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Abstract: A multiplex rapid detection system, based on a PCR-lateral flow biosensor (mPCR-LFB)
was developed to identify Salmonella Typhi and Salmonella Paratyphi A from suspected carriers. The
lower detection limit for S. Typhi and S. Paratyphi A was 0.16 and 0.08 ng DNA equivalent to 10 and
102 CFU/mL, respectively. Lateral flow biosensor was used for visual detection of mPCR amplicons
(stgA, SPAint, ompC, internal amplification control) by labeling forward primers with fluorescein-
isothiocyanate (FITC), Texas Red, dinitrophenol (DNP) and digoxigenin (DIG) and reverse primers
with biotin. Binding of streptavidin-colloidal gold conjugate with the amplicons resulted in formation
of a red color dots on the strip after 15–20 min of sample exposure. The nucleic acid lateral flow
analysis of the mPCR-LFB was better in sensitivity and more rapid than the conventional agarose gel
electrophoresis. Moreover, the mPCR-LFB showed 100% sensitivity and specificity when evaluated
with stools spiked with 100 isolates of Salmonella genus and other bacteria. A prospective cohort
study on stool samples of 1176 food handlers in outbreak areas (suspected carriers) resulted in 23 (2%)
positive for S. Typhi. The developed assay has potential to be used for rapid detection of typhoid
carriers in surveillance program.

Keywords: multiplex PCR-lateral flow biosensor; point-of-care testing; Salmonella Typhi; Salmonella
Paratyphi A; food handlers; typhoid carriers

1. Introduction

Enteric fever is a public health problem in many developing and underdeveloped
countries. However, typhoid fever has become relatively rare in developed countries [1].
The majority of cases are caused by Salmonella Typhi, followed by Salmonella Paratyphi A.
The disease is transmitted via consumption of food and water contaminated by individuals
who are carriers of the bacteria [2]. According to the World Health Organization (WHO), a
carrier is defined as a person who has fully recovered but continues the fecal excretion of
S. Typhi intermittently for up to a year thereafter [3]. Approximately 1 to 5% of typhoid
patients have been confirmed to be carriers when their stools were tested one-year post-
infection [3]. They showed no clinical symptoms but have the potential to cause outbreaks
in communities.

Stool culture is the gold standard for diagnosis of typhoid and paratyphoid carriers.
However, it takes two to seven days to produce results and requires skilled laboratory
personnel to identify the correct bacterial colonies on the selective agar plate [4–7]. Carriers
can also be identified using serological methods such as Vi-ELISA, with a sensitivity and
specificity of 95%, compared to 86% by the stool culture method [8]. However, Vi-ELISA is
prone to produce false-positive results due to the widespread use of Vi-vaccine which leads
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to an increase in anti-Vi antibody level [9]. Furthermore, the Vi-ELISA is not commercially
available.

Polymerase chain reaction PCR technique has been known to be sensitive, specific,
and able to detect multiple pathogens in a single reaction tube [5,10]. Typhoid detection
by PCR works by amplifying identified region(s) of the bacterial DNA in blood samples
of suspected typhoid patients. Several studies on development and utilization of PCR
for typhoid detection concentrated more on detecting S. Typhi in blood in symptomatic
patients [4,11–16]. PCR amplicons are commonly detected and visualized using conven-
tional agarose gel electrophoresis and an ultraviolet (UV) transilluminator, but this method
is time consuming and laborious and requires special equipment and skilled personnel.
PCR is also reported to be an effective method to amplify the bacterial genes in stool
samples [17,18].

Another method is real-time PCR, and the turnaround time of real-time PCR was
often reported to be shorter compared to conventional PCR. A real-time PCR study using
cytolysin A (clyA) gene to detect typhoidal and paratyphoidal Salmonella in blood samples
showed a sensitivity of 40%, which was similar with blood culture although both methods
revealed high specificity of more than 95% [19]. Another experiment using flagellin C
(fliC-d) gene showed sensitivity of 91.4% and specificity of 100% [20]. Real-time PCR had
been previously used to detect of typhoidal Salmonella, non-typhoidal Salmonella and other
enteric pathogens in stool samples of gastrointestinal patients with high sensitivity and
specificity of more than 95% [21–23]. However, real-time PCR has the limitation that the
available master mix reagents and consumables are provided according to the real-time
PCR system.

