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Wetlands are the largest natural source of terrestrial CH4 emissions. Afforestation can
enhance soil CH4 oxidation and decrease methanogenesis, yet the driving mechanisms
leading to these effects remain unclear. We analyzed the structures of communities of
methanogenic and methanotrophic microbes, quantification of mcrA and pmoA genes,
the soil microbial metagenome, soil properties and CH4 fluxes in afforested and non-
afforested areas in the marshland of the Yangtze River. Compared to the non-afforested
land use types, net CH4 emission decreased from bare land, natural vegetation and
5-year forest plantation and transitioned to net CH4 sinks in the 10- and 20-year forest
plantations. Both abundances of mcrA and pmoA genes decreased significantly with
increasing plantation age. By combining random forest analysis and structural equation
modeling, our results provide evidence for an important role of the abundance of
functional genes related to methane production in explaining the net CH4 flux in this
ecosystem. The structures of methanogenic and methanotrophic microbial communities
were of lower importance as explanatory factors than functional genes in terms of in situ
CH4 flux. We also found a substantial interaction between functional genes and soil
properties in the control of CH4 flux, particularly soil particle size. Our study provides
empirical evidence that microbial community function has more explanatory power
than taxonomic microbial community structure with respect to in situ CH4 fluxes. This
suggests that focusing on gene abundances obtained, e.g., through metagenomics or
quantitative/digital PCR could be more effective than community profiling in predicting
CH4 fluxes, and such data should be considered for ecosystem modeling.

Keywords: CH4 flux, soil metagenome, methanogens, methanotrophs, soil particle size composition

Frontiers in Microbiology | www.frontiersin.org 1 February 2022 | Volume 13 | Article 830019

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://doi.org/10.3389/fmicb.2022.830019
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fmicb.2022.830019
http://crossmark.crossref.org/dialog/?doi=10.3389/fmicb.2022.830019&domain=pdf&date_stamp=2022-02-23
https://www.frontiersin.org/articles/10.3389/fmicb.2022.830019/full
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-13-830019 February 18, 2022 Time: 16:14 # 2

Zhang et al. Driving Mechanism of CH4 Emission

INTRODUCTION

Globally, natural wetlands are the largest source of CH4
emissions, accounting for ∼62% of the (natural) CH4 budget
(Nazaries et al., 2013a). Emitted CH4 is almost exclusively
microbial in origin, and its magnitude is determined by the
balance between methane production and oxidation (Conrad,
1996). Previous studies showed that both methanogenic and
methanotrophic microbes can be influenced by a variety of
soil variables including soil C/N ratio, pH, temperature and
NH4

+ concentration (Kolb, 2009; Bodelier, 2011; Yuan et al.,
2016; Zu et al., 2016; Wen et al., 2017). Other soil properties,
such as water and clay contents and level of compaction,
directly affect CH4 fluxes by physically controlling the diffusive
transport of CH4 in soils (Kolb, 2009). However, few studies have
analyzed the relationships among CH4 fluxes, methanogenic and
methanotrophic communities, and these relevant soil properties.

The effects of land-use change on the strengths of CH4 sources
and sinks and methanogenic or methanotrophic microbial
communities are well documented. Afforestation is frequently
examined because forest soils represent a significant sink
in the global CH4 budget (Dalal and Allen, 2008). The
uptake of atmospheric CH4 by the soil is often reported
to increase due to afforestation, which is accompanied by
a shift in the microbial community structure from type I
to type II methanotrophs (Singh et al., 2007, 2009; Dörr
et al., 2010). Studies have also shown that increased CH4 sink
strength following afforestation is associated with increased
dominance of members of the USC α clade-type-II-related
methanotrophs (Nazaries et al., 2011, 2013b; Täumer et al.,
2021). However, these studies did not include an analysis of the
methanogenic community, which may also have been altered
by afforestation and could thus affect the net flux of CH4
flux independent of the methanotrophic community. Thus, the
lack of studies that include analyses of both methanogenic and
methanotrophic communities strongly limits our understanding
of the mechanisms by which CH4 emissions are mitigated
by afforestation.

Freshwater marshlands, natural freshwater wetlands, are
transitional zones bordering rivers and islands. They frequently
experience seasonal flooding and are prone to erosion. In
China, a heterogeneous marshland area of >900,000 ha is
distributed in the middle and lower reaches of the Yangtze
River. This area experiences a subtropical monsoon climate and
usually has abundant seasonal rainfall. There is a rainy season
(April–July) and a dry season (August–March). An ecologically
fragile area, severe land loss and degradation occur due to
continuing population growth, extensive land reclamation, and
pollution (Jiang et al., 2015). Since the early 1980s, afforestation
with poplar trees has been used to restore some of the
degraded marshland along the Yangtze (Zhou et al., 2010). Our
previous studies showed that poplar afforestation of marshland
alters soil structure, increases soil organic matter content, and
reduces CH4 emission (Zhou et al., 2010; Gao et al., 2013).
However, the mechanism by which this is accomplished remains
unknown. In particular, we do not know how afforestation
has affected methanogenic and methanotrophic communities,

nor do we know how relevant functional genes respond to
poplar afforestation.

