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Abstract

A primary objective of the National Aeronautics and Space Administration (NASA) is expansion of humankind’s presence outside low-
Earth orbit, culminating in permanent interplanetary travel and habitation. Having no inherent means of physiological detection or
protection against ionizing radiation, humans incur capricious risk when journeying beyond low-Earth orbit for long periods. NASA
has made large investments to analyze pathologies from space radiation exposure, emphasizing the importance of characterizing
radiation’s physiological effects. Because natural evolution would require many generations to confer resistance against space radia-
tion, immediately pragmatic approaches should be considered. Volitional evolution, defined as humans steering their own heredity,
may inevitably retrofit the genome to mitigate resultant pathologies from space radiation exposure. Recently, uniquely radioprotective
genes have been identified, conferring local or systemic radiotolerance when overexpressed in vitro and in vivo. Aiding in this pro-
cess, the CRISPR/Cas9 technique is an inexpensive and reproducible instrument capable of making limited additions and deletions to
the genome. Although cohorts can be identified and engineered to protect against radiation, alternative and supplemental strategies
should be seriously considered. Advanced propulsion and mild synthetic torpor are perhaps the most likely to be integrated. Interfac-
ing artificial intelligence with genetic engineering using predefined boundary conditions may enable the computational modeling of
otherwise overly complex biological networks. The ethical context and boundaries of introducing genetically pioneered humans are
considered.
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1. Introduction
1.1 NASA directorates and ionizing space
radiation
A primary objective of the National Aeronautics and Space
Administration (NASA) is the human exploration and operations
mission directorate, providing NASA the authority and capabil-
ity to conduct research pertaining to human exploration beyond
low-Earth orbit (1). NASA’s Perseverance Rover is presently testing
technologies to help prepare for an extended human presence on
Mars, and NASA has fueled extraordinary analyses in quantifying
andmitigating the physiological effects of ionizing radiation expo-
sure in space (2, 3). Outside Earth’s protective magnetosphere,
deep space harbors both omnipresent galactic cosmic radiation
(GCR) and spontaneous events like Solar Particle Events (SPEs)
and coronal mass ejections (CMEs) (4, 5). Despite developments
in the prediction of and protection against spontaneous events,
sustained cosmonaut exposure to GCR remains unavoidable. The
most common sources of space radiation are described in Table 1.

Two physical mechanisms of particle acceleration in deep
space result in two types of randomevents: impulsive and gradual.
Impulsive events (e.g. solar flares) are typically rich in Helium-3
and electrons and are associated with radio bursts and x-ray
flares. Gradual events (e.g. shockwaves from CMEs) involve largely
protons and occur with less frequency (6). Discrepancies in dose
rates and particle types result in drastically diverse acute and
chronic pathologies, limiting the extensibility of existing studies
(7–9).

1.2 Space radiation complications
According to NASA, every cell in an astronaut’s body is tra-
versed by a proton, a helium nucleus and a high atomic num-
ber and energy nucleus about once every few days, weeks and
months, respectively, due to GCR alone. This corresponds to
tissue doses and effective dose-rates of about 0.3–0.6 mGy/day
and 1–1.8 mSv/day, respectively, and, although difficult to
scale, this translates to ∼0.09–0.18 single-strand DNA breaks and
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Table 1. Properties and variables of common sources of radiation, toxic to humans beyond Earth’s magnetosphere

Astronomical
consideration Foreseeability Duration Constituency Primary factors

GCR Known (13) Perpetual (14) 87% protons, 12% α-particles,
1% HZE ions (10)

Solar cycle (15)

Solar flare Unforeseeable but
improving (16)

Minutes to hours (17) Mostly photons (18) Solar cycle, vicinity to sun (13)

CME Modest 3-day forecast
available (20)

Several hours (5) Protons, electrons and HZE ions
(21)

Size, speed and direction of CME
(22)

SPE Likely similar to that for
CMEs (23)