In terms of lateral flow assay development for diagnostics application, several stud-
ies were conducted for antibody detection for screening of typhoid and paratyphoid
fever [24,25]. A very sensitive confirmatory test is via PCR. PCR has the advantage of
adopting lateral flow assay for visualization for amplicons instead of agarose gel elec-
trophoresis. Therefore, an alternative method for laboratory diagnosis of typhoidal and
paratyphoidal Salmonella is by performing conventional PCR followed by detection by
a lateral flow biosensor (LFB) device; this has comparable turnaround time as real-time
PCR since the detection for lateral flow is done in 15–20 min [26]. LFB involves the im-
mobilization of antibody on a solid surface, hybridization of labeled-PCR amplicons and
detection by nanoparticles such as colloidal gold [27–32]. The detection method is rapid,
user-friendly and the results can be observed by naked eye [29,32–36].

The present study describes a multiplex PCR-lateral flow biosensor (mPCR-LFB) for
the detection of S. Typhi and S. Paratyphi A using labeled primers. The LFB strip utilized
five dots which targeted PCR amplicons of S. Typhi, S. Paratyphi A, pan-Salmonella; an
internal amplification control (IAC) and anti-biotin antibody as test control. The analytical
sensitivity of the mPCR-LFB was determined at DNA and bacterial levels. Evaluation of
this assay was performed on stool samples spiked with S. Typhi, S. Paratyphi A, other
Salmonella serovars and other gram-negative bacteria; as well as on stool samples collected
from food handlers during outbreaks in Kelantan, Malaysia.

2. Materials and Methods
2.1. Reagents and Apparatus

Goat anti-mouse IgG (whole molecule)-biotin and mouse monoclonal anti-FITC were
purchased from Sigma Aldrich (St. Louis, MO, USA); anti-digoxigenin was from Roche
(Penzberg, Germany); anti-Texas red and anti-dinitrophenyl-KLH were from Invitrogen
(Carlsbad, CA, USA), and streptavidin-colloidal gold conjugate (40 nm) was from Kestrel
BioSciences (Carlsbad, CA, USA). Other materials used in this study were plastic adhe-
sive backing card from G&L Precision Die-cutting (Amstelveen, Netherlands), Unisart
CN95 nitrocellulose membrane from Sartorius (Goettingen, Germany), C048 absorbent
pad from Millipore (Burlington, MA, USA), No. 8964 conjugate pad from Ahlostrom
(Helsinki, Finland), and No. 319 sample pads from Ahlstrom (Helsinki, Finland). Agarose,
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deoxynucleotide triphosphates (dNTPs), Taq DNA polymerase and a 25 bp DNA ladder
were purchased from Promega (Madison, WI, USA).

All primers used in this study were designed using Primer Explorer V4 software,
targeting the specific regions of Salmonella Typhi genome retrieved from the GenBank
(Table 1). The labeled primers were synthesized by Bioneer Corporation (Daejeon, Korea).
The running buffer for the lateral flow biosensor contained 1% bovine serum albumin (BSA)
and 0.05% Tween-20 in phosphate buffered saline, pH 7.4 (PBS). The assembled lateral
flow biosensor was cut into strips using an automatic strip cutter (Kinematic Automation,
Sonora, CA, USA). PCR amplification reactions were performed in a PTC-200 MJ Research
Thermal Cycler (Ramsey, MN, USA), and amplicons were analyzed using a Syngene UV
transilluminator (Cambridge, UK).

Table 1. Primers used in the study.