Methanogenic communities have been characterized using the
16S ribosomal RNA (rRNA) gene or using specific functional
genes such as the α-subunit of the methyl-coenzyme M reductase
(mcrA), which is involved in the final step of methanogenesis
(Luton et al., 2002; Friedrich, 2005). Methanotrophs are usually
dominated by methane-oxidizing bacteria (MOB), though
anaerobic methane-oxidizing (ANME) archaea sometimes also
make a small contribution to methane oxidization (Ettwig et al.,
2016). For MOB, the pmoA gene, encoding the α-subunit of
pMMO (the particulate form of methane monooxygenase), has
a near-universal presence in both aerobic and nitrite-reducing
bacterial methanotrophs and has been used as a biomarker
for characterizing their communities and activities (Freitag
and Prosser, 2009; Seo et al., 2013; Lee et al., 2014; Tate,
2015). Other than targeting a specific molecular biomarker,
metagenomics approaches with genome shotgun sequencing
open the opportunity to describe the diversity profile functional
pathways governing key soil process like C, N and methane
metabolism. However, metagenomics has only been used in
a few studies of ecosystem restoration and succession. These
include changes in functional genes between pre-agricultural
tallgrass prairie and modern agricultural soils (Fierer et al.,
2013), the impact of engineered soil formulations on microbial
functions in restored mine sites (Kumaresan et al., 2017),
and how plant-driven changes shape microbial communities
during succession post agricultural abandonment (Cline and
Zak, 2015).Soil microbial mediated biochemical pathways of
methane production-oxidation and nitrogen metabolism were
studied through metagenomics approach (Bhattacharyya et al.,
2017). In this work, our goal was to expand our understanding
of the changes due to afforestation in soil methane-cycling
microbial communities and their function in marshland of
the Yangtze River by using metagenomics together with 16S
rRNA gene sequencing and quantification of specific marker
genes. We used shotgun metagenomics to directly measure
the changes in abundance of CH4 cycling functional genes,
including methane production and methane oxidation. We
hypothesized that (1) afforestation decreases the abundance of
methanogens and methanogenesis functional genes but increases
the abundance of methanotrophs and methane oxidation genes;
(2) methane-related microbial communities, functional genes
and net CH4 fluxes are influenced by changes in soil physical and
chemical properties associated with afforestation; (3) methane
related functional gene composition will be more powerful than
taxonomic microbial community structure in explaining in situ
CH4 flux.

MATERIALS AND METHODS

Site Description
The field sampling was conducted in a freshwater marshland
(28◦59′–29◦38′ N, 112◦43′–113◦15′ E) located in Junshan
District, Hunan Province. The area of sampling is located at
the west of the Yangtze River and northeast of Dongting Lake
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and possesses a typical subtropical humid climate, with mean
annual precipitation of 1,417 mm and mean annual temperature
of 16.4-17◦C. It is characterized as a type of tidal soil developed
from alluvial parent material, with organic matter of 2.43 g kg−1,
total nitrogen of 1.26 g kg−1, available nitrogen of 112 mg kg−1

and pH of 7.9. This sampling site is annually immersed in a
shallow layer of tidal water from May to August. The natural
vegetation is dominated by Cynodon dactylon (L.) Pers. (Scutch
grass), Viola verecunda A. Gray., Polygonum flaccidum Meisn.
and Clinopodium gracile (Benth.) Kuntze, with vegetation cover
of approximately 50%. In contrast, the vegetation cover is less
than 1% in eroded areas of the marshland. To restore and
prevent land degradation, poplar (Populus deltoides W. Bartram
ex Marshall cv. ‘Lux’; Eastern cottonwood) plantations have been
established in the past 30 years and were never fertilized.

Soil Sampling
Five land types were selected within a 10 km × 10 km range
in the outside-embankment marshland of the Yangtze River,
including bare land (BA), natural vegetation (NV), and poplar
plantations planted five years ago (PP5), ten years ago (PP10)
and 20 years ago (PP20). Natural vegetation refers to the
vegetation that develops in a natural state without artificial
management. The forest plantations had a density of 318
individuals per ha and an average tree height of 17-20 m
at sampling time. The tree height is similar at the sites for
plantations of 5, 10, and 20 years. The popular trees grow
very fast within the first 5 years after being planted when they
can grow to a height of about 17 m (personal observation).
After that the height only varies with a small increase of about
2–3 m. The afforested areas of the marshlands continue to
be periodically flooded from end of May to August at the
same time as the non-afforested areas. The understory plant
growth in the plantations had a cover of <10%, which is
caused by canopy closure and by the seasonal three-month-
long immersion.

TABLE 1 | Reads abundance of methanogenic genera across different land types
from 16S amplicon sequencing. Data are mean reads abundance of samples per
vegetation type (n = 3).

BA NV PP5 PP10 PP20

Methanobacterium 219 77 22 47 15

Methanobrevibacter 0 0 1 0 0

Methanothermobacter 0 1 0 1 0

Methanocella 46 60 31 62 37

Candidatus_Methanoregula 11 56 8 94 17

Methanolinea 1 1 1 7 1

Methanospirillum 3 10 3 20 5

Methanosaeta 50 116 2 33 7

Methanolobus 0 0 0 0 1

Methanosarcina 53 175 40 147 31

Methanomassiliicoccus 9 17 11 4 22

BA, bare land; NV, natural vegetation; PP5, 5-years old poplar plantation; PP10,
10-year old poplar plantation; PP20, 20-year old poplar plantation. Grayed cells
indicate presence.

For each land type, three replicate sampling sites were selected,
and one 10 m × 10 m sampling plot was set up within each
sampling site (Supplementary Figure 1). The soil sampling was
conducted at the end of August after three months‘ flooding. Five
soil cores (40 cm deep and 4 cm inner diameter) were taken
from each sampling plot. One sampling point was at the center
of each plot, and the other four sampling points were located
near each of the four corners of the plot at distances of 3 m
to the border. The five soil cores at 0–10 cm, 10–20 cm, 20–
30 cm, and 30–40 cm from each plot were first mixed thoroughly,
and then an equal amounts of the mixed soil samples were
taken and pooled again to form a composite sample, resulting
in a total of 15 samples (5 land types × 3 replicates). Sampling
was carried out immediately after the three-month flooding in
August 2017. Only 1 kg of the pooled soil samples were sealed
in plastic bags and refrigerated, immediately transported to the
laboratory and sieved to 2 mm to remove root debris and stones.
Soil samples were preserved at −80◦C for subsequent molecular
analysis. Sub-samples from each soil sample were air-dried for
physicochemical analysis.