Seconds to hours (17) Mostly protons, some electrons
and HZE ions (24)

Solar cycle, otherwise obscure
(4)

0.009–0.018 double-strand DNA breaks per cell per day (10, 11).
These breaks occur both directly from irradiation and indirectly
from free radicals produced by intracellular water molecules
(12). On the shortest possible return mission to Mars, staying
30 days on the surface, a cosmonaut would absorb more than
500 mGy equivalent over the 650 day mission, empirically sug-
gested as the dose threshold to induce cataracts requiring surgery
in Japanese atomic bomb survivors (8, 25). Age at exposure
to radiation is a primary determinant of outcomes, imposing
higher risk at younger ages (26–31). Although clinically over-
shadowed by solid cancers and difficult to quantify, the long-
term quality and expectancy of an astronaut’s life may be irre-
versibly impacted by functional degradation of, among others,
the musculoskeletal, nervous and cardiovascular systems, in a
remarkably short timeframe (10, 32, 33). A positive feedback
cycle in which chronic stress from radiation further reduces an
individual’s psychological ability to cope with cancer may even
manifest (34).

Preventing long-term radiation-induced damage is crucial to
protect humans during interplanetary travel and while living
on Mars, even with fabricated shielding from the local Martian
regolith. Because ubiquitous physical shielding transported from
earth to Mars is not feasible due to its high cost and weight
(accentuated by gravity during takeoff), additionalmeasuresmust
be considered (35). An alternative has emerged only recently as
potentially viable and arguably fundamental: steering human
evolution as a means of providing a genetic shield against radia-
tion damage. Our central aim is to demonstrate that such human
engineering deserves viable consideration alongside other poten-
tial solutions to protect astronauts from the effects of space
radiation exposure.

2. Background: genetic differentiation
2.1 Natural human adaptation
The human genome is continuously evolving, and contempo-
rary global studies show strong evidence of convergent human
evolution with respect to our population’s nutritional, geograph-
ical and pathological environments (36–40). For example, the
Nunavik Inuit in Quebec, Canada, have genetically adapted to
a diet of about 75% ingested animal fat (41). Other popula-
tions have evolved independently to live in regions over 4 km
above sea level (e.g. the Tibetan Plateau, Andean Altiplano and
Ethiopian Highlands), genetically adapted to threats of hypoxia,
extreme day-to-night temperature fluctuations and chronic con-
ditions from abnormal oxygen saturation of hemoglobin (42–47).
Because Homo sapiens evolved in an environment perpetually iso-
lated from GCR, no defense structures are extant in the human
body to protect against its sudden introduction. Furthermore,

mammalian physiological systems neither harbor receptors trig-
gered specifically by ionizing radiation nor have precise or ubiqui-
tous detection mechanisms attributed to its exposure; the innate
immune response serves as the primary conduit for detecting
resultant tissue damage from the exposure (32, 48, 49). Because
an astronaut’s constant exposure to space radiation is teratogenic,
conventional human reproduction and fetal development would
not be evolutionarily sustainable (50).

2.2 CRISPR/Cas9 genetic engineering and
limitations
In 2015, the expensive, imprecise and relatively inconsistent
methods of genetically altering animal zygotes were superseded
by the clustered regularly interspaced short palindromic repeat
(CRISPR)-associated system (Cas) to manipulate DNA (51, 52). The
so-called CRISPR/Cas9 technique revolutionized genomic alter-
nation, and scientists have already proven it effective in both
knocking-out (by non-homologous end joining) and knocking-in
(by homology directed repair) genes in the zygotes of Homo sapi-
ens as well as other organisms, such as zebrafish, rats and mice
(53–60). Still, unexpected, partial genetic similarities sometimes
result in CRISPR-mediated cleavage at off-target locations; the
frequency and obviousness of such mismatches are functions
of myriad factors, such as local and global DNA positioning,
sequence homology and Cas9 expression level. The potential
of these off-target activities are crucial shortcomings in the
CRISPR system, manifesting as undesired mosaicism and muta-
tion (61, 62). Additionally, employing the CRISPR/Cas9 technique
for safe human transgenesis would likely require thousands of
secondary and tertiary nucleotide modifications per genome per
cell without germline engineering (63). Beyond these challenges,
others pose risk for truly effective and safe transportation of
CRISPR/Cas9 plasmids, such as mutagenesis, carcinogenesis and
immunogenicity complications resulting from the nature of the
viral vector (64–68). Despite such inherent limitations, contempo-
rary innovations indicate that CRISPR and next-generation tech-
nologies have the potential to accomplish volitional evolution in a
foreseeable timeframe (69).

