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Abstract: Staphylococcus aureus (S. aureus) is a causative agent of many hospital- and community-
acquired infections with the tendency to develop resistance to all known antibiotics. Therefore, the
development of novel antistaphylococcal agents is of urgent need. Sortase A is considered a promising
molecular target for the development of antistaphylococcal agents. The main aim of this study was
to identify novel sortase A inhibitors. In order to find novel antistaphylococcal agents, we performed
phenotypic screening of a library containing 15512 compounds against S. aureus ATCC43300. The
molecular docking of hits was performed using the DOCK program and 10 compounds were selected
for in vitro enzymatic activity inhibition assay. Two inhibitors were identified, N,N-diethyl-N′-(5-
nitro-2-(quinazolin-2-yl)phenyl)propane-1,3-diamine (1) and acridin-9-yl-(1H-benzoimidazol-5-yl)-
amine (2), which decrease sortase A activity with IC50 values of 160.3 µM and 207.01 µM, respectively.
It was found that compounds 1 and 2 possess antibacterial activity toward 29 tested multidrug
resistant S. aureus strains with MIC values ranging from 78.12 to 312.5 mg/L. These compounds can
be used for further structural optimization and biological research.

Keywords: Staphylococcus aureus; sortase A; molecular docking; inhibitor; antibiotic resistance

1. Introduction

Staphylococcus aureus (S. aureus) is a causative agent of the majority of skin infections,
hospital-acquired infections and severe diseases such as bacteremia, sepsis, meningitis,
osteomyelitis, endocarditis, and pneumonia [1].

S. aureus belongs to the group of high-priority dangerous “ESKAPE” pathogens, which
includes the multidrug resistant isolates of Enterococcus, Staphylococcus, Klebsiella, Acineto-
bacter, Pseudomonas and Enterobacter that are currently considered as the greatest challenge
in medicine. Many hospital-acquired S. aureus isolates have become resistant to most
available antibiotics. Staphylococcal resistance to penicillin is mediated by penicillinase
which hydrolyses the β-lactam ring of antibiotic. In clinical practice for treatment of staphy-
lococcal infections, methicillin, chemically modified penicillin which cannot be hydrolyzed
by penicillinase, has been widely used. At the present time, methicillin-resistant S. aureus
(MRSA), which is resistant to all of the β-lactam antibiotics due to modification of penicillin-
binding protein, has become one of the most dangerous pathogens. The antibiotic of choice
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in a case of MRSA-associated infection is vancomycin. However, vancomycin-resistant
MRSA strains have emerged recently [2]. It should be noted that no other antibiotic to date
has shown any superiority to vancomycin in the treatment of MRSA infections with the
possible exception of linezolid in hospital-acquired pneumonia [3]. Therefore, the devel-
opment of multidrug resistance in S. aureus has caused an urgent need for the search of
novel effective targets and corresponding inhibitors to develop principally new antibiotics
effective against strains which are resistant to already known antibiotics of choice.

Sortase A is considered as a promising molecular target for the development of anti-
staphylococcal agents. Sortase A is a membrane-bound transpeptidase which catalyzes the
transfer and immobilization of essential virulence factors to the surface of microorganisms.
Inhibitors of sortase A affect virulence and biofilm formation, therefore decreasing selective
pressure which can cause the development of antibiotic resistance [4]. Sortase A is not
presented in eukaryotic organisms, hence the inhibitors of this enzyme may possibly have
less toxicity for human organisms. Since this enzyme is membrane-bound, the inhibitors
do not have to penetrate into the cell.