DNA Extraction, PCR and 16S Amplicon
Sequencing
Soil genomic DNA was extracted from 0.5 g fresh soil samples
using the FastDNA SPIN Kit (MP Biomedicals, Santa Ana,
CA, United States) following the manufacturer’s protocol.
The extracted DNA was diluted to 10 ng µL−1 with the
aid of a NanoDrop ND-1000 spectrophotometer (NanoDrop
Technologies). The primer sets 343F/798R and A533F/A934R
were used to amplify the bacterial and archaeal 16S rRNA gene,
respectively (Table 1). PCR reactions contained 9 µL PCR water
(Qiagen), 12.5 µL 2 × Ace Taq Master Mix (Vazyme Biotech),
0.5 µL each of the forward and reverse primers (10 µM each),
with 2.0 µL (10 ng) of purified DNA from each sample as the
template. Reactions were held at 95◦C for 5 min to activate
the polymerase, and then 28 cycles were performed at 95◦C for
30 s, 55◦C for 30 s, and 72◦C for 30 s; and a final extension
of 7 min at 72◦C. Triplicate PCRs were conducted for each
sample, and the three PCR products were pooled for high-
throughput sequencing. After purification and quantification,
0.01 ug of PCR product from each sample was used for
Illumina paired-end library preparation, cluster generation and
sequenced on the Miseq Illumina PE 300 platform. Sequencing
services were provided by (HanYu Laboratories, Shanghai,
China). Raw sequence data are deposited in the BioProject
database of the NCBI Short Read Archive under accession
number PRJNA787026.

Bioinformatics of 16S Amplicon Data
The high throughput sequencing data were processed using
QIIME 1.6.0 (Caporaso et al., 2010). The DNA reads were
assigned to samples according to unique barcodes. The
corresponding paired reads were merged if the overlap was
100% identical using FLASH (v 1.2.7)1. Quality filtering was
done using QIIME, with the default settings for Illumina

1http://ccb.jhu.edu/software/FLASH/
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were (r = 3; p = 0.75 total read length; q = 3; n = 0) as
recommended by Bokulich et al. (2013). Chimera sequences were
removed with UCHIME (Version 4.2) implemented in QIIME
(Edgar et al., 2011).

Operational taxonomic units (OTUs) were defined with 97%
sequence similarity with Uparse2 (Edgar, 2013) after removal of
putative chimera and singletons. The most abundant sequence
was selected as the representative of each OTU. The taxonomy
of each OTU was assigned through the RDP Classifier (version
2.2)3 (Sul et al., 2011) and trained on the Greengenes reference
sequences4 (DeSantis et al., 2006). When OTUs were assigned
to taxonomy, only OTUs annotated as bacteria or archaea were
maintained. In addition, we also selected the methanogens and
methanotrophs at the genus level for further analysis based on the
taxonomic information. Two alpha diversity indices, observed
species and chao1, were calculated.

Quantitative PCR
Quantifications of soil methanogens were performed by
quantitative PCR (qPCR) with primer sets mlas-mod–F/-mcrA-
rev-R for the mcrA gene and A189f/mb661r for the pmoA
gene. Because some studies reported that the primer set A189f-
mb661r for pmoA could also amplify amoA, we did primer
evaluation before qPCR. No clone sequenced from clone libraries
generated by A189f-mb661r was identified as amoA. This was
supported by a previous study which showed that sequences
generated with primer set A189f-mb661r all grouped with the
gammaproteobacterial pmoA sequences in a neighbor-joining
phylogenetic tree (Redmond et al., 2010). The overall bacterial
and archaeal abundance were also quantified by qPCR with the
primer pairs Ba519F/Ba907R and Ar364F/Ar934R, respectively
(Supplementary Table 1). PCR amplifications were carried out
in triplicate on a CFX Connect Real-Time PCR Detection System
(Bio-Rad) in a final volume of 10 µL containing 1 µL of gDNA,
0.4 µM of each respective primer, 5 µL of 2 × SG Green qPCR
Mix (SinoGene). All assays also systematically included positive
and negative controls. PCR amplification for bacterial and archa
archeael eal 16S rDNA genes followed the procedure described in
Angel et al. (2012). For mcrA and pmoA, the PCR thermocycling
was initiated at 95◦C for 3 min, followed by 40 cycles of 10 s at
95◦C, 20 s at 58◦C, and 10 s at 72◦C. Fluorescence data were
collected at the end of each cycle. To assess the specificity of
amplification, a melting curve analysis was performed. Standard
curves were created by plotting the cycle threshold (CT) values
of the qPCRs performed on dilution series of plasmid DNA
(104-109 copies/µl). The gene copy number in each analyzed
sample was determined by comparing to Ct values/gene copy
number of the standard curve.

Metagenomic Analysis
DNA was fragmented to an average size of about 350 bp
using Covaris M220 (Gene Company Limited, China) for
paired-end library construction. A paired-end library was

2http://drive5.com/uparse/
3http://sourceforge.net/projects/rdp-classifier/
4https://greengenes.lbl.gov/Download/Taxonomic_Outlines/

prepared using the TruSeq DNA Sample Prep Kit (Illumina,
San Diego, CA, United States). Adapters containing the full
complement of sequencing primer hybridization sites were
ligated to the Blunt-end fragments. Paired-end sequencing was
performed on Illumina HiSeq 4000 PE150 platform (Illumina
Inc., San Diego, CA, United States) using HiSeq 3000/4000
PE Cluster Kit and HiSeq 3000/4000 SBS Kits according to
manufacturer instructions. Raw sequence data are deposited in
China National Genebank (CNGB) database under accession
number CNP0002514.