2.3 Ethics of human engineering
Many progenitor-cell-based strategies are evolving rapidly
alongside CRISPR to achieve this goal, such as in vitro game-
togenesis and mitochondrial replacement techniques. Recent
developments suggest that creating humans with predesignated
phenotypes is imminent (70–73). The phrase ‘volitional evolution’
was introduced by Edward Osborne Wilson as ‘a species decid-
ing what to do about its own heredity’ (70). To provide an ethical
foundation, bioethicist S. Matthew Liao constructed a ‘human
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rights approach,’ which entitles all humans to certain funda-
mental conditions for pursuing a ‘good life’: those conducive to
humans sustaining themselves corporeally, like food and water
(71). Because inadequate space radiation protection results in
deleterious health effects (e.g. cancer, cardiovascular and cog-
nitive impairment, infertility, cataracts, etc.), the fundamental
conditions for pursuing a good life are invalidated (74). Should it
be possible to eliminate an offspring’s inherent radiosensitivity,
Liao would assert that it can be impermissible not to do so (even
defining non-life-threatening situations as worth consideration)
(71, 75). However, jeopardizing an individual’s otherwise innate
health based on risk alone poses an existential threat regarding
the necessity of volitional evolution for this purpose. The ethics of
allowing parents to irreversibly alter their child’s genome give rise
to narrative identity and personal autonomy issues although are
beyond the scope of this discussion.

3. Discussion: radioprotective transgenes
3.1 Strategies and complications
There are several genes known to confer radioprotection that may
enhance survival after exposure to space radiation; the mecha-
nisms of action for many are still not completely understood. The
effects of introducing these genes into cells, animals and humans
are function of both unknown and known variables, including
inherent susceptibility and compatibility regarding genetic source
and vector. For example, three forms of the enzyme superox-
ide dismutase (SOD) catalyze the conversion of superoxide into
hydrogen peroxide (H2O2) in humans. SODs act as antioxidants
by locally mitigating cellular reactive oxygen species (ROS), main-
taining weight and survival probability when their genes are
upregulated in vivo (76–78). Interestingly, differences in vector
and route of administration manifest in outcome variations and
heterogeneous expression levels of SOD specificity (79–86). Down-
stream of SOD, upregulating catalase enzyme further catalyzes
the breakdown of H2O2 into water and oxygen, synergizing their
radioprotection properties (87, 88). Separately, ascorbic acid has
known antioxidant properties but is not naturally synthesized
within humans; Homo sapiens harbor an evolutionarily conserved
pseudogene instead of the encoding gene for L-gulonolactone
oxidase, a precursor to ascorbic acid production (89, 90). The pos-
sibility of altering or bypassing the pseudogene to manufacture
L-gulonolactone oxidase should be considered to augment the
antioxidant capabilities of Homo sapiens.

