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Alzheimer's disease (AD) represents a substantial unmet need, due to increasing prevalence in an ageing society
and the absence of a disease modifying therapy. Epidemiological evidence shows a protective effect of non
steroidal anti inflammatory (NSAID) drugs, and genome wide association studies (GWAS) show consistent
linkage to inflammatory pathways; both observations suggesting anti-inflammatory compounds might be effec-
tive in AD therapy although clinical trials to date have not been positive.
In this study, we use pathway enrichment and fuzzy logic to identify pathways (KEGG database) simultaneously
affected in both AD and by NSAIDs (Sulindac, Piroxicam, Paracetamol, Naproxen, Nabumetone, Ketoprofen,
Diclofenac and Aspirin). Gene expression signatures were derived for disease from both blood (n = 344) and
post-mortem brain (n = 690), and for drugs from immortalised human cell lines exposed to drugs of interest
as part of the Connectivity Map platform. Using this novel approach to combine datasets we find striking overlap
between AD gene expression in blood and NSAID induced changes in KEGG pathways of Ribosome andOxidative
Phosphorylation. No overlap was found in non NSAID comparison drugs. In brain we find little such overlap, al-
though Oxidative Phosphorylation approaches our pre-specified significance level.
These findings suggest that NSAIDs might have a mode of action beyond inflammation and moreover that their
therapeutic effects might be mediated in particular by alteration of Oxidative Phosphorylation and possibly the
Ribosome pathway. Mining of such datasets might prove increasingly productive as they increase in size and
richness.
© 2016 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and

Structural Biotechnology. This is an open access article under the CC BY license (http://
creativecommons.org/licenses/by/4.0/).
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1. Introduction

Alzheimer's disease (AD) is one of the largest single unmet medical
needs today, due partly to the increasing numbers of cases in an ageing
society [1,2], partly due to the absence of any diseasemodifying therapy
[3] and mostly due to the very high cost of caring for people with de-
mentia. It is known that environmental factors can alter risk of AD,
such as mid-life obesity or history of diabetes [4–6]. With respect to
medications, for more than three decades, epidemiological studies
have shown that users of non-steroidal anti-inflammatory drugs
(NSAID) are less likely to develop AD later in life, an effect observed
most strongly after prolonged drug use [7–9]. More recent observation-
al studies have largely replicated this finding [10–15], but to date there
nome-wide association study;
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has been no translation of this observation into a usable therapy in
randomised trials [16–18].

This failure of translationmay be due to trials-related factors such as
interventional studies being conducted too late in disease process or to
disease-related factors such as AD being of mixed aetio-pathogenesis
and NSAIDs being effective only in some, as yet unknown, sub-group
of disease. Or, conceivably at least, it might be due to compound-
related factors. That is, itmight be that only someNSAIDsmight have ef-
ficacy in reducing risk of AD and that selective effectivity might be due
to a mode of action beyond the obvious and shared action of this class
of compound. To explain and circumvent this failure in translation,
studies have attempted to investigate the mechanism through which
NSAIDs lower AD risk. Some studies link its benefit to the capacity of
NSAIDs to suppressmicroglia activation due to its anti-inflammatory ef-
fect [19–21]. However, aspirin is an example of an anti-inflammatory
with a prescription profile very similar to NSAIDs [22,23], that does
not appear to lower AD risk [10,24]. Whilst it remains likely that it is
the anti-inflammatory effect of the NSAIDs that reduces risk of AD, it
is possible there are other mechanisms of action in at least some of
omputational and Structural Biotechnology. This is an open access article under the CC BY
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this class of compound, and some of these non-inflammatory mecha-
nisms might affect disease risk. For example, some studies suggest
that NSAIDsmay reduce AD risk through direct effects on the formation
of Aβ, a core pathogenic event in AD [20,25], possibly through COX inhi-
bition [26] or through its effect on gamma-secretase [27,28]. However,
others have concluded that the relationship between NSAIDs use and
AD risk is independent of the effect that these drugs have on Aβ
[29,30]. The mechanism of effect of the NSAIDs in reducing risk of AD
therefore remains uncertain, hampering attempts to translate the
epidemiological finding to an effective therapy.