Raw data were first processed by Trimmomatic 0.36 (Bolger
et al., 2014) for adapter removal and moderate-quality trimming
to obtain clean data for subsequent data analysis. Sequences
containing N base and adapters or a low-quality value (Q
value less than 20) were removed. De bruijn-graph-based
assembler Megahit (v1.0.6) (Li et al., 2015) was employed to
assemble short reads, with mapped ratio between 19.7 and
40.1% across all the samples. Open reading frames (ORFs)
from each metagenomic sample were predicted using Prodigal
(v2.60) (Hyatt et al., 2012). The predicted ORFs with lengths
over 100 bp were retrieved and translated to amino acid
sequences using the NCBI translation table.5 All sequences from
gene sets with a 95% sequence identity (90% coverage) were
clustered as the non-redundant gene catalog by the CD-HIT.6

Non-redundant sequences were mapped with Bowtie 1.1.2, and
sam2counts 0.91 was used to convert mapping results to reference
sequence counts, generating the gene table which could be used
for functional annotation. Kyoto Encyclopedia for Genes and
Genomes (KEGG)7 was used to analyze the functional aspects
(Kanehisa and Goto, 2000). KOBAS 2.0 software was used for
KEGG functional orthologs (KOs) annotation based on the
non-redundant gene (Xie et al., 2011). Subsequently, all contig
data were mapped against the KEGG pathway (Meyer et al.,
2008) to identify tentative metabolic pathways for a specific
function. To avoid the sequencing depth bias in comparative
analysis, the total sequencing number was normalized to one
million reads per sample. Genes relating to methanogenesis
and methane oxidation were of particular interest and were
selected for more detailed analysis. The pathway, ‘ko00680:
Methane metabolism’, was considered as the core pathway related
to methane production and consumption. The abundance of
metagenomic reads assigned to a particular gene is used as a
proxy for gene abundance in a sample.

CH4 Flux Measurement
Data of methane flux was collected with a static dark
chamber-FMA (fast methane analyzer) approach (Gao et al.,
2013). The chamber was composed of three parts: a stainless
steel base (60 cm × 60 cm × 12 cm), a joint chamber
(60 cm × 60 cm × 120 cm) and a covering chamber
(60 cm × 60 cm × 40 cm). The joint and covering chambers
were made of tranparent plexiglass inert to CH4. The base

5https://www.ncbi.nlm.nih.gov/Taxonomy/taxonomyhome.html/index.cgi?
chapter~=~tgencodes#SG1
6http://www.bioinformatics.org/cd-hit/
7http://www.kegg.jp
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FIGURE 1 | NMDS ordination for methanogenic (A) and methanotrophic (B) communities based on corresponding 16S rDNA sequences across different vegetation
types. BA, bare land; NV, natural vegetation; PP5, 5-years old poplar plantation; PP10, the 10-year old poplar plantation; PP20, the 20-year old poplar plantation.

was inserted into the soil at a depth of 10 cm. The covering
chamber was equiped with two fans (diamer: 12 cm) to ensure
that gas was mixed completely. The dark chamber was made
through wrapping a layer of insulation with aluminum foil to
minimize the internal temperature changes. The temperature in
soils and chambers were measured with a digital thermometer.
Gas samples (1.2 L) were collected at 2, 12, and 22 min after
the covering chamber being capped, and stored in air-sampling
bags (2 L) made of aluminum composite membrane. Gas sample
collection was carried out with an interval of 6 h between the two
adjacent collections. CH4 flux was then measure with LGR Fast
Methane Analyzer (FMA) (Los Gatos Research, Ltd., San Joes,
CA, United States). The CH4 flux was calculated as follows:

F =
dc
dt
∗

P
P0
∗

T0

T
∗

M
22.4
∗H

Here, F refers to the CH4 flux (ug m−2 h−1). dc/dt is the rate
of CH4 accumulated in the chamber (PPBV CH4–C h−1). P is
the atmospheric pressure (Pa) at the sampling sites. P0 is the
standard atmospheric pressure (Pa). T is the air temperature (K)
in the chamber at gas sampling. T0 is the air temperature (K)
at the standard conditions. M is the molecular weight of CH4.
H is the total height (cm) of chambers, including the joint and
covering chambers.

Soil Properties
Soil samples were assayed for particle composition, organic
matter, total nitrogen, available nitrogen, total phosphorus,
extractable phosphorus, total potassium, available potassium, pH
and cation exchange capacity (CEC). Soil particle composition
was determined using Mastersizer 2000 (Malvern Panalytical,

United Kingdom). Organic matter was determined by the
standard Walkley-Black potassium dichromate oxidation method
(Nelson and Sommers, 1982). Total N concentrations were
measured by the Kjeldahl procedure (2200 Kjeldahl Auto
Distillation) and available N (AN) by the alkaline hydrolysis
diffusion method (Lu, 1999). Total P and extractable P
concentrations were measured by spectrophotometry (UV-1600
spectrophotometer, Beijing) (Lu, 1999). Total K and available K
(AK) were determined by flame photometry (Lu, 1999). Soil CEC
was measured by the ammonium acetate method at pH 7.0 (Lu,
1999). The value of soil pH was determined in 1:1 soil:water
slurries with an acidometer (HANNA, Padua, Italy). Soil dry
matter was determined by drying samples at 105 ± 2◦C until it
reached a constant mass as laid out in the Soil Quality ISO Section
3.1 (ISO 11465, 1993).

Oxygen (O2) concentrations were measured by gently pushing
a Clark type glass microelectrode (500 µm tip, Unisense A/S
Aarhus N, Denmark) into the soil at 20 cm depth. The
microelectrode was positioned by micromanipulator, and the
sensor current was measured with a picoammeter (PA2000,
Unisense A/S). The microelectrode was calibrated with both
air-saturated and oxygen-free N2-saturated water at the same
temperature as the soil.

Random Forest Analysis
To explore the role of soil properties, abundances of methanogens
and methanotrophs, and vital functional genes in driving CH4
fluxes, we used a regression Random Forest (RF) analysis
(Breiman, 2001) to identify the main predictors of CH4 flux.
In our RF analyses, the soil particle composition, relative
abundance of methanogens and methanotrophs at the genus
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level, quantification of mcrA and pmoA genes, and abundances
of key functional genes revealed with metagenomics were
included as predictors of CH4 flux. The relative abundance of
methanogens and methanotrophs were calculated as follows: first,
we selected the genera belonging to the known methanogens
and methanotrophs; then using the abundance of these genera to
calculate the relative abundance of methanogens with the total
abundance of archaeal 16S high-throughput sequencing reads,
as well as for methanotrophs with bacterial 16S. The response
variable was the mean values of the four measurements of CH4
flux. These analyses were conducted using the RF package (Liaw
and Wiener, 2002) for R. The significance of the model and
the cross-validated R2 were assessed with 5,000 permutations
of the response variable, using the A3 (Fortmann-Roe, 2015) R
package. Similarly, the significance of the importance measures
of each predictor on the response variable (enzymatic activities)
was assessed by using the rfPermute8 package for R.

