 
deserves serious attention [see Supplementary S5]. Grain boundary like structures reflect the kinetic instabilities 
of the densification process that originate in the present case by symmetry breaking during structural rearrange-
ment process.

A detailed analysis of the final packings appears in Supplementary S6. In a 2-D densification process, there 
is a natural tendency for the particles to achieve a six-fold coordination as such coordination can maximize the 
density. The externally applied centripetal force emulates a cohesive force driving the system towards maximum 
density. Because of this, irrespective of the initial configuration, most of the particles in final packing tend to 
have a six-fold coordination. However, a six-fold coordination corresponds to a crystalline order (Hexagonal). 
Hence we introduce two new (dis)order parameters namely (i) the Bernoulli Entropy (H) (equation (1)) and  
(ii) the degree of disorder (D) (equation (2)). These two measures monitor the departure from the six fold coordi-
nation. The Bernoulli Entropy (H), which is the Shannon entropy53,54 for the simple case of binomial distribution 
is associated with the following binary process: whether a particle deviates from six fold coordination or not. The 
Degree of disorder (D) quantifies how large the departure is (including its magnitude). Both of these parameters 
are normalized which makes them independent of sample size.
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Here, ni is the coordination number of ith particle and N is the total number of particles in the configuration 
and δ is Kronecker delta. The complimentary functions H and D can assume any value between zero and unity 
and are somewhat correlated (see Supplementary S7 for details). Figure 5a,b shows both H and D as a function of 
symmetry class and perturbation strengths.

We earlier argued that an angular dispersion might play a significant role and this will be closely examined 
now. The angular dispersion can capture the evolution of disorder over the entire dynamic range. In contrast, the 
entropy H and the degree of disorder, D, assume meaningful values at high densities when most particles are in 
contact. The choice of the triangular Delaunay nets as a basis for the measurements of angles stipulates the mean 
value to be trivially π /3. A better characterization parameter of the distribution of the angles will then be given 
by the second moment (standard deviation) which will be referred here as angular dispersion and measured in 
radians.

Figure 6 demonstrates that the degree of disorder in final packings is always smaller than one sixth of the 
angular dispersion of initial states (for all possible symmetries). Albeit similarities, differences remain between 

Figure 5. (a) Entropy and (b) disorder (both color coded, and averaged over five sets) as a function of both 
symmetry of initial configuration and perturbation level. The data points are only at grid values (averages) 
and the intervening spaces are color-codded with smooth interpolating spline for a guide to the eye to identify 
patterns.
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the disparate initial states. This tendency towards a reduced degree of disorder is expected as the system becomes 
more compact. The effect of the centripetal force is to increase the density. The resultant dynamics not only  
“iron out” the disorder in the initial state but also enforce a topological transition towards six-fold hexagonal 
structure. In the high density limit, the system may progressively veer towards a “fixed point” basin associated 
with universal high density jammed structure. Nevertheless, correlations between the initial and final state do 
persist as the Fig. 6 elucidates (such as point and/or line defects seen in Figs 3 and 4).

In the middle of last century, Turnbull’s55 demonstration that liquid metals can be considerably super-cooled 
was surprising given their similarity in following aspects: (i) density (ii) coordination numbers of the liquid and 
crystalline phases (iii) their simple symmetric structural units, in contrast to the complex molecular structures, 
say, in organic compounds, proteins, etc. A recent study56 demonstrated that considerable structural similarity 
exists between the atomic ensemble of pure super-cooled liquid metals and the packing of macroscopic spheres. 
This result is striking not only because of the fact that the length scales involved differ by nearly eight orders 
of magnitude, but also because of the stark contrast in the nature of interaction between the constituent parti-
cles. While the atoms possess long range interactions, granular particle experience forces only when they are in 
contact. It highlights that the topological aspects (invoking the atom-bonding network) of sphere packing is of 
paramount interest and is of no lesser significance compared to interaction mechanisms/potentials. If and when 
present, the character of correlations and absence of very strong correlations between the dynamics and initial 
structure may extend beyond the centripetal systems investigated here. For instance, different classes of initial 
favored structures with varying degrees of commensurability were recently seen to lead to long time dynamics57. 
Hence, in the perspective of other works, there are strong indicators (that still need to be rigorously tested) hint-
ing at a unifying picture for all polycrystalline materials.

The present observation provides predictive power for compaction of 2-d mono-sized spheres [prediction of 
disorder in final structure is discussed in details in Supplementary S7]. To the best of our knowledge, this is the first 
study explicitly illustrates how disorder of the final structure can be predicted from the initial structure. We now 
advance a second hypothesis for all 2d mono-sized spheres (disk) systems, irrespective of their type of structure 
that have low initial densities. Our results suggest that under the influence of long range forces in these systems, 
the departure from six fold coordination (i.e., the degree of disorder as defined in equation (2)) in final packing is 
always less than one sixth of the angular dispersion (when the latter is measured in radians) of the initial configura-
tion as quantified by Delaunay triangulation. The lower disorder present in the final configurations obtained from 
hexagonal, oblique and centred rectangular compared to the square, rectangular and random counterparts (Fig. 5) 
can be explained by differences in their initial angular dispersion highlighted by a verticle dashed line in Fig. 6.

Conclusions
2-D containerless packing of monodisperse spheres having very low initial density (~12%) have been studied. 
Using a novel sampling scheme, the nearly infinite 2-D configuration space for low initial packing fraction has 
been well represented and reasonably sampled by only 21 structures, though more than 120 simulations are 
performed for statistical considerations. This methodology can be used for interpolation between lattice and 
amorphous configurations and can be extended to three dimensions. In this article, densification process under 
the influence of centripetal force (set equal in strength to the gravitational force) is studied by the discrete element 
method. This external force serves as a tool to investigate the role of geometric aspects in the mechanism of grain 
boundary formation, particularly its initial stages because of its slow dynamics. All of the simulations show sim-
ilar kinetic evolution, which, not only “irons out” the disorder in the initial state but also enforces a topological 
transition towards six-fold hexagonal structure leaving a weak signature of structural rearrangements. Despite 
this ‘ironing-out’, signature of initial structures persists in final structure in weak and disguised form. In the high 

Figure 6. For all the simulations, the degree of disorder, D of final structures is plotted as a function of 
angular dispersion (measured in radians) of initial configurations. It is observed that degree of disorder, D of 
final structures are always less than one sixth of angular dispersion of initial configurations. Lower disorder in 
the final configurations that were obtained from hexagonal, oblique and centred rectangular structures (Fig. 5) 
can be explained by differences in their initial angular dispersion highlighted by a verticle dashed line.
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density limit, the system progressively veered towards a “fixed point” basin associated with universal high density 
jammed structure. Analysis of the symmetry breaking led to the following conjecture: the appearance of grain 
boundary like structures reflects the kinetic instabilities of the densification process and has its origin in the 
structural rearrangements. An analysis of the structural disorder in final packing lead to another conjecture: the 
departure from six fold coordination per particle (degree of disorder as defined in equation (2)) in final packings 
is always less than one sixth of the angular dispersion (as measured in radians) of the initial configuration meas-
ured using Delaunay triangulation. This enabled predictions of disorder in final structures without resorting to 
detailed experiments/simulations, which has thus far eluded the packing studies.
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