Primer Primer Sequence 5′-Label Target Gene
(Accession Number) Target Bacterium Amplicon Size

(bp)

FITC_
stgAF TGATGGCACCGTTCACTTCCTTG FITC stgA

(AL627280.1)
S. Typhi 70

Biotin_
stgAR ATCAGCGGTTTGTGGCGTAAC Biotin

Texas red_
SPAintF CGAACCTGGCAACATACCATTAGAT Texas red Intergenic region

between SSPA 1723a
and SSPA 1724
(FM200053.1)

S. Paratyphi A 93
Biotin_

SPAintR TGCCTCAAATCATCAGTAATCTCTC Biotin

DNP_
ompCF GCAGCGTGAGCGGTGAAAACAC DNP ompC

(NC_006511) Pan-Salmonella 146
Biotin_
ompCR GTTCTGATCGGCAGTACGTTTAG Biotin

DIG_
IACF GCAGATATTAGGACAAGTTAAGCAAG DIG hemM

(AF22752)
Non-competitive

IAC 123
Biotin_
IACR GTTTCTGTTCTTACCCGTTTC Biotin

2.2. Collection of Bacterial Strains and Stool Samples

A total of 100 bacterial isolates, including 25 S. Typhi, 25 S. Paratyphi A, 25 other
Salmonella serovars, and 25 non-Salmonella, were stock cultures kept at the Institute for
Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia. A total of 1176
stool samples from food handlers and suspected carriers collected from the Kelantan
Public Health Laboratory Kota Bharu, Kelantan, were used in the test evaluation. All
samples were obtained with informed consent from food handlers and suspected carriers,
and ethical clearance was obtained from the Human Ethics Committee, Universiti Sains
Malaysia (USMKK/PPP/JEPeM [226.4.(1.9)]) dated 2 June 2010.

2.3. Preparation and Extraction of DNA from Stool Samples

Spiked stool samples were prepared by adding 1 g of stool sample and 1 mL of
bacterial culture to a final volume of 20 mL in Selenite F broth. Serial dilutions of bacterial
cultures were used to determine the analytical sensitivity. A total of one gram of stool
sample was collected from each food handler and suspected carrier and cultured in a final
volume of 20 mL in Selenite F broth for the enrichment and selection. The samples were
further incubated at 37 ◦C for 24 h. Then, 1 mL of bacterial culture from the upper layer of
Selenite F broth was transferred into a new 1.5 mL tube. The DNA was extracted using the
boiling method [11].

2.4. Multiplex PCR Assay

A multiplex PCR assay for S. Typhi and S. Paratyphi A in the presence of Salmonella
genus and a non-competitive internal amplification control (IAC) was carried out in a
final volume of 20 µL. The reaction mixture contained 1X colorless GoTaq Flexi buffer;
200 µmol/L dNTPs mix; 3 mM MgCl2; 0.5 µM FITC_stgAF and Biotin_stgAR primers;
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0.5 µM Texas red_SPAintF and Biotin_SPAintR primers; 0.3 µM DNP_ompCF and Bi-
otin_ompCR primers; 0.7 µM DIG_HemMP and Biotin_18R-1 primers; 1.5 U of GoTaq
DNA Polymerase; and 40 pg of an IAC plasmid containing the hemM gene.

PCR was performed using 1 µL of extracted DNA sample in a thermal cycler with the
following cycling parameters: 94 ◦C for 5 min, followed by 25 cycles of denaturation at
94 ◦C for 30 s, annealing at 61 ◦C for 1 min 30 s, and elongation at 72 ◦C for 1 min, with a
final extension at 72 ◦C for 7 min.

A positive control (containing 10 ng of a DNA template of S. Typhi, S. Paratyphi A
and the IAC) and a negative control (containing only a DNA template of the IAC) were
included in the mPCR assay. The amplification products were detected by two methods: (i)
3% agarose gel electrophoresis in the presence of 0.5 µg/mL ethidium bromide visualized
under UV transilluminator and photographed using an image analyzer and (ii) a lateral
flow biosensor.