Structural Equation Model
To identify drivers of CH4 flux, structural equation models
(SEM) using Mantel R values as inputs were constructed in
AMOS 20.0 (Arbuckle, 2011). We included variables identified
to be important predictors in RF analysis to explore direct
effects and their interactive effect of these variables. A maximum
likelihood estimation method was used to compare the SEM
models with observations. The goodness of fit was determined
with the criterion of RMSEA (root mean squared error of
approximation) < 0.05 and TLI (Tucker-Lewis Index) > 0.95 as
suggested by Hu and Bentler (1999).

Statistical Analysis
Anaerobic archaeal methanogens and aerobic bacterial
methanotrophs were identified based on the taxonomic
information at the genus level with high-throughput 16S
amplicon sequencing (see the review of Nazaries et al., 2013a).
Non-metric multidimensional scaling (NMDS) analysis was
performed based on the relative abundance of each genus to
illustrate differences in the structure of the methanogenic and
methanotrophic communities among land types. Statistically
significant difference was determined with the analysis of
similarity (ANOSIM) for methanogenic or methanotrophic
communities among different land types (Vegan package in R,
Oksanen et al., 2013). Non-parametric Kruskal-Wallis test was
performed to test the difference of each genus among land types
(Agricolae package in R, de Mendiburu, 2012).

RESULTS

Community Structure of Methanogens
and Methanotrophs
High throughput sequencing with primer set A533F/A934R
obtained 166,465 sequences after quality filtering. Taxonomy
classification identified a total of 96,178 archaeal sequences (5,371
- 7,827 sequences per sample) after deleting singletons. The data

8http://cran.rproject.org/web/packages/rfPermute/rfPermute.pdf

set was rarefied to 5,371 sequences per sample, and a total of
1810 OTUs existed in this rarefied OTU table. Then, 124 OTUs
(18-867 sequences per samples) from 11 archaeal genera were
identified as methanogen (Table 1). The alpha diversity indexes
observed species was from 33 to 60 and chao1 from 40 to 84
across vegetation types, but both were not significant different
across samples (p > 0.05; Supplementary Figure 2A). The
methanogenic communities varied significantly across land types,
confirmed by ANOSIM (r = 0.78, p < 0.001) and PERMANOVA
(R2 = 0.22, p < 0.001) (Figure 1A).

High throughput sequencing with primer set 343F/798R
obtained 165,377 sequences after quality filtering. Taxonomy
classification identified a total of 142,026 bacterial sequences
(8,408 - 10,360 sequences per sample) after deleting singletons.
The data set was rarefied to 8,408 sequences per sample,
and a total of 9,770 OTUs existed in this rarefied OTU
table. Then, 36 OTUs (0-46 sequences per samples) from 6
bacterial genera were identified as methanotrophic (Table 2).
The alpha diversity indexes observed species was from 5 to
9 and chao1 from 9 to 11 across vegetation types, but both
were not significant different across all samples (p > 0.05;
Supplementary Figure 2B). The methanotrophic communities
showed a homogeneous spread across land types (ANOSIM:
r = 0.09, p = 0.16; PERMANOVA: R2 = 0.14, p = 0.09; Figure 1B).
Methanotrophs are divided into type-I (gammaproteobacteria)
and type-II (alphaproteobacteria), and we found that most
of the OTUs belonged to type-I methanotrophs, including
Crenothrix, Methylobacter, Methylomicrobium, Methylomonas
and Methylosarcina.

Abundance of mcrA and pmoA Genes
Archaeal and bacterial 16S rDNA abundances did not show
significant differences across land types (P > 0.05), with archaeal
abundance at∼108 copies g−1 dry soil (Figure 2A) and bacterial
abundance at ∼1010 copies g−1 dry soil (Figure 2B) across
all the land types.

Both mcrA and pmoA genes were present in all five land types
(Figure 2). The mcrA gene copy number was lower in soils of PP5
(3.5 × 106 copies/g dry soil), PP10 (2.3 × 106 copies/g dry soil)
and PP20 (6.4× 105 copies/g dry soil) than BA (1.4× 107copies/g
dry soil) and NV (2.4 × 107copies/g dry soil) (p < 0.001).

TABLE 2 | Reads abundance of methanotrophic genera across different land
types from 16S amplicon sequencing.

BA NV PP5 PP10 PP20

Crenothrix (Type-I) 1 2 1 1 3

Methylobacter (Type-I) 1 0 0 1 1

Methylomicrobium (Type-I) 5 3 1 5 4

Methylomonas (Type-I) 2 8 2 9 17

Methylosarcina (Type-I) 6 9 9 2 4

Candidatus_Methylacidiphilum 1 0 0 0 0

Data are mean reads abundance of samples per vegetation type (n = 3). BA, bare
land; NV, natural vegetation; PP5, the 5-year old poplar plantation; PP10, the 10-
year old poplar plantation; PP20, the 20-year old poplar plantation. Greyed cells
indicate presence.
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FIGURE 2 | (A) Gene copy number of archaeal 16S and mcrA among different land types. (B) Gene copy number of Bacterial 16S and pmoA among different land
types. BA: bare land; NV: natural vegetation; PP5: 5-years old poplar plantation; PP10: 10-years old poplar plantation; PP20: 20-years old poplar plantation.
∗p < 0.05; ∗∗∗p < 0.001; ns: p > 0.05.

Quantification of the pmoA gene showed a similar pattern to the
mcrA gene, with lower copies in PP5, PP10, and PP20 (lower than
107 copies/g dry soil) when compared to both un-afforested types
(higher than 107 copies/g dry soil) (p < 0.05).