To enhance cellular antioxidant capacity, somatic strategies
can confer purely localized benefits, such as those presented by
heat shock protein 25 and melatonin on the salivary gland, or
by SOD3 on the lungs (82, 91, 92). The local benefits of upregu-
lating production of some enzymes are summarized in Figure 1.
Interleukin-3 (IL-3), a cytokine showing transient benefit in vivo
within the spleen and bone marrow, could be combined with
other radioprotective agents for improved localization (86, 93).
Roof plate-specific spondin-1 (Rspo1) has a proliferative effect on
intestinal crypt cells in specific protecting the intestines and oral
mucosa in vivo (94, 95). However, unlike the previous enzymes,
Rspo1 acts as a radiomitigator instead of a radioprotector, reduc-
ing damage to normal tissues after radiation exposure, as opposed
to prior to exposure (96). Given the known danger from space
radiation, radioprotectors should be prioritized over their curative
counterparts, with a combined therapy approach to provide the
most comprehensive defense.

Although these proteins are naturally present in Homo sapiens,
many so-called trans-species genes that confer radioprotection

Figure 1. Local and systemic enzyme upregulation strategies for
radioprotection and radiomitigation. These strategies should be
combined with others for robust protection.

are found in other Animalia and other kingdoms of life. Organisms
that overexpress DNA repair proteins exhibit augmented genome
stability and enhanced mutagenic protection, with similar results
when transplanted to mammalian cells (97–99). Fungal melanin
has reduced cellular radiation effectswhen delivered in vitro and in
vivo (100–105). The tardigrade’s damage suppressor protein (Dsup)
halves double-stranded DNA breaks caused by photons in human
cells (106–108). Despite native species potential, research model
outcomes are clouded by interspecies differences in the target site
sequence structure and DNA repair processes during gene therapy
(109). If a gene proves ultimately incapable of interspecies trans-
fer, expounding upon its mechanism of action may still elucidate
novel directions for radioprotection (110).

3.2 Limitations in scope
Because symptoms of expedited aging result from radiation
exposure, various geroprotectors have been proposed to sup-
press aging-related pathways, such as mTOR, ERK and p53
(111–113). Targeting components in the Ras/Raf/MEK/ERK path-
way, for example, has validated clinical efficacy in slowing
cancer progression and the effects of accumulated radia-
tion exposure. Preclinical studies demonstrate MEK inhibition
impacts proliferative, apoptotic and differentiation pathways
downstream, potentially suppressing tumorigenicity (114, 115).
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However, convoluted downstream effects greatly complicate
perceived clinical potential: increased Ras/Raf/MEK/ERK pathway
expression decreases expression of the phosphatase and tensin
homolog, contributing to carcinogenesis and prostate tumori-
genesis (116, 117). Such corollary targets introduce incalculable
collateral effects, the potential of which presently inhibits any
clinical benefit. These conflicts are not exclusive to this path-
way; the PI3K/PTEN/Akt/mTOR pathway has similar impediments
to potential benefit in the field (118). Prior to tangible clinical
progress from pathway alteration, a more comprehensive under-
standing of the downstream effects must be elucidated.

In addition to known limitations, unknown variables impede
progress as well; the upregulation of these proteins has been
investigated principally in the context of radiation therapy, con-
ventionally analyzed within the milieu of isolated particle types
of monoenergies (whereas other fields quintessentially lack radi-
ation exposure) (119, 120). The default presence of background
radiation levels over geological time scales during the evolution-
ary timeline introduces unanswered questions regarding acquired
DNA repair mechanisms (121). Evidence suggests that epigenetic
effects are relevant within this area, contributing to sustained
beneficial traits at low dose-rate exposures. Controlled long-term
experiments can shed light on the effects of constant back-
ground radiation in life’s evolution, possibly resulting in presently
unknown amino acid sequences that confer safe and robust pro-
tection from GCR (122).