Herewe use gene expression studies to identifymolecular pathways
affected by a range of NSAIDs, and use enrichment analysis and fuzzy
logic to determine overlap with gene expression studies in AD in man.
To be able to link results from gene expression studies with molecular
effects of NSAID drugs, we analyse RNA arrays of in-vitro human cells
exposed to a range of NSAID molecules. The degree of dysregulation of
each gene in multiple assays (i.e. gene expression from either blood,
brain and/or cells exposed to drugs) is combined to detect whether
any pathway is more dysregulated across assays than what should be
expected from chance. These studies suggest that the NSAIDs might in-
duce changes in gene expression in pathways not obviously related to
inflammation but ones which might affect AD risk, including in
ribosome function and oxidative stress. Thesefindings suggest novel ap-
proaches to therapeutic development in dementia.

2. Methods

In order to identify molecular pathways induced by NSAIDs that
might affect susceptibility to AD, we sought genes dysregulated by
both AD and NSAIDs to a larger degree than that expected by chance.
In order to identify such pathways we developed and applied a three-
step method: first we derive a genetic signature of AD from gene ex-
pression studies and for each of a number of drugs from experimental
studies in vitro. This genetic signature is a value in the [0–1] range per
gene, where the value is proportional to the dysregulation of that gene
in AD patients, or in cells exposed to the drug under consideration. Sec-
ondly, using fuzzy logic we combine these genetic signatures of drug
and disease, looking in effect for genes common to both. In practice,
this second step derives a new [0–1] number per gene, which reaches
high values only for genes that had a value close to 1 in both the original
signatures (see Fig. 1). Thirdly and finally, we estimate whether these
combined signatures enrich any given pathwaymore than that expect-
ed by chance. Specifically, this third steps identifies whether the [0–1]
numbers derived in step two are significantly altered in any given mo-
lecular pathway in the KEGG pathway set.

2.1. Data Source

Three different publicly available datasets, one from blood and
two from post-mortem brain, were used to identify a gene expression
signature of AD (see Supplementary Fig. 3). The first dataset
was AddNeuroMed (GeneExpressionOmnibus: GSE63063), a cross-
European cohort studies with whole genome expression data from
blood from 200 AD patients and 192 controls [31,32]. The second
dataset was from post-mortem pre-frontal cortex of 129 AD patients
and 101 controls [33] Finally, the third dataset was from post-mortem
hippocampus of 80 ADs and 173 controls [34]; ArrayExpress: E-GEOD-
48350). In order to derive a signature of AD, data was log-transformed
independently in each dataset. With these three datasets we derive
two different signatures. From the AddNeuroMed we derive a genetic
signature describing the dysregulation of genes in blood of AD patients.
The other two datasources aremerged into a single dataset, fromwhich
we derive a second signature that reports the dysregulation of genes in
post-mortem brain of AD patients.

In addition to the three human datasets used to determine gene ex-
pression signatures from AD, we used the Connectivity-Map (CMap) to
determine the gene expression signatures of a range of different NSAIDs
and a comparison group of commonly prescribed, non-NSAID com-
pounds (8 NSAIDs and 5 non-NSAIDs). The CMap study is a publically
accessible resource of gene expression derived from immortalised cell
lines (MCF7, PC3 and HL60 cells), exposed to a large range of com-
pounds at different concentrations [35,36]. For each investigated drug,
all available datawas used including that from all cell lines, all drug con-
centrations and the technical variables including those related to ex-
pression analysis (vendor and scanner). With these 13 CMap datasets,
we derive 13 genetic signatures, each signature representing the dys-
regulation of gene expression for each drug. These 13 signatures are
later combined with each other and with the 2 AD signatures (see
Section 2.4).

2.2. Genetic Signatures for AD

The genetic signature of each perturbation (i.e. each given drug and/
or AD) represents the level of dysregulation in gene expression generat-
ed by the perturbation under consideration. In the case of AD, this is cal-
culatedwith a logistic Generalised LinearModel (GLM) that controls for
age, gender and data source (i.e. dataset of origin and centre where the
blood/brain sample was collected). The equation of the GLM, in R for-
mula syntax, is:

ad � rnaþ age � sourceþ gender � source ð1Þ

where “ad” is a binary variable representing AD status (i.e. subject is
either AD patient or control), rna is the RNA expression level, age is sub-
ject age, source is sample dataset and/or sample of origin, and gender is
the gender of each subject. The so-called signature is then 1 minus the
p-values associated to the variable “rna” in the aforementioned GLM
model.