Deciphering Methane Metabolism With
Metagenomics
A total of 526,742,669 reads (16,618,761 - 58,023,740 reads
per sample) were achieved after quality filtering in the meta-
genomic analysis. Read abundance of the ko00680 pathway
showed significant differences across the five land types (P < 0.05;
Figure 3) after normalization to one million reads per sample.
NV obtained the highest read number. Reads abundance of the

pathway in the PP10 and PP20 were significantly lower than those
in both non-afforested BA and NV land types.

Two primary biochemical pathways of methanogenesis
are CO2 to CH4 (M00567 KEGG Pathway) and acetate to
CH4 (M00357 KEGG Pathway) (Supplementary Table 2).
Methanogenesis through the acetoclastic pathway involves
several enzymes such as acetate kinase, Acetyl-CoA
decarboxylase, Acetyl-CoA synthetase, etc. Genes encoding
these enzymes were shown significantly lower abundances in the
three afforested land types than the two non-afforested types.

The pmoA-gene (EC:1.14.18.3, 1.14.99.39) which catalyze
the oxidation of methane to methanol is widely used as a
functional gene marker for methanotrophs. Abundances of
the pmoA gene detected with metagenomic approach were

Frontiers in Microbiology | www.frontiersin.org 7 February 2022 | Volume 13 | Article 830019

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-13-830019 February 18, 2022 Time: 16:14 # 8

Zhang et al. Driving Mechanism of CH4 Emission

FIGURE 3 | Read abundance of the KEGG pathway: ko00680 Methane metabolism in the soil of different land types. All reads belong to the category of methane
metabolism. BA: bare land; NV: natural vegetation; PP5: 5-years old poplar plantation; PP10: the 10-year old poplar plantation; PP20: the 20-year old poplar
plantation. Different letters mean significant difference as p < 0.05 in ANOVA.

higher in the PP10 and PP20 than the non-afforested BA and
NV land types (Supplementary Table 3). The serine pathway
(M00346 KEGG Pathway), the xylulose monophosphate pathway
(M00344 KEGG Pathway) and the ribulose monophosphate
pathway (M00345 KEGG Pathway) (Supplementary Table 3) are
three formaldehyde assimilation pathways in the downstream of
methane conversion to formaldehyde, which also are important
biochemical pathways of methanotrophs (Bhattacharyya et al.,
2017). The total read number of involved enzymes was
significantly lower in the three afforested land types than the two
non-afforested types for all the three pathways.

In situ CH4 Flux at Sampling Event
Afforestation decreased CH4 emissions compared to the BA and
NV land types (One-way ANOVA: F = 2111, p < 0.001; Figure 4).
In PP10 and PP20, the soils became a net CH4 sink (Figure 4).

Random Forest Analysis
Basing on Increase in MSE (%) value, random forest analysis
identified that soil particle size composition and functional genes
for key enzymes were most important in determining CH4 flux
(%) (Figure 5). Increase in MSE (%) represented ‘Increased
in mean squared error (%)’ which means the contribution of
this independent variable to the prediction accuracy of the
dependent variable. Higher Increase in MSE (%) value means
higher importance of this independent variable. Soil dry matter
and oxygen concentration were not significant in explaining
CH4 fluxes. With random forest analysis, five soil particle size
components, nine genes involved in methanogenesis and eight
genes involved in methane oxidation were shown to be significant
for variations in CH4 fluxes (Figure 5). Total K and CEC were
significant soil chemical characteristics for variations in CH4

fluxes. Methanothermobacter and Methylococcus were identified,
respectively, as methanogenic and methanotrophic genera in
explaining variations in CH4 fluxes. Data of all soil properties
were listed in Supplementary Table 4.

Structural Equation Modeling
The direct and indirect effects of soil properties, microbial
communities and functional genes on CH4 flux was explored
using SEM analysis. Our SEM model adequately fitted the
data (Chi-square = 1.249, df = 1, Probability level = 0.264,
RSMEA = 0.001, TLI = 1.000) and explained 72% variation of
CH4 flux (Figure 6). Soil particle composition, the functional
genes related to methanogenesis and CEC were included in the
SEM model. Soil particle size and the methanogenic functional
genes comprised the two dominant direct effects on CH4 flux
(Figure 6). Soil particle size had the highest total effect on
CH4 flux, with indirect effects by methanogenic functional
genes and CEC. Based on the variables selected from random
forest analysis, we constructed several hypothetical models
before performing SEM analysis. Any SEM model including
methanotrophs can not fit the statistical requirements, e.g.,
RMSEA < 0.05 and TLI > 0.95.

DISCUSSION

Drivers of CH4 Flux
Water-saturated, carbon-rich ecosystems such as wetlands are
traditionally classified as net CH4 sources (Tan et al., 2015). Here
this study showed that afforestation decreased CH4 emissions
compared to the natural marshland, and the soils appeared to
become net CH4 sinks 10 years after afforestation. This suggests
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FIGURE 4 | Net CH4 flux across five land types. Mean ± SEM (n = 4).

FIGURE 5 | Relative importance of the abiotic and biotic factors in driving CH4 flux based on a Random Forest analysis. Increase in MSE (%) represented ‘Increased
in mean squared error (%)‘ which means the contribution of this independent variable to the prediction accuracy of the dependent variable. Higher Increase in MSE
(%) value means higher importance of this independent variable. EC 1.8.98.1: Heterodisulfide reductase; EC 2.3.1.-: Acetyl-CoA decarboxylase; EC 1.2.99.5:
Formylmethanofuran dehydrogenase; EC 2.7.2.1: Acetate kinase; EC 2.3.1.8: Phosphate acetyltransferase; EC 2.3.1.101: Formylmethanofuran
tetrahydromethanopterin-N-formyltransferase; EC 2.1.1.86: Tetrahydromethanopterin-S-methyltransferase (A-H); EC 6.2.1.1: Acetyl-CoA synthetase; EC 1.5.98.2:
5,10-methylenetetrahydromethanopterin reductase; EC 4.1.2.43: 3-hexose-6-phosphate synthase; EC 5.3.1.27: 6-phospho-3-hexoisomerase; EC 2.7.1.11:
6-phophofructokinase; EC 4.1.2.13: Fructose bisphosphate aldolase; EC 2.1.2.1: Glycine hydroxymethyl transferase; EC 3.1.3.11: Fructose bisphosphate; EC
2.2.1.3: Formaldehyde transketolase; EC 2.7.1.165: Glycerate-2-kinase.

that afforestation on the degraded marshlands of the Yangtze
River could help reduce CH4 emissions. Such was also observed
in the conversion to forest from grasslands (Benanti et al., 2014)
and croplands (Wu et al., 2018).