Should the practical (e.g. financial and technological) and
ethical barriers to genetic engineering be superseded, the resul-
tant radioprotection would likely not be comprehensive for the
milieu of space, requiring shielding and othermeasures. Although
difficult to speculate, even the most universal genetic solution
could leave individuals vulnerable to spontaneous solar events,
as well as the nebulous sequela of chronic GCR exposure. Indeed,
the scarce information regarding chronic radiation exposure in
humans is limited to biologically unpredictable heterogeneities
(e.g. radiotherapy treatment) and immeasurable quantities (e.g.
Chernobyl fallout) (123, 124). Still, epigenetic studies of large
human cohorts with recognized exposure ranges (i.e. occupa-
tions or geographies with high background radiation) could aid in
characterizing genotypes that confer radioresistance (125–127).

4. Discussion: alternatives to genetic
alterationand modeling
4.1 Synergistic options
Considering such persistent limitations, supplemental or alter-
native approaches to genomic alterations need to be considered.
Rocket propulsion, for example, is a constantly evolving field of
study; it must inherently be improved to lessen journey time
(and therefore decrease total radiation exposure). The commute
and exposure time will be decreased when the chemical engine
paradigm is replaced with that of electric propulsion (e.g. ion
thrusters) (128). Modeling suggests that replacing the nuclear
propulsion system with a purely electrical one would spare 1
year and 230 mSv on the roundtrip journey between Earth and
Mars, requiring additional study (129). The present status of this
endeavor and others are described in Table 2, alongside spec-
ulation regarding their feasibility. Another proposition confers
radioprotection by enhancing pathways involved with sleep, as
human cells have proven more susceptible to radiation damage
after circadian interruption (130). Profound artificial depression
of human metabolism into a synthetic torpor has been theorized
to bypass these physiological challenges posed in deep space,

although shallow states (defined as∼20% below basal levels) have
yet to be achieved in humans (131). Interestingly, suppressed
metabolic activity is associated with condensed chromatin, which
inherently confers heightened radioresistance to DNA (132, 133).

Presently, the time necessary to traverse cosmic distances
impedes the feasibility of corporeal human travel, requiring a
broad range of possible solutions. Panspermia has been proposed
as the possible origin of life on earth itself, and the essential
environmental conditions needed for extraterrestrial habitation
have been defined (134–137). This implicates the option to direct
panspermia for human cell transmission to distant, hospitable
planets. Meanwhile, the prospect of generating a synthetic human
genome with chemicals to artificially manufacture human chro-
mosomal DNA, and a whole-genome assembly may eventually be
achieved by microarray-derived DNA oligonucleotides (which can
already synthesize individual genes with limitations) (138–140).
Although distributing synthetically constructed genes to proba-
bilistically habitable planets is well-beyond current capabilities,
it may be the most feasible option to avoid flight duration and
radiation-based issues altogether. Terraforming the interior com-
position of the Martian planet itself could induce an artificial
magnetosphere by the theorized dynamo mechanism or, alter-
natively, the atmosphere could conceivably be terraformed for
physical shielding; however, terraforming of this magnitude is not
condoned by NASA (141, 142).

4.2 Modeling and limitations
Although probabilistic scenarios may be estimated for an individ-
ual’s radiation exposure on a mission (for example, with Monte
Carlo methodology), true physiological consequences remain
ultimately unknown, especially combined with other effects
from phenomena like microgravity and isolated environments
(143). Without a comprehensive understanding of the phenotypic
response of Homo sapiens to space radiation, a genotypic solu-
tion may misidentify or omit essential or corollary transcription
pathways. Unforeseen issues may also manifest in execution, like
abrupt and unsustainable germline or epigeneticmutations due to
the unstudied synergistic effects of homology directed repair and
chronic GCR exposure. NASA is attempting to isolate such issues
by simulating simplified galactic cosmic rays at the NASA Space
Radiation Laboratory at Brookhaven National Laboratory.