The subtraction to 1 is applied for the signature to behave as a “value
of truth” of fuzzy logic, as fuzzy operations are used to combine signa-
tures later in the overall analysis of this study. Lower values in the signa-
ture for a given gene, will indicate that the expression of this gene is
unlikely to be altered in AD. Higher values, however, will indicate an in-
creasing likelihood that expression of the gene is dysregulated in the
disease state.

We highlight that we derive two different AD signatures. One of the
signatures represents the gene dysregulation in AD blood, and it is ob-
tained by applied the linear model to the AddNeuroMed dataset. The
other signature represents the genetic dysregulation in post-mortem
AD brain, and it is obtained by applying the linear model to the dataset
resulting from merging both ArrayExpress cohorts.

2.3. Genetic Signatures for Drugs

Similar to the genetic signature calculated for AD, the signature for
each of the investigated drugs is also derived with a logistic GLM,
which controls for all the covariants that may influence gene expres-
sion. For drugs, these variables are each type of cell line, batch, vendor,
concentration and scanner, forming the following GLM equation in R
formula syntax:

vehicle � rnaþ cellþ batchþ vendor þ concentrationþ scanner ð2Þ

where “vehicle” is a binary variable representing drug status (i.e.
whether the sampled cell culture was exposed to the drug or not). The
so-called signature is again 1 minus the p-values associated to the vari-
able “rna” in the aforementioned GLMmodel.

This linear model is applied independently to each one of the 13
CMap datasets. In each case, we obtain a signature representing the
genetic dysregulation present in the cells exposed to a given drug
(8 NSAIDs and 5 non-NSAIDs).

array-express:E-GEOD-48350
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Fig. 1. Analysismethods: (A) Flowchart summarisingmethods. Background yellow boxes represent the different stages, from left to right: data sources (methods Section 2.1); generation
of signatures (methods Sections 2.2 and 2.3); combination of signatures (methods Section 2.4); and results from pathway enrichment (methods Section 2.5) and as shown in the result
figures. When arrows represent more than one dataset or more than one signature, a slash and a number identify the number of datasets/signatures involved (e.g. 13 datasets were
extracted from CMap and analysed with the GLM of Eq. (2)). (B) Example of combination of signatures. Each one of the dots in the figure represent one of the genes sampled in
AddNeuroMed and CMap. For each dot, its Y position, X position and colour represent, respectively, its level on truth in the AD signature, Diclofenac signature and combined signature.
The figure was created with the product fuzzy gate described in the main text, which gives high levels of truth only to the genes that had high values in all original signatures.
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2.4. Combination of Signatures

Fuzzy logic is an extension of Boolean logic where the binary values
of truth (i.e. 0 for false, 1 for true) are transformed into a continuous
scale from 0 to 1, which then represent intermediate values of truth or
certainty (e.g. 0.0 for ‘fully false’, 0.1 for ‘most certainly false’, 0.5 for ‘un-
known’, or 0.7 for ‘probably truth’). Logic operations (such as AND, OR,
NOT) are also extended to the full [0,1] range, allowing the combination
of fuzzy variables into more complex logical concepts (e.g. ‘a AND b’,
where ‘a’ and ‘b’ are fuzzy variables with values of truth between 0
and 1).

Mirroring the techniques applied in fuzzy logic, we combine the
derived signatures with a product operation. Given a number of to-be-
combined signatures, denoted “s(g,p)” for gene “g” and perturbation
“p”, the combined signature is:

sI gð Þ ¼ ∏
i∈I

s g; ið Þ ð3Þ
where “sI(g)” represents the combined signature, and “I” represents the
set of signatures to combine. For instance, the combined signature of AD
from blood and Diclofenac (an NSAID) would be:

sAD�Diclofenac gð Þ ¼ s g;ADð Þ � s g;Diclofenacð Þ ð4Þ

The actual values of this example are represented in Fig. 1. For genes
to obtain a high fuzzy “level of truth” in the combined signature, the
gene needs to have a high value in both the AD and the Diclofenac
signatures. The reason is that the product rule implements the fuzzy
version of the boolean operation AND. Therefore, the genes thatwill ob-
tain the highest values of truth in the combined signature will be those
that had high value of truth in all original signature simultaneously.