To date, small-molecular inhibitors of sortase A have been reported among the
derivatives of diarylacrylonitrile [5,6], aryl(β-amino)ethyl ketone [7], rhodanine, pyri-
dazinone, pyrazolethione [8], morpholinobenzoate, aryl 3-acryloamides [9,10], dihydro-
β-carboline [11], benzo[d]isothiazol-3(2H)-one-adamantane amine [12], 3,6-disubstituted
triazolothiazole [13], 2-phenylbenzofuran-3-carboxamide [14], 2-phenylbenzo[d]oxazole-7-
carboxamide [15], 2-(2-phenylhydrazinylidene)alkanoic acid [16], indolethiazolidine [17],
pyrrolomycin [18], 2-phenylthiazole [19], 2,5-disubstituted thiadiazole [20], thiadiazoline-
dione [21], disulfanylbenzamide [22], and 1,2,4-oxadiazole topsentin analogs [23]. Further-
more, several inhibitors for sortase A have been identified among natural products such
as β-sitosterol-3-O-glucopyranoside [24], berberine chloride [25], bis(indole)-alkaloid [26],
isoaaptamine [27], flavonoids (kurarinol [28], myricetin [29], quercitrin [30], morin [31],
eriodictyol [32], acacetin [33], 7-hydroxy-6-methoxy-flavanone and formononetin [34],
dryocrassin ABBA [35]), curcumin [36], maltol-3-O-(4′-O-cis-p-cumaroyl-6′-O-(3-hydroxy-
3-methylglutaroyl)-β-glucopyranoside [37], skyrin [38], aspermytin A [39], natural naph-
thoquinones [40], isovitexin [41], coumarines [42], taxifolin [43], erianin [44], quinone [45],
chalcone [46], bis(indole) alkaloids [47], orientin [48], gallotannins [49] and peptides
from the marine-derived fungi Aspergillus allahabadii [50]. Several review works describe
important small organic compounds that act as potent sortase A inhibitors [51–54]. In
the present article, we report two novel inhibitors of S. aureus sortase A belonging to
novel chemical classes, the derivatives of acridin-9-yl-(1H-benzoimidazol-5-yl)-amine and
2-phenyl-quinazoline, which possess antimicrobial activity toward multidrug resistant
S. aureus strains.

2. Results

In order to find novel antistaphylococcal agents, phenotypic screening of a library
containing 15,512 compounds, provided by commercial supplier OTAVA Ltd., was per-
formed by the Community for Open Antimicrobial Drug Discovery (CO-ADD), against
methicillin-resistant S aureus strain ATCC43300. As a result, 250 compounds inhibiting
growth of MRSA ATCC43300 at least by 30% at the concentration of 32 mg/L were found.
The list of active compounds in SMILES format is available in the Supplementary Materials.
To identify which compounds can potentially inhibit S. aureus sortase A, we performed
molecular docking of 250 compounds into the active site of this enzyme using the DOCK
program. According to the results of molecular docking calculations and visual inspection
of the best-scored complexes, we selected 10 compounds for in vitro testing. The chemical
structure of compounds and their antibacterial activity toward Staphylococcus aureus are
presented in Table 1.
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Table 1. Structures and antibacterial activity (percentage growth inhibition) against S. aureus MRSA ATCC43300 for
compounds 1–10 at 32 mg/L.

No. Structure Concentration (µM) Antibacterial Activity on S. aureus
MRSA ATCC43300 (%)

1
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The tested compounds inhibited the growth of the methicillin-resistant S. aureus strain
ATCC43300 with inhibition percentages ranging from 38.98 up to 99.57%. Compounds
2 and 4 almost completely inhibited the bacterial growth after exposure at 32 mg/L and
could be used to develop new antibacterial substances.

2.1. Sortase A Activity Assay

Among these ten investigated compounds, using in vitro sortase A activity assay
we found two inhibitors of S. aureus sortase A, N,N-diethyl-N′-(5-nitro-2-(quinazolin-
2-yl)phenyl)propane-1,3-diamine (1) and acridin-9-yl-(1H-benzoimidazol-5-yl)-amine (2),
which decreased enzyme activity with IC50 values of 160.3 µM and 207.01 µM, respectively
(Figure 1). The other eight compounds produced only a small inhibition. Therefore, these
compounds possess other molecular mechanisms of action. Possibly, compound 4, with high
antibacterial activity, should be investigated for inhibitory activity toward S. aureus DNA
gyrase, since according to recent literature data, several indole derivatives demonstrate
antistaphylococcal activity targeting this enzyme [55].
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2.2. Molecular Docking

According to molecular docking results, the compound N,N-diethyl-N′-(5-nitro-2-
(quinazolin-2-yl)phenyl)propane-1,3-diamine (1) is involved in hydrophobic interactions
with amino acid residues Val166 and Ile182 in the active site of sortase A. Furthermore,
the nitrogen atom of the quinazolin ring forms a hydrogen bond with conserved amino
acid residue Arg197, which is important for catalysis and belongs to catalytic triad (His120,
Cys184, and Arg197). Quinazolin heterocycle is also implicated in π-cation interaction with
Arg197 (Figure 2).
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The inhibitor acridin-9-yl-(1H-benzoimidazol-5-yl)-amine is involved in hydrophobic
interactions with amino acid residues Ile199, Ile182, Cys184, Trp194 and benzoimidazol
heterocycle forms π-cation interactions with Arg197 (Figure 3).