Machine learning has recently emerged as an applicable
interdisciplinary tool to handle the dynamic nature of genes
themselves, now modeled as statistical ensembles (144–146).
Tasked with assembling spatial geometry frommerely a sequence
of amino acids, DeepMind’s AlphaFold (presently proprietarily
owned by Google) achieved a watershed moment in 2020 for
protein structure prediction (147, 148). AlphaFold remains the
best predictor of tertiary structures, opening the possibility of
reverse-engineering an optimized chain of amino acids provided
a macroscopic structure (149, 150). Should a validated model
emerge, post hoc machine learning could identify and evaluate
likely downstream effects of targeted mutations (e.g. recognizing
accidental off-site CRISPR effects). Although presently inconceiv-
able due to intricate biochemical relationships, algorithms may
eventually learn to synthesize amino acids into proteins sui generis
to fit engineered applications, culminating in computer-generated
cohorts (151, 152). Even if these proteins are not biologically feasi-
ble, integrating artificial intelligencewith genetic engineeringmay
facilitate computational modeling of otherwise overly complex
biological networks, providing insight regarding cellular response
to DNA modification.
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Table 2. Contemporary advantages, progress and predicted feasibility of various non-genetic strategies for augmenting the achievability
of interplanetary human space endeavors

Strategy Contemporary advantages Existing research
Human employment
feasibility (conjecture)

Optimize propulsion Already well-established field
of engineering (153)

Pragmatically, continuously (154) Approach, but never achieve
light speed, likely with
nuclear thrusters

Synthetic torpor Among most achievable in
foreseeable future (155)

Philosophically (131) Modest but perpetual
metabolic depression on
commute

Directed panspermia May already take place
on interplanetary scale,
incidentally (134)

Philosophically (135) Highly improbable

Synthetizing genome sui genesis Rapidly growing field (138) Mechanisms being explored (139) Likely corollary to directed
panspermia, limiting
feasibility

Martian terraforming Possibly achievable with
existing technology (156)

Philosophically (157) Highly improbable and
opposed by NASA

Radiation-absorbing fungi Already in existence (103) Mechanisms being explored (105) Cultivation as shielding
probable, while genetic
integration unlikely

4.3 Ethical considerations
While genetic modifications to decrease radiosensitivity to space
radiation are transcendently intricate, existing technologies like
preimplantation genetic diagnosis can already viably select chil-
dren with preferred traits. S. Matthew Liao has suggested using
this technology for a kindred quandary: to reduce the size of the
population to mitigate anthropogenic climate change (158). The
importance of considering such ostensibly radical ideas should
not be ignored, as they serve as an important learning tool in
stimulating revolutionary possibilities. Although the ideas vary
tremendously in nature and severity, genomic engineering solu-
tions are quintessentially constructed with technology harboring
minimal risk and ample empirical study. Indeed, Liao argues
that such risks should be weighed against those associated with
taking inadequate action and notes that parents have the soci-
etal and biological right to reformulate their children, should
doing so enhance well-being without alternative (159). We pro-
pose human gene engineering be considered and explored fur-
ther in this debate regarding radiotolerance, while perpetuating
transparency regarding potential dangers and merits.

5. Conclusions
Space radiation poses a formidable obstacle to humans in ven-
turing beyond the protection of earth’s magnetosphere. Despite
immense progress in the development and comprehension of
CRISPR/Cas9-mediated gene editing in various model organisms,
the efficiency and specificity with human cells must still be
examined to a much greater depth (52). It is ethically unac-
ceptable to inflict unpredictable and irreversible genomic effects
upon humans without broad societal examination (56). However,
should future generations embark upon prolonged extraterres-
trial journeys, it may be unacceptable to forgo genetic tactics
that may preserve their capability to enjoy a ‘good life.’ Consid-
ering the pervasiveness of space radiation and its physiological
impacts, volitional evolution may confer the most robust solu-
tion, although parallel strategies should be deployed to provide
comprehensive protection. We have described a number of sup-
plemental strategies feasible for further consideration and have
established an ethical foundation for their necessity within the

context of danger from space radiation. We believe volitional
evolution should be considered alongside other viable potential
sources of radiation protection beyond low-Earth orbit.
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