Inmost instances Eq. (3) is used to combine single pairs of signatures
into one. However, in two instances, Eq. (3) is used to combine groups
of more than 2 signatures. Namely, in one instance we combine all 8
NSAIDs into a single signature, which is later combined again with the
signatures from AD blood and AD brain separately (see Fig. 1A). In
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another instance, we combine all 5 non-NSAID drugs into a single signa-
ture, which is later combined with this one from AD blood and from AD
brain.

2.5. Pathway Analysis

Pathway enrichment is implemented through the Kolmogorov–
Smirnov (KS) non-parametric test. This test has two main advantages
in comparison with the binomial test often used in pathway analysis.
First, in the binomial test the genes that are going to be considered as
“positive” (i.e. significantly dysregulated) are commonly defined as
those genes that pass a multiple comparison corrected p-value thresh-
old. However, our method delivers “values of truth”, which may not
be interpretable as p-values themselves. The KS test does not require
p-values, but rather a list of numbers per geneswhichbears information
in their rank (e.g. genes with higher values are more dysregulated than
geneswith lower values). Secondly, KSmakes use of thewhole distribu-
tion of values per gene (these can be a p-value per gene or, in our case, a
fuzzy level of truth per gene), while the binomial test down-samples
these gene values to a binary variable before running the actual statisti-
cal test.

Given a genetic signature, we apply the KS test to each KEGG path-
way independently. With KS we compare the signature values of all
those genes included in the pathway against the signature value of all
the genes not included in the pathway. The obtained p-value indicates
whether the signature levels of truth of the genes that are present in
that pathway are significantly larger than the values typically observed
in all other pathways.

3. Results

In order to determine gene expression signatures that overlap be-
tween AD and NSAIDs we used a three step process – first determining,
from patient samples from blood and brain, the gene expression signa-
ture of AD [31–34] as well as the gene expression signature induced by
NSAIDs in the Connectivity Map (CMap) database [35,36]; second de-
termining the overlap in pathways induced by these drugs and that
found in AD; and thirdly estimating the overlap expected by chance
alone. The drug signatures were calculated for the most commonly pre-
scribed NSAID drugs included in CMap study: Sulindac, Nabumetone,
Ketoprofen, Piroxicam, Naproxen, Diclofenac, Paracetamol and Aspirin
(Acetylsalicylic Acid). For comparison, we also calculated the signature
of a number of non anti-inflammatory drugs, including both drugs indi-
cated for neuropsychiatric conditions and other commonly prescribed
compounds: Carbamazepine, Amitriptyline, Apomorphine, Ramipril
and Simvastatin. As gene expression signatures in disease in blood and
in brainmay reflect different aspects of the disease process, we first per-
formed an analysis for blood expression signature and then for brain.

3.1. Individual Drugs and AD Blood

For each drug, we combined its gene expression signature with that
derived from an analysis of gene expression in blood in AD
(AddNeuroMed, 105 AD patients and 114 controls [31,32]), after
which KS pathway enrichment was applied to all the 223 KEGG path-
ways that had genes sampled in both AD blood and CMap.

Using an uncorrected p-value threshold of 0.0001, the KEGG path-
way ‘Ribosome’ (ID 03010) was strongly significant for 4 out of 8
NSAIDs (Piroxicam p = 5.36 × 10–9, Paracetamol p = 3.12 × 10–6,
Nabumetone p = 1.78 × 10–6 and Diclofenac p = 1.40 × 10–9), while
the KEGGpathway ‘Oxidative Phosphorylation’ (ID 00190)was strongly
significant for two (Naproxen p = 1.21 × 10–5 and Diclofenac p =
1.85 × 10–5, see Supplementary Table 1 and Fig. 2A). However, none
of the five non-NSAIDs showed any pathway with significance below
0.0001. In the case of the signature of AD alone (i.e. not combined
with the signature of any of the drugs), both Ribosome (p =
4.66 × 10–7) and Oxidative Phosphorylation (p = 7.28 × 10–9) had a
p-value below this threshold. No other pathways had a p-value below
0.0001 for any of the signatures. When calculating the effect size of
the linear models (Eqs. (1) and (2)), the direction of effect of both AD
tissue and NSAID drugs was more frequently negative (lower expres-
sion than controls), while direction of effect of non-NSAID drugs was
more frequently positive (higher expression than controls) for the sig-
nificant pathways (see Supplementary Fig. 4).