2.3. Antibacterial Assay

The compounds 1 and 2 were extensively screened for antibacterial activity toward
multidrug resistant S. aureus strains isolated in Ukrainian hospitals. The minimum in-
hibitory concentration (MIC) values for compounds 1 and 2 toward S. aureus isolates are
presented in the Table 2.

The MIC values ranged between 78.12 and 312.5 mg/L for compound 1 and in the range
of 156.2 and 312.5 mg/L for compound 2. Compound 1 was more active than compound
2 on 12 of the 29 bacterial strains, while compound 2 had a higher antimicrobial effect on
3 strains. This observation is correlated with the higher inhibitory effect of compound 1 on
the bacterial sortase.

The bacterial strains were investigated for sensitivity to antibiotics by the disco diffu-
sion method using Mueller–Hinton Agar. The visual analysis of antibiotic sensitivity was
performed according to EUCAST (European Committee on Antimicrobial Susceptibility
Testing) recommendations [56] and the results are presented in Table 3.



Molecules 2021, 26, 7095 6 of 12

Molecules 2021, 26, x FOR PEER REVIEW 6 of 12 
 

 

The inhibitor acridin-9-yl-(1H-benzoimidazol-5-yl)-amine is involved in hydropho-
bic interactions with amino acid residues Ile199, Ile182, Cys184, Trp194 and benzoimid-
azol heterocycle forms π-cation interactions with Arg197 (Figure 3).  

 
Figure 3. The binding mode of compound 2 in the active site of S. aureus sortase A; hydrogen bond is shown by the green 
dotted line, hydrophobic interactions are indicated by the magenta dotted lines and π-cation interactions are presented 
by the orange dotted lines. 

2.3. Antibacterial Assay 
The compounds 1 and 2 were extensively screened for antibacterial activity toward 

multidrug resistant S. aureus strains isolated in Ukrainian hospitals. The minimum inhib-
itory concentration (MIC) values for compounds 1 and 2 toward S. aureus isolates are pre-
sented in the Table 2. 

Table 2. The antimicrobial activity of compounds 1 and 2 toward multidrug resistant S. aureus 
strains. 

S. aureus Strains MIC (mg/L) 
Compound 1 Compound 2 

S. aureus 29213 78.12 156.2 
MR 433 78.12 156.2 

S. aureus 854 156.2 312.5 
S. aureus 887 156.2 156.2 
S. aureus 890 156.2 312.5 
S. aureus 892 156.2 312.5 
S. aureus 938 156.2 156.2 
S. aureus 964 312.5 156.2 
S. aureus 997 312.5 156.2 
S. aureus 1012 78.12 156.2 
S. aureus 1013 312.5 156.2 
S. aureus 1021 156.2 156.2 
S. aureus 584 156.2 156.2 
S. aureus 585 156.2 156.2 
S. aureus 586 156.2 156.2 
S. aureus 522 156.2 156.2 
S. aureus 523 156.2 156.2 

Figure 3. The binding mode of compound 2 in the active site of S. aureus sortase A; hydrogen bond is shown by the green
dotted line, hydrophobic interactions are indicated by the magenta dotted lines and π-cation interactions are presented by
the orange dotted lines.

Table 2. The antimicrobial activity of compounds 1 and 2 toward multidrug resistant S. aureus strains.