2.5. Preparation of the Lateral-Flow Biosensor Strip

The lateral flow biosensor strip (5 mm × 73 mm) was assembled by placing a sample
pad, conjugate pad, nitrocellulose membrane and absorbent pad on a plastic adhesive
backing card to provide a solid support for the strip. The streptavidin-colloidal gold
conjugate was placed onto the conjugate pad in the presence of trehalose as a stabilizer. The
assembled pads were cut into strips of 5 mm width using an automatic strip cutter. Five
capture reagents were dotted onto the nitrocellulose membrane: (i) anti-mouse IgG-biotin
antibody (biotin) as control; (ii) mouse monoclonal anti-FITC (anti-FITC) as the S. Typhi
target; (iii) monoclonal anti-Texas red as the S. Paratyphi A target; (iv) anti-dinitrophenyl-
KLH, rabbit IgG fraction (anti-DNP) as the pan-Salmonella target; and (v) anti-digoxigenin
(anti-DIG) as the IAC target. The schematic diagram is shown in Figure 1.
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Figure 1. Schematic illustration of the principle of the multiplex PCR-lateral flow biosensor (mPCR-
LFB) for the visualization of PCR amplicons using immobilized capture reagents on the nitrocellulose
membrane. The target PCR amplicon for pan-Salmonella is dinitrophenyl and biotin labeled and is
captured on the Salmonella reaction area; S. Paratyphi A is Texas red and biotin labeled and is captured
on the S. Paratyphi A reaction area; S. Typhi is FITC and biotin labeled and is captured on the S.
Typhi reaction area, and the internal amplification control (IAC) is digoxigenin and biotin labeled and
is captured on the IAC reaction area. The accumulation of streptavidin-colloidal gold conjugate in the
respective areas produced visible red dots. Excess streptavidin-colloidal gold conjugate is captured
on the control reaction area for the validation of the lateral flow biosensor. G = streptavidin-colloidal
gold conjugate; B = biotin; DN = dinitrophenyl; ADN = anti-dinitrophenyl; DG = digoxigenin; ADG
= anti-digoxigenin; T = Texas red; AT = anti-Texas red; and F = FITC; AF = anti-FITC.
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2.6. Visual Detection of PCR Amplicons Using the Lateral Flow Biosensor

After PCR amplification, 10 µL PCR product and 150 µL running buffer were added
to the sample pad of the biosensor strip. The mixture migrated towards the absorbent pad
by capillary action. After 15 min, the result was read based on the presence of red dots on
the LFB strip. The presence of five red dots on the positive control strip (strip control, S.
Typhi, S. Paratyphi A, Salmonella genus and IAC) and two target dots (strip control and
IAC targets) on the negative control strip indicate that the reaction was valid.

2.7. Validation of the Primers for the mPCR-LFB

The performance of the primers was validated by calculating the sensitivity and
specificity of the mPCR-LFB using genomic DNA extracted from 100 bacterial isolates,
including 25 S. Typhi, 25 S. Paratyphi A, 25 other Salmonella serovars and 25 non-Salmonella
serovars.

2.8. Determination of Analytical Sensitivity and Validation of the mPCR-LFB

The analytical sensitivity of the mPCR-LFB was determined at the DNA level using
genomic DNA extracted from American Type Culture Collection (ATCC) strains of S. Typhi
(ATCC 7251) and S. Paratyphi A (ATCC 9150). Bacterial counts were also performed to
determine CFU/mL. The genomic DNA was serially diluted (two-fold dilutions) with
10 mM Tris-HCl, pH 8.0, at concentrations ranging from 10 ng to 0.02 ng prior to multiplex
PCR. The limit of detection (LoD) of the mPCR-LFB was also validated using DNA extracted
from stool samples spiked with serially diluted S. Typhi and S. Paratyphi A culture (107 to
101 CFU/mL). The analytical sensitivity and the LoD for the mPCR-LFB were compared
with mPCR-agarose gel electrophoresis (mPCR-AGE). The sensitivity and specificity of
the mPCR-LFB were validated using DNA extracted from 100 stool samples spiked with
107 CFU/mL bacterial isolates, including 25 S. Typhi, 25 S. Paratyphi A, 25 other Salmonella
serovars and 25 non-Salmonella serovars.

2.9. Detection of Carriers among Food Handlers Using the mPCR-LFB and Culture Method

The mPCR-LFB was tested with 1176 stool samples of food handlers without history
of typhoid and suspected carriers with a history of typhoid. PCR amplicons were detected
by both AGE and LFB, and their data were compared. The five capture reagents were
immobilized onto the nitrocellulose membrane, and the final format of test is in line-format.
The culture method followed by biochemical test was also performed for each sample
according to the standard microbiological techniques.