3.2. Grouping Drugs and AD Blood

Studies investigating the epidemiological relationship between
NSAIDs and AD most often classify all NSAIDs into a single category,
rather than investigating each drug independently [7–9]. To facilitate
the interpretation of our results when compared to those of the epide-
miological studies, we therefore used ourmethod to combine the signa-
ture of all 8 NSAID drugs into a single signature. This signature was then
combined with that from the AD blood dataset. In both cases (i.e. when
combining multiple drugs into a single signature, and when further
combining this onewith that fromAD), we used the same product func-
tion described in methods (Eq. (3)). Again, the Ribosome pathway was
the most highly significant, with a p-value that would survive multiple
comparisons correction (p = 7.38 × 10-7, see Supplementary Table 2
and Fig. 2B). For comparison,we also repeated the analysis for the afore-
mentioned non-NSAID drugs, first combining them all into a single sig-
nature, and then further combining this onewith AD's using the product
function (Eq. (3)). However, in the case of non-NSAIDs, no pathway
showed a p-value below 0.0001 (see Supplementary Table 2).

3.3. Grouping Drugs and AD Brain

The method described in Section 3.2 was further applied to the AD
signature obtained from post-mortem brains (ArrayExpress E-GEOD-
44770 and E-GEOD-48350, totalling 209 ADs and 274 controls). We
found 227 KEGG pathways had genes sampled in both AD brain and
CMap but when enrichment was applied to the disease signature
alone the three pathwayswith p-value below0.0001wereHuntington's
Disease (p = 4.66 × 10–7), Parkinson's Disease (p = 4.66 × 10–7) and
Oxidative Phosphorylation (p = 4.66 × 10–7, see Supplementary
Table 3 and Fig. 2C). No pathways were significant below p-value
0.0001 when the AD signature was combined with either NSAIDs
(Huntington's Disease p = 1.26 × 10–4, Parkinson's Disease p =
2.95 × 10–4, Oxidative Phosphorylation p = 1.53 × 10–4) or non-
NSAIDs (Huntington's Disease 0.12, Parkinson's Disease 0.0058,
Oxidative Phosphorylation 0.064) drug groups (see Supplementary
Table 3) although all three combined AD and NSAID signatures
approached our predermined p-value cut-off.

4. Discussion

As described in the introduction, it is widely replicated and accepted
that prolonged NSAID medication correlates with a decreased risk of
suffering AD later in life. This observation has contributed to the emer-
gence of the inflammatory hypothesis of AD.While themore traditional
amyloid hypothesis states that neuroinflammatorion is a downstream
consequence of amyloid accumulation, the inflammatory hypothesis
states that the immune systemmay in fact contribute and drive AD pa-
thology [37]. However, despite considerable efforts, it has not been pos-
sible to translate the NSAID-AD observation and the inflammatory
hypothesis into a disease-modifying therapy. Some of the failed NSAID
trials used Ibuprofen [38], Naproxen [39–41] or Celecoxib [39,40,42],
with all of them either showing no results when compared to placebo,
or being discontinued due to cardiovascular or other side effects. Fur-
ther insight into what is the molecular background where NSAID and
AD may intersect would likely help on facilitating this translation to
the clinic.
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Fig. 2. Statistical results: The figures show the results from the KS pathway enrichment applied to the different genetic signatures. (A) Results when pathway enrichment is applied to
either the original blood AD signature (first row in the figure), or to the signatures of AD combined with different drugs (remaining 13 rows). (B) Results when enrichment is applied
to the signatures combining blood AD with different drug groups. (C) Results from pathway enrichment when applied to the signatures combining brain AD with different drug
groups. (A, B & C) In all cases, each dot represents the p-value for a given signature (Y-axis) and on a given pathway (X-axis), while its colour represents the obtained p-value. Only
pathways that had a p-value below 0.0001 in any of the signatures are shown. The IDs of the KEGG pathways are: Oxidative phosphorylation 00190; Ribosome 03010; Huntington's
disease 05016; Parkinson's disease 05012.
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In this study, we used a three step process to explore whether any
gene expression overlap exists between AD and NSAIDs in an attempt
to determine whether there are effects of these drugs that might be rel-
evant to disease that go beyond the generic or shared effects on inflam-
mation. First, we derived gene expression signatures of AD from blood
and from brain together with the gene expression signature induced
by NSAIDs in the Connectivity Map (CMap) database; second, we deter-
mined theoverlap in pathways induced by thesedrugs and those altered
in AD; and thirdly, we estimated the overlap expected by chance alone.
Comparing these signatures, we find that the Ribosome pathway, and to
a lesser degree Oxidative Phosphorylation, are more often shared by
both AD, at least in blood, and NSAIDs than that expected by chance
(Fig. 2A and B). This association is not found for drugs other than
NSAIDs, or when post-mortem AD brain samples are used instead of
AD blood (Fig. 2A, B and C) although the finding for Oxidative Phosphor-
ylation approaches a pre-specified significance level. Given that the
method is fully data driven andbased on gene expression, it could be ap-
plied in the future towards personalised medicine. Namely, genetic sig-
natures could be derived from blood of specific AD patients, and/or from
iPSC cells derived from a target patient and then exposed to a number of
drugs [43–45]. The results would then be applicable to that specific pa-
tient, rather than to the undifferentiated population of all AD patients.