Methane emission from the soil is driven by the balance
between microbial CH4 production and CH4 consumption,

together with soil physicochemical properties that further affect
CH4-metabolizing microbes and CH4 diffusion (Conrad, 2002).
Studies have attempted to disentangle the various drivers
of methane fluxes, such as temperature, moisture, microbial
diversity and the abundance of CH4-metabolizing microbial
populations (St Pierre et al., 2019; Lang et al., 2020). Such studies
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FIGURE 6 | The direct and indirect effects of abiotic and biotic factors on CH4 flux. (A) A structural equation model showing the standardized total effects of soil
properties and methanotrophs on CH4 flux; (B) The standardized direct and indirect effects of factors mentioned above on CH4 flux. The numbers above the arrows
represented path coefficients. CEC: Cation exchange capacity; methanogenic functional genes: metagenome-based methanogenic gene frequency identified to be
important predictors in random forest analysis; soil particle composition: soil particles identified to be important predictors in random forest analysis.

have focused on the correlation between CH4 emission and a
specific variable. However, the relative importance of such factors
was never determined within a comprehensive framework. The
primary purpose of our study was to simultaneously consider
interactions of abiotic and biotic factors in order to investigate
the interplay between methane-cycling microbial communities,
functional metabolic pathways and soil properties as they affect
CH4 flux in various land types.

By combining random forest analysis and structural equation
modeling, our results provide novel evidence of a strong
correlation between the CH4 flux and the abundance of
functional genes related to both CH4 production and CH4
consumption. Many studies suggest a coupling between
microbial community structure and methane production or
consumption (e.g., Subhajit et al., 2018; Yu et al., 2020). However,
some previous studies suggest that coarse measures of microbial
communities based on DNA techniques may be insufficient
to understand the functional contributions of such microbial
communities (Rocca et al., 2015; Wood et al., 2015). A few
examples illustrate this point. First, metaproteomics revealed that
perturbations in organic matter affected functional composition
over the taxonomic composition of the microbial community
(Mikan et al., 2020). Second, grazing clearly changed the overall
microbial functional composition, but the overall composition
of the CH4-cycling microbial community was unchanged (Ma
et al., 2019). Third, some studies have shown that considerable
variation in atmospheric CH4 consumption could occur
without apparent changes in biomass and composition of the
high-affinity methanotrophic community (e.g.,
Menyailo et al., 2010). Our results also demonstrate that

variation in functional gene composition due to land type was
more likely responsible for the observed effects on CH4 flux
than shifts in taxonomic microbial community structure.
One possible explanation for the poor linkage between
taxonomic microbial community structure and microbial
community function may be sufficient functional redundancy
(Paul, 2007) among microbial taxa to obscure the linkage.
To our knowledge, this is the first report providing evidence
consistent with the hypothesis that functionality is superior
to taxonomic community structure in determining in situ
CH4 flux.

Several functional genes involved in methanogenic pathways
showed strong explanatory strength in CH4 flux (Supplementary
Table 2). This was supported by two recent studies which
reported metagenomic genes were predictive for CH4 flux
in industrial salt ponds (Zhou et al., 2022) and arctic lake
sediment (Emerson et al., 2021). Several genes such as genes
for EC 2.1.1.86 and EC 2.7.2.1 were identified for significantly
correlated with CH4 flux in our study and a previous study
(Zhou et al., 2022). The enzyme EC 2.1.1.86 represents
tetrahydromethanopterin S-methyltransferase for generation of
methyl-CoM, the next to last step in hydrogenotrophic and
acetoclastic methanogenesis. The EC 2.7.2.1 metabolize acetate
into acetyl-CoA for methanogenesis. However, different from
that mcrA gene was predictive for CH4 flux (Emerson et al.,
2021; Zhou et al., 2022), mcrA gene wasn’t found to be significant
in explaining CH4 flux in our study. This suggested that the
limiting step of CH4 production in our study sites were in
the upstream steps (e.g., biochemical reaction was catalyzed
by EC 2.1.1.86 and EC 2.7.2.1) but not in the terminal step
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in methanogenesis catalyzed by methyl coenzyme M reductase
(mcrA gene).

There existed a strong interactive effect of functional genes
and soil properties on CH4 flux. Soil particle size and CEC
were the two soil property drivers. Soil particles < 0.002 mm
were particularly important in affecting CH4 flux, as shown
in random forest analysis. This was supported by a previous
study showing that methane production was at a higher rate
in clay (size < 0.002 mm) than in coarser particles (e.g., sand,
gravel) (Wagner et al., 1999). Small soil particles enhance water
retention, promote higher microbial biomass (Wilpiszeski et al.,
2019), and reduced oxygen permeability, leading to lower redox
potential and even local anoxia. This, in turns, supports higher
CH4 production and suppresses CH4 oxidation. Our structural
equation modeling also showed that soil particle size could
interact with CEC to affect CH4 production, supported by a
previous study (Mitra et al., 2002). Clay and humus particles
are negatively charged, which significantly influence CEC. CEC
was higher in clay than in gravel or sand (Wagner et al., 1999).
van Loosdrecht et al. (1987a,b) showed that the hydrophobicity
and electrophoretic mobility of microbes could be taken as
an indicator for their adhesion properties. Methanogens, e.g.,
Methanosarcina barkeri, have a hydrophobic cell surface and low
electrophoretic mobility, which increases their attachment to soil
particles (Grotenhuis et al., 1992).