S. aureus Strains
MIC (mg/L)

Compound 1 Compound 2

S. aureus 29213 78.12 156.2
MR 433 78.12 156.2

S. aureus 854 156.2 312.5
S. aureus 887 156.2 156.2
S. aureus 890 156.2 312.5
S. aureus 892 156.2 312.5
S. aureus 938 156.2 156.2
S. aureus 964 312.5 156.2
S. aureus 997 312.5 156.2
S. aureus 1012 78.12 156.2
S. aureus 1013 312.5 156.2
S. aureus 1021 156.2 156.2
S. aureus 584 156.2 156.2
S. aureus 585 156.2 156.2
S. aureus 586 156.2 156.2
S. aureus 522 156.2 156.2
S. aureus 523 156.2 156.2
S. aureus 524 156.2 156.2
S. aureus 501 78.12 156.2
S. aureus 502 78.12 156.2
S. aureus 503 156.2 156.2
S. aureus 504 78.12 156.2
S. aureus 505 156.2 156.2
S. aureus 506 78.12 156.2
S. aureus 507 156.2 156.2
S. aureus 508 156.2 156.2
S. aureus 509 156.2 156.2
S. aureus 510 78.12 156.2
S. aureus 511 78.12 156.2
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Table 3. The sensitivity of S. aureus strains to antibiotics.
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S. aureus 854 R IR IR S IR S S IR IR R S IR S
S. aureus 887 R IR S S IR S S IR IR IR S IR S
S. aureus 890 R R R R R R IR R R R S IR IR
S. aureus 892 R IR S S IR S IR S IR IR S IR S
S. aureus 938 R IR S S IR S S IR IR IR S IR S
S. aureus 964 R R R R IR IR IR S R IR S IR IR
S. aureus 997 R S R R IR IR IR S IR R R R IR

S. aureus 1012 S S S S IR S S IR IR R S IR S
S. aureus 1013 R S IR IR IR R S S IR IR S IR S
S. aureus 1021 R S S S IR IR IR IR IR IR IR IR S
S. aureus 584 R IR R S IR S S IR IR IR S S S
S. aureus 585 R R IR S R S R IR R IR S IR IR
S. aureus 586 R R IR S R R R R IR IR S IR IR
S. aureus 522 R R IR IR R R R IR IR IR S IR IR
S. aureus 523 R R IR IR R R R IR IR IR S IR IR
S. aureus 524 R IR R R IR S IR IR R S S S S
S. aureus 501 R R R R IR S IR S R S S IR S
S. aureus 502 R R R R IR S IR S IR IR S IR S
S. aureus 503 R R R IR R S IR S R R S IR S
S. aureus 504 R R IR IR IR S S S R IR S IR S
S. aureus 505 R R R R IR S IR S R IR S IR S
S. aureus 506 R R R IR IR S IR S R IR S S S
S. aureus 507 R R R R IR S IR S R S S S S
S. aureus 508 R R R IR IR S IR S R IR S IR S
S. aureus 509 R R R S R S S S R IR S IR S
S. aureus 510 R R R IR IR S S IR R IR S IR S
S. aureus 511 R IR R S R S IR IR R IR S IR S

R—resistance; IR—intermediate resistance; S—susceptibility.

3. Discussion

Using molecular docking techniques, we identified two novel inhibitors of S. aureus
sortase A, N,N-diethyl-N′-(5-nitro-2-(quinazolin-2-yl)phenyl)propane-1,3-diamine (1), and
acridin-9-yl-(1H-benzoimidazol-5-yl)-amine (2), which possess moderate enzyme inhibitory
activity with IC50 values of 160.3 µM and 207.01 µM, respectively. When comparing
the binding mode of highly potent benzisothiazolinone-based inhibitor in the crystal
structure of S. aureus sortase A (PDB ID: 2MLM) [12], which was used for molecular
docking, and docked complexes of compounds 1 (Figure 1) and 2 (Figure 2), it can be
concluded that the simultaneous formation of a hydrogen bond with conservative Arg197
and tight hydrophobic interactions with Trp194, which were established in the co-crystal
structure, can be important for inhibitory potency. It should be noted that in our study,
compounds 1 and 2 form only one from these two intermolecular interactions—compound
1 builds hydrogen bond with Arg197 and compound 2 forms hydrophobic interactions
with Trp194. Possibly, further chemical optimization of compounds 1 and 2 should be
performed in order to reach both these types of ligand–receptor interactions.

Antibacterial studies revealed that compounds 1 and 2 inhibit growth of a number
of tested multidrug resistant S. aureus strains with MIC values in the range from 78.12 to
312.5 mg/L (Table 2). The antibacterial activity of sortase A inhibitors is low in comparison
to known antistaphylococcal antibiotics such as vancomycin and linezolid, which have MIC
values about 1 mg/L. Taking into account high levels of resistance to standard antibiotics,
the development of antibiotics with novel mechanisms of action is of urgent need.
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As it can be seen from the Table 2, compound 1 is more profitable than compound 2
and reveals the antimicrobial activity toward S. aureus strains which have different profiles
of antibiotic sensitivity with MIC values in the range from 78.12 to 312.5 mg/L, while
compound 2 demonstrates antimicrobial activity with MIC values in the range from 156.2
to 312.5 mg/L (Table 3).