3. Results
3.1. mPCR-LFB

The biosensor was designed to detect double-stranded DNA sequences that were
labeled at both 5′-ends of each strand, one of the labels being biotin and another comprising
a dye or DIG. The dyes were (i) FITC for stgA gene of S. Typhi, (ii) Texas red for intergenic
region of SSPA1723a and SSPA1724 of S. Paratyphi A, and (iii) DNP for ompC gene of
pan-Salmonella. The latter was included as a control, whereby any amplification of S.
Typhi/S. Paratyphi A must be accompanied by amplification of ompC gene. The DIG
was used as capture of IAC amplicon, and its absence indicates false negative results due
to incorrect PCR mixture, thermal cycler malfunction, or presence of inhibitors [37]. The
amplified PCR products for S. Typhi (70 bp), S. Paratyphi A (93 bp), Salmonella genus (146
bp), and IAC (123 bp) were observed on agarose gel.

3.2. Validation of the Primers for the mPCR-LFB

The mPCR-LFB was tested with genomic DNA extracted from 100 isolates of Salmonella
serovars, including S. Typhi and S. Paratyphi A, and non-Salmonella isolates. All ampli-
cons were detected by both the lateral flow biosensor and agarose gel electrophoresis. The
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results showed that both the mPCR-LFB and mPCR-AGE were 100% sensitive and specific
(Table 2).

Table 2. Summary of the results of mPCR-LFB and mPCR-agarose gel electrophoresis (mPCR-AGE) using genomic DNA
extracted from 100 isolates of different bacteria strains.

Strains (n = 100) No. of Strains

No. of Positive Test
mPCR-LFB Results mPCR-AGE Results

stgA SPAint OmpC stgA SPAint OmpC

Salmonella Typhi 25 25 0 25 25 0 25
Salmonella Paratyphi A 25 0 25 25 0 25 25

Other Salmonella
serovars

Salmonella Branderup 1 0 0 1 0 0 1
Salmonella Choleraesuis 1 0 0 1 0 0 1
Salmonella Paratyphi B 2 0 0 2 0 0 2
Salmonella Paratyphi C 1 0 0 1 0 0 1

Salmonella Typhimurium 1 0 0 1 0 0 1
Salmonella Walter 1 0 0 1 0 0 1
Salmonella Farsta 1 0 0 1 0 0 1

Salmonella Richmond 1 0 0 1 0 0 1
Salmonella Bordes 1 0 0 1 0 0 1

Salmonella Bordeaux 1 0 0 1 0 0 1
Salmonella Ayton 1 0 0 1 0 0 1

Salmonella Virchow 1 0 0 1 0 0 1
Salmonella Rissen 1 0 0 1 0 0 1
Salmonella Idikan 1 0 0 1 0 0 1
Salmonella Abony 1 0 0 1 0 0 1
Salmonella Albert 1 0 0 1 0 0 1

Salmonella Eppendorf 1 0 0 1 0 0 1
Salmonella Corvallis 1 0 0 1 0 0 1

Salmonella Poona 1 0 0 1 0 0 1
Salmonella Heidelberg 1 0 0 1 0 0 1

Salmonella Emek 1 0 0 1 0 0 1
Salmonella Kissi 1 0 0 1 0 0 1

Salmonella Djakarta 1 0 0 1 0 0 1
Salmonella Bareilly 1 0 0 1 0 0 1

Other bacterial strains
Acinetobacter baumanii 1 0 0 0 0 0 0

Citrobacter freundii 1 0 0 0 0 0 0
E. coli 1 0 0 0 0 0 0
EHEC 1 0 0 0 0 0 0
EIEC 1 0 0 0 0 0 0
EPEC 1 0 0 0 0 0 0

Klebsiella pneumoniae 1 0 0 0 0 0 0
Proteus mirabilis 1 0 0 0 0 0 0
Proteus vulgaris 1 0 0 0 0 0 0

Pseudomonas aeruginosa 1 0 0 0 0 0 0
Shigella boydii 1 0 0 0 0 0 0

Shigella dysenteriae 1 0 0 0 0 0 0
Shigella flexneri 1 0 0 0 0 0 0
Shigella sonnei 1 0 0 0 0 0 0
Vibrio cholerae 3 0 0 0 0 0 0