As described inmethods, the fuzzy AND operand (Eq. (3)) promotes
those genes whose “level of truth” in relation to expression is high si-
multaneously in all of the original signatures. For instance, if AD is com-
binedwith Diclofenac, a gene with a low value in AD but a high value in
Diclofenac, will obtain a low combined level of truth. Only the genes
with a level of truth close to 1 in both AD andDiclofenac,will also obtain
a combined level of truth close to 1. Therefore, when pathway enrich-
ment is applied to the combined signatures, the significant pathways
are those that were strongly dysregulated in both AD patients and the
CMap cells exposed to the drugs. Therefore, Fig. 2A and B indicate that
genes of the Ribosome pathway are simultaneously perturbed by both
AD and NSAIDs, to a degree larger than that expected from chance
alone. This is unlikely to be an effect of the overall method itself, as
Fig. 2A, B and C evidence that this level of simultaneous dysregulation
is not observed in other, non-NSAID, drugs.

It is however important to emphasise that our method only attends
to dysregulations in gene expression, without considering the direction
of the dysregulation. This direction-free analysis was employed as
we cannot predict whether a compound altering risk of disease should
increase or decrease gene expression. It might be for example that a
given gene is increased in AD due to a protective mechanism in re-
sponse to disease, albeit one that was ultimately unsuccessful. In this
case then if the protective effect of a given NSAID was mediated in
part through this gene then one would predict an increase in gene ex-
pression in the experimental in vitro CMap data. On the other hand if
a given genewas increased in ADbecause of its involvement in the path-
ological process then if the protective effect of a given NSAIDwasmedi-
ated through this gene, one would predict that in the CMap data, this
gene would be down-regulated by that NSAID. Given this uncertainty
regarding direction of effect, even for a given pathway where typically
some genes increase and some decrease, pathway activity, then analysis
that is agnostic to direction of effect is appropriate.