Compound 1 possess the highest antibacterial activity with MIC value of 78.12 mg/L
toward multidrug resistant S. aureus strains 1012, 501, 502, 504, 506, 510, 511. All these
strains have susceptibility to chloramphenicol, moxifloxacin and linezolid. Vice versa, it
was revealed that the compound 1 has the lowest antibacterial activity toward S. aureus
isolates 964, 997 and 1013 which all have resistance to chloramphenicol; two of them (964,
997) have resistance to moxifloxacin and one of them (997) has resistance to linezolid.
Compound 2 has antibacterial activity toward tested S. aureus strains, mostly with a MIC
value of 156.2 mg/L, except three isolates, 854, 890 and 892, which all are susceptible to
linezolid. Therefore, compounds 1 and 2 possess different effectiveness toward S. aureus
strains with various antibiotic resistance profiles and can be useful for further optimization
and development of novel lead compounds with antibacterial activity toward multidrug
resistant S. aureus strains.

4. Materials and Methods
4.1. Sortase A Activity Assay

The inhibitory activity of compounds was determined by quantifying the fluorescence
intensity upon 5-FAM/QXL® substrate cleavage using the SensoLyte® 520 Sortase A Activity
Assay Kit (Anaspec, San Jose, CA, USA). The compounds were dissolved in dimethyl
sulfoxide (DMSO) and diluted with distilled water until the concentration of DMSO was
1% and the solution’s intrinsic fluorescence was checked. Each compound was tested at
7 concentration levels in the range of 100–0.1 µM. According to kit protocol, the assay was
performed in a 96-well plate, each well containing 10 µL test compound solution, 40 µL
enzyme solution and 50 µL substrate solution. We used as controls the enzyme, a 1% DMSO
solution, the substrate solution, and 4-hydroxymercuribenzoic acid (HMB) as the positive
control. The enzymatic assay was performed for 60 min at room temperature and analyzed
fluorometrically (SpectraMAX Gemini XS, San Jose, CA, USA) at Ex/Em = 490 nm/520 nm.
All reported values are the means of duplicate experiments.

4.2. Molecular Docking

The molecular docking was carried out with DOCK program [57–60]. As a receptor we
used crystal structure of S. aureus sortase A with PDB ID: 2MLM [12]. The geometry of ligands
was calculated using YFF force field [61]. The hydrogen atoms were added with Open Babel
v 2.4.0 [62]. Partial atomic charges of the ligands were added with Kirchhoff method [63].

Docking parameters were set as described earlier [64] with several modifications. In
our experiments, as the active site atoms we selected the atoms of amino acid residues
within 10 Å from the reference ligand—benzo[d]isothiazol-3-one. The spheres in the active
site for semi-flexible ligand docking were set with DOCK sphgen software. Grid maps were
calculated using Grid program, with grid spacing 0.3 Å. Proteins were represented by the all
atom model. We used ‘multiple anchors’ parameter for virtual screening, the minimum of
heavy atoms in the anchor was set to 6, and the maximum number of orientations was 1000.

Visual inspection of the complexes of compounds with sortase A was performed using
Discovery Studio Visualizer 4.0 [65].

4.3. Antibacterial Assay

All bacteria were cultured in Cation-adjusted Mueller Hinton broth (CAMHB) at
37 ◦C overnight. A sample of each culture was then diluted 40-fold in fresh broth and
incubated at 37 ◦C for 1.5–3 h. The resultant mid-log phase cultures were diluted (CFU/mL
measured by OD600), then added to each well of the compound-containing plates, giving
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a cell density of 5 × 105 CFU/mL and a total volume of 50 µL. All the plates were covered
and incubated at 37 ◦C for 18 h without shaking.

Growth inhibition of all bacteria was determined measuring absorbance at 600 nm
(OD600), using a Tecan M1000 Pro monochromator plate reader. The percentage of growth
inhibition was calculated for each well, using the negative control (media only) and positive
control (bacteria without inhibitors) on the same plate as references. The growth rates
for bacteria had a variation of ±10%, which is within the reported normal distribution of
bacterial growth.

The MIC was determined as the lowest concentration at which the growth was fully
inhibited, defined by an inhibition ≥80%. In addition, the maximal percentage of growth
inhibition is reported as DMax, indicating any compounds with partial activity.

Supplementary Materials: The following are available online, list of active compounds in SMILES
format.
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