Yersinia enterocolotica 1 0 0 0 0 0 0

TOTAL 100 25 25 75 25 25 75

Sensitivity and specificity: 100%, n = number of strains.
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3.3. Comparison of the Analytical Sensitivity of the mPCR-LFB and mPCR-AGE

The analytical sensitivities at the DNA level for S. Typhi and S. Paratyphi A by mPCR-
LFB were 0.16 ng and 0.08 ng, respectively, whereas mPCR-AGE showed that both serovars
can be detected as low as 0.63 ng (Figure 2).
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Figure 2. The analytical sensitivity of the mPCR-LFB and mPCR-AGE was determined using different concentrations of
PCR amplicons ranging from 0.02 to 10 ng. (A) The analytical sensitivity using genomic DNA of S. Typhi was 0.63 ng using
mPCR-AGE and 0.16 ng using the mPCR-LFB. (B) The analytical sensitivity using genomic DNA of S. Paratyphi A was 0.63
ng using mPCR-AGE and 0.08 ng using the mPCR-LFB. M= 25 bp markers, +ve= positive control, −ve= negative control.

3.4. Limit of Detection and Evaluation of the mPCR-LFB Using Spiked Stool Samples

The limit of detection (LoD) of the mPCR-LFB at the bacterial level was determined
using stool samples spiked with S. Typhi and S. Paratyphi A. It was found to be 101

CFU/mL for S. Typhi and 102 CFU/mL for S. Paratyphi A, while the detection limit of
mPCR-AGE was 104 CFU/mL for both S. Typhi and S. Paratyphi A (Figure 3).

Evaluation mPCR-LFB was performed using stool samples spiked with 100 bacterial
isolates, including 25 S. Typhi, 25 S. Paratyphi A, 25 other Salmonella serovars and 25 non-
Salmonella serovars, and the result showed 100% sensitivity and specificity. The mPCR-LFB
results were also fully consistent with those of mPCR-AGE.

3.5. Performance of Carriers’ Detection among Food Handlers Using the mPCR-LFB Compared to
Culture Method

The mPCR-LFB was applied to detect S. Typhi and S. Paratyphi A using DNA ex-
tracted from 1176 stool samples of food handlers besides the routine culture method. The
representative of the mPCR-LFB in line-format is shown in Figure 4. The method was able
to detect S. Typhi in 23 (2.0%) samples and S. Paratyphi A in 3 (0.3%) samples while the
culture method detected S. Typhi and S. Paratyphi A in only 3 (0.3%) and 1 (0.1%) sample,
respectively (Table 3). There was no PCR inhibitor detected in all samples.
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Table 3. Summary of mPCR-LFB and culture method for stool samples collected from food handlers
and suspected carriers.

N = 1176
(Stool Samples)

Salmonella Typhi
(Percentage Positivity) Salmonella Paratyphi A

Culture method 3 (0.3%) 1 (0.1%)
mPCR-LFB 23 (2.0%) 3 (0.3%)

4. Discussion

In this study, PCR-lateral flow biosensor was developed in which PCR product was
applied on the sample pad of a lateral flow strip together with running buffer. The mixture
rehydrated and released the adjacent dried streptavidin-colloidal gold conjugate, followed
by binding to the 5′-biotin labeled amplicons. The complex then moved up the membrane
strip by capillary action. The PCR amplicons that were labeled with 5′-FITC, 5′-Texas red,
5′-DNP or 5′-DIG then bound with their respective capture reagents immobilized on the
membrane. The accumulation of streptavidin-colloidal gold conjugate at the respective
areas was visualized as a red dot for test, while conjugation bound with biotin at the control
zone indicated the proper functioning of the lateral flow biosensor [32,38].

Colloidal gold nanoparticles were used in this lateral flow biosensor due to its high
affinity and ease to be functionalized on biomolecules. The advantages of gold nanoparti-
cles include good stability, high affinity towards biomolecules, environmentally friendly,
and having an intense red color that can be easily detected by the naked eye or by a
reader [38–43]. The mPCR-LFB detected and indirectly visualized the amplified product of
S. Typhi or S. Paratyphi A by formation of red dots after 15 min of amplicons application
onto the lateral flow strip. The biosensor was designed to allow both primers to be labeled
instead of using a labeled probe, thus eliminating the need for the DNA strands to be
denatured and single stranded DNA hybridized to the labeled probe.