However, in contrast to blood, we found no pathway simultaneously
dysregulated in both cell lines exposed to NSAIDs and post-mortem AD
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brain at our pre-specified level of significance (p b 1 × 10–4), although
all three pathways, identified as dysregulated in AD brain come close
to significance. The relative lack of significance in the post-mortem de-
rived signature and CMapNSAID drugsmight be due to a number of po-
tential reasons, of which two stand out for us. First, the gene expression
set from blood is derived from research participants relatively early in
disease process whereas the brain signature is derived from end-stage
disease. Although a brain expression set is, superficially at least, more
relevant to a brain disease, this may well not be true. By end-stage dis-
ease, especially for a disease such as AD with a 10–20 year course from
preclinical to end-stage, the expression of genes may no longer reflect
primary aetiopathogenic process but a complex pattern of change de-
rived from neurotoxicity, secondary effect of loss of neurons, protective
mechanisms and end of life changes including agonal state and post-
mortem artefact. Blood expression data on the other hand, although
froma tissue remote from the site of disease, reflects early phase disease
processes and is relatively free from the artefactual confounds that
plague post-mortem study. The finding of overlap between gene signa-
tures induced by NSAIDs and in blood early in disease process is partic-
ularly interesting given the increasing evidence that the protective
effect of NSAIDs in relation to AD is also early in the disease process
[14]. The secondpotential explanation for the failure to identify an over-
lap pathway in brain as we find in blood might be due to the site of ac-
tion of the NSAIDs. Whilst it is commonly assumed that AD is a disorder
exclusively of brain, this also may not be entirely true. It is possible that
AD is a disease with a brain manifestation of a systemic change, that is
that there are molecular changes that are systemic but that only cause
a pathological process in brain, perhaps because neurons, as non-
dividing long-lived cells are particularly sensitive towhatever pathways
underlie this systemic process. The concept of a systemic component of
AD has been widely postulated, including both inflammatory and non-
inflammatory processes [35–37] and it is possible that the altered ex-
pression of genes in blood represents this systemic component and
also possibly that the overlap in gene expression we find between
blood and NSAIDs represents the protective actions of NSAIDs in rela-
tion to this systemic component.

The two KEGG pathways we observe overlapping between NSAIDs
and AD blood gene expression are those of Oxidative Phosphorylation
and Ribosome. Moreover, despite the overwhelming significance of
the overlap in NSAID signatures and AD blood gene expression and
the relative lack of overlap with AD brain expression, it is noteworthy
that Oxidative Phosphorylation also approaches significance in NSAID
to brain analyses. Oxidative stress has long been identified as a compo-
nent of the many pathophysiological events of AD [49,50] and has pre-
viously been postulated to underlie the association between AD and
diseases of both metabolism and inflammation [51,52]. Our findings
add some weight to this hypothesis. The ribosomal pathway has not
been associated with AD with the same frequency although ribosomal
activity has been linked to AD in several studies [53,54]. Moreover, ribo-
somal dysfunction in AD has been linked to RNA- and endoplasmatic
reticulum- associated iron and oxidation [55]. More speculatively, ribo-
somemutations can cause familial Diamond-Blackfan anaemia [56] and
increase risk of cancer [57], and both some cancers and some anaemias
alter risk of AD from epidemiologic studies [47–49]. Our findings raise
the possibility that if alterations in the Ribosomepathway aremediating
this risk then an effect of NSAIDs on this pathwaymight in part explain
their relative protective effect on AD.

There are obvious limitations to our study. Predominant amongst
these is the relative paucity of data pertaining to altered gene expres-
sion in AD. We identified only one study of expression of genes in
blood and the numbers of subjects in this and the brain datasets we
used was small. The studies in brain will be subject to the confounds
of late disease, agonal state and post-mortem change as discussed
above. Moreover, both blood and brain studies are aggregates of many
cell types and the gene expression most relevant to disease might be
present in only one cell type – in brain, in neurons for example. In
addition, the drug data (CMap) comes from non-CNS cells, which may
have a different gene expression when exposed to NSAIDs. Some of
these limitations are intrinsic to the field – pre-mortemgene expression
studies in brain at scale are unlikely ever to be conducted for example.
However, others will be increasingly overcome with some of the large
scale studies currently underway tomapmolecular pathways of disease
in ever larger datasets. Similarly, the CMap dataset is currently being en-
hanced in size and depth, which includes using a wide variety of cell
lines, some of them from the CNS. Our study indicates that mining
such datasets, not only independently but across different types of
data, might be highly productive.

In conclusion, we have used a novel approach to test the hypothesis
that NSAIDs might affect risk of disease not only through generic and
known effects in suppressing inflammation but also through previously
unrecognised molecular actions. To do this we have used fuzzy logic to
combine gene expression changes induced by both disease and drug
and find, in blood in particular, an overlap suggesting that one action
of NSAIDs that might function to reduce risk of disease is on the KEGG
pathways of Oxidative Phosphorylation and Ribosome. Further use of
such bioinformatics approaches might be productive in identifying
novel targets for therapy in this otherwise untreatable disorder.
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