Community and Abundance of
Methanotrophs
Overall, the motivation of this study was not to describe the
structures of communities of methanogens and methanotrophs,
but result of the methanotrophic community is discussed here
because it is inconsistent with our hypothesis.

Copy number of the pmoA gene did not support our
hypothesis that afforestation would support growth of the
population of methanotrophs; pmoA gene copy number
decreased in the afforested plots. In contrast with previous results
showing methanotrophic population recovery with plantation
age (Nazaries et al., 2011; Sun and Badgley, 2019), our study
showed that the metabolic pathway of microbial methanotrophic
activity was suppressed with increasing plantation age. These
results can probably be best explained by the significant decrease
in methanogenic activity with plantation age, as evidenced by the
decreasing mcrA gene and methanogenesis pathway abundance
in older plantations and the shift to becoming a net CH4 sink.

Our study also showed that afforestation in the Yangtze
River marshland did not change the community structure of
aerobic bacterial methanotrophs. This, again, is different from
previous studies showing a shift in methanotrophic communities
following afforestation (Singh et al., 2007, 2009; Nazaries et al.,
2011). Previous studies showed that afforestation on pasture or
reforestation increased the abundance of type-II methanotrophs
but suppressed type-I methanotroph (Nazaries et al., 2011; Sun
and Badgley, 2019). It was also found that type-II methanotrophs
were dominant (77% of methanotrophs) and mainly drove
the changes in methane monooxygenase gene abundances as
plantations aged (Sun and Badgley, 2019). Here, bacterial

community composition showed that type I methanotroph
was dominant, including Methylobacter, Methylomicrobium,
Methylomonas, and Methylosarcina. A reasonable explanation
for our observations is that our site undergoes periodical
flooding and produces high amounts of methane irrespective
of plantation age, in contrast to the studies mentioned above.
As methanotrophs are aerobic, soil water content may be
an important consideration that overrides afforestation as a
controlling factor of methanotrophic communities in marshlands
(Zhang et al., 2019). This is supported by previous studies that
show CH4 oxidation rates decrease in temperate forest when soil
water content ranges from 60 to 100% water-filled pore space
(Whalen and Reeburgh, 1990; Bender and Conrad, 1995).

Implications, Limitations and Future
Directions
The different molecular methods used here (amplicon
sequencing, qPCR, and metagenomics) each have their strengths
and weaknesses and were used to complement each other. For
example, amplicon sequencing provides an excellent taxonomic
overview for many samples and allows detecting even very rare
members of the community, but is limited to one gene at a time.
Metagenomics, on the other hand, enables studying community
functions in an untargeted way. However, both methods deliver
only compositional data with many limitations. qPCR, therefore,
complements these methods by providing absolute gene quantity
values. A significant advantage of studying methanogens and
methanotrophs, in contrast to some other microbial guilds,
is that each is limited to a single energy-yielding process for
growth. Therefore, the population sizes of these two guilds
serve as a good proxy for the magnitude of gross methane
production and consumption. A variety of other studies have
demonstrated correlations between methane production and
soil properties as well as microbiome features (Emerson et al.,
2021; Zhou et al., 2022). Here, our study revealed the relative
importance and interactive pathway of soil properties and
microbial features in explaining in-situ CH4 flux including
various molecular methods into analysis. Thus, we think our
findings could, to some extent, provide some new insights into
driving mechanism of CH4 flux and cycling. This suggests
that functional gene data could be used to predict methane
fluxes by advanced modeling. It is important to recognize that,
in general, the assumption about microbe — methane flux
interaction has been formulated for several times from 2,000
until to date based on limited datasets (Täumer et al., 2021).
Here our data set is also limited to make a conclusion that how
it can be done. Even so, we still think our findings could at
least provide some new insights into driving mechanism of CH4
flux and cycling in the studied ecosystem, i.e., gene abundances
obtained through metagenomics or quantitative/digital PCR
could be more effective than community profiling in predicting
CH4 fluxes. Further, although qPCR abundance of pmoA was
previously significantly correlated to methane oxidation activity
of methanotrophs in forest soils (Kolb et al., 2005), we here
found no relationship between both. Our results showed high
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abundances of methanotrophs present according to the qPCR
data but low abundances of reads that encode for the pmoA
in metagenomic analysis (as listed in Supplementary Table 3).
This might be originated from rarefaction of abundance data.
Rarefaction was done to avoid bias in sequencing depth. Prior to
rarefaction, abundances of pmoA gene in metagenomics analysis
were from 25 to 173. Basically, our qPCR data showed that
ratio of pmoA gene to bacterial 16S rDNA was about 0.01%
∼ 0.1% (106

∼ 107/1010), meaning that in 107 metagenome
reads ca. 100 – 1,000 will be affiliated with a methanotroph.
However, that is all the genes, finding a pmoA is still rare. As
annotated reads in our metagenomic analysis was at 107 level, we
think data of pmoA gene in metagenomic after rarefaction was
reasonable, and results of meta-genome and qPCR approaches
could support each other.

Our study provides empirical evidence that microbial
community function is more important than taxonomic
community structure in explaining in situ CH4 fluxes. We first
highlight an interactive effect between methanogenic functional
genes and soil properties, in particular soil particle size. The
results should urge researchers to adopt the use of functional
gene analysis through metagenomics to develop a gene-centric
approach and to utilize a framework that includes known
interactions among factors that can be integrated into simulation
models to understand climate change and to inform management
policies. One of the key limitations of this study is that sampling
was done at only one time on one tree species with only
three replicates for each vegetation type, which limited us
to make a final conclusion about basic scientific assumptions
on microbe-methane flux interaction. Furthermore, besides
community composition and functional gene, the activity of all
microbes engaged in methane-cycle is also important. Future
study should consider to include meta-transcriptome and meta-
proteome revealling in-situ microbail activities in prediction of
CH4 flux. Third, some soil characteristics such as soil temperature
was not recorded here which was thought to be important
for CH4 flux and should be included into analysis in future
study. Therefore, future work should take more environmental
variables and methodological approach into account and include
larger temporal and spatial scales across a variety of land use
types and climates.
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