The diagnosis of a chronic carrier using culture of stool sample and confirmation by
biochemical test and serology is time consuming as it needs 2–7 days to produce results.
Application of PCR after sample enrichment reduces the time taken, and the more recent
introduction of lateral flow assay as an alternative to agarose gel electrophoresis further
reduces the turnaround time from four hours to two hours [23].

The primers derived from the genes revealed that the primers were highly specific
since the test did not cross-react with other bacteria; thus, the assay has potential to be
used as a confirmatory test for detection of S. Typhi and S. Paratyphi A from suspected
typhoid carriers. Validation or evaluation with clinical isolates is necessary for prototype
development as supported by previous studies that also incorporated S. Typhi, S. Paratyphi
A, other Salmonella spp. and other related bacteria to ensure the higher level of sensitivity
and specificity before testing with clinical samples [20,44,45].

Detection by the lateral flow biosensor was 4- and 6-fold more sensitive compared
to conventional agarose gel electrophoresis for detection of S. Typhi and S. Paratyphi
A, respectively. In terms of the load of bacteria (CFU/mL) spiked in the stool samples,
detection by PCR-LFB was found to be in the range of 10 to 103-fold more sensitive
compared to PCR-AGE. Therefore, detection of PCR amplicons by lateral flow biosensor
proved to be more sensitive than agarose gel electrophoresis. The results are supported by
previous studies on other diseases, which showed that the lateral flow biosensor was more
sensitive than agarose gel electrophoresis [34,46,47].

The sensitivity and specificity of mPCR-LFB in this study revealed high sensitivity and
specificity of 100% when tested with spiked stool samples. Furthermore, the performance
of the mPCR-LFB in prospective study in stool samples of food handlers showed a higher
percentage of positivity by mPCR-LFB compared to culture method. Higher percentage of
positivity in mPCR-LFB compared to culture method (S Typhi: 2.0% vs. 0.3%; S. Paratyphi
A: 0.3% vs. 0.1%) suggests that the test has potential to be used as an alternative tool
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for detecting the typhoid carriers from stool samples of asymptomatic food handlers or
suspected carriers in typhoid outbreak hotspots.

Similar studies had been conducted and have also shown the successful development
of nucleic acid-based assays for detection of Salmonella spp. and other gastrointestinal
bacteria in poultry products and stools of suspected gastrointestinal patients [21,22,48].
The studies demonstrated molecular methods are highly sensitive and specific by utilizing
multiplex PCR-agarose gel and multiplex real-time PCR for the detection of the bacteria
compared to gold standard culture method which is used as routine microbiological method
for isolation and identification of the bacteria in clinical samples. The studies showed
sensitivity and specificity of more than 95% suggesting the high accuracy of the developed
assays. The above-mentioned studies focused on the nucleic acid assays for non-typhoidal
Salmonella and other gastrointestinal bacteria whereas this mPCR-LFB focused on the
detection of typhoid carriers.

The other study had utilized multiplex real-time PCR to detect S. Typhi and S. Paraty-
phi in stool samples [22] with the analytical sensitivity of 103 CFU/mL for both bacteria.
This mPCR-LFB has showed better performance with a sensitivity of 10 and 102 CFU/mL
for S. Typhi and S. Paratyphi, respectively. In addition to that mPCR-LFB also offers benefit
over multiplex real-time PCR as require cheaper cost of equipment and lower technical
skilled lab technicians to operate and interpret the results.

The finding of this study suggested that mPCR-LFB has the potential to be used as a di-
agnostic tool for carrier detection. Furthermore, this assay is simple, rapid, highly sensitive,
and specific and does not require any tedious procedure or sophisticated equipment.

5. Conclusions

The mPCR-LFB developed in this study was able to fulfill most of WHO criteria of a
diagnostic test suitable for low resource settings, i.e., rapid, robust, sensitive, specific, and
user-friendly. It showed good potential for detecting carriers among food handlers and
suspected carriers and thus merits further validation studies.
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