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Hand gesture recognition based on surface electromyography (sEMG) plays an important role in the field of biomedical and
rehabilitation engineering. Recently, there is a remarkable progress in gesture recognition using high-density surface electro-
myography (HD-sEMG) recorded by sensor arrays. On the other hand, robust gesture recognition using multichannel sEMG
recorded by sparsely placed sensors remains a major challenge. In the context of multiview deep learning, this paper presents a
hierarchical view pooling network (HVPN) framework, which improves multichannel sEMG-based gesture recognition by
learning not only view-specific deep features but also view-shared deep features from hierarchically pooled multiview feature
spaces. Extensive intrasubject and intersubject evaluations were conducted on the large-scale noninvasive adaptive prosthetics
(NinaPro) database to comprehensively evaluate our proposed HVPN framework. Results showed that when using 200ms sliding
windows to segment data, the proposed HVPN framework could achieve the intrasubject gesture recognition accuracy of 88.4%,
85.8%, 68.2%, 72.9%, and 90.3% and the intersubject gesture recognition accuracy of 84.9%, 82.0%, 65.6%, 70.2%, and 88.9% on
the first five subdatabases of NinaPro, respectively, which outperformed the state-of-the-art methods.

1. Introduction

As a noninvasive approach of establishing links between
muscles and devices, the surface electromyography- (sEMG-
) based neural interface, also known as the muscle computer
interface (MCI), has been widely studied in the past decade.
Surface electromyography is a type of biomedical signal
recorded by noninvasive electrodes placed on human skin
[1]; it is the spatiotemporal superposition of motor unit
action potential (MUAP) generated by all active motor units
(MU) at different depths within the recording area [2].
sEMG recorded from subject’s forearm measures muscular
activity of his/her hand movements, thus, can be used for
hand gesture recognition. So far, the sEMG-based gesture
recognition techniques have been widely applied in reha-
bilitation engineering [3–5] and human-computer interac-
tion [6–8].

From the perspective of signal recording, there are two
types of sEMG signals: (1) high-density sEMG (HD-sEMG)

[9–11] signals which are recorded by electrode arrays that
consist of dozens, or even hundreds of electrodes arranged in
a grid; (2) multichannel sEMG signals [12, 13] which are
recorded by several sparsely located electrodes. For MCIs
such as robotic hand prostheses and upper-limb rehabili-
tation robots, one of the key challenges is to precisely
recognize the user’s gestures through sEMG signals collected
from his/her forearm. Over the past five years, feature
learning approaches based on convolutional neural net-
works (CNNs) have shown promising success in HD-sEMG-
based gesture recognition, that is, achieving >90% recog-
nition accuracy in classifying a large set of gestures [11], and
almost 100% recognition accuracy in classifying a small set
of gestures [14, 15], because HD-sEMG signals contain both
spatial and temporal information of muscle activity [16].
Compared to conventional feature engineering approaches
based on shallow learning models, a major advantage of
feature learning approaches is that the end-to-end learning
capability of deep learning models enables them to
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automatically learn representative deep features from raw
sEMG signals without any hand-crafted feature [17].

On the other hand, achieving high accuracy in multi-
channel sEMG-based gesture recognition performance re-
mains a challenging task, because multichannel sEMG is
noisy, random, nonstationary [18], and vulnerable to elec-
trode shift [16] and contains much less spatial information
about muscle activities than HD-sEMG [19]. So far, re-
searchers have tried a variety of strategies to improve the
multichannel sEMG-based gesture recognition perfor-
mance, including extracting more representative features
[20], using multimodal gesture data collected from multiple
sensors [21], and developing more sophisticated deep
learning models [15].

In recent years, there has emerged a trend in combining
deep learning models with feature engineering techniques,
as well-designed time domain (TD) [22], frequency domain
(FD) [23], and time-frequency domain (TFD) [24] features
have achieved remarkable success in multichannel sEMG-
based gesture recognition systems. For example, Zhai et al.
[25] calculated spectrograms of sEMG and used them as
features for CNN-based gesture recognition and achieved
78.7% gesture recognition accuracy for recognizing 49
gestures. Hu et al. [26] extracted the Phinyomark feature set
[23] from raw sEMG signals and fed them into an attention-
based hybrid convolutional neural network and recurrent
neural network (CNN-RNN) architecture for gesture rec-
ognition; they achieved 87% recognition accuracy for rec-
ognizing 52 gestures. Betthauser et al. [27] proposed the
encoder-decoder temporal convolutional networks (ED-
TCN) for sEMG-based sequential movement prediction; the
inputs of their proposed ED-TCN model were composed of
mean absolute value (MAV) sequences. Chen et al. [28] used
continuous wavelet transform (CWT) to process the data as
the input of their proposed CNN model.

In machine learning, multiview learning refers to
learning from data described by different view-points or
different feature sets [29, 30]. On this basis, Wei et al. [31]
proposed a multiview CNN (MV-CNN) framework that
constructs images generated from different sEMG features
into multiview representations of multichannel sEMG.
Compared to prior works that combined deep learning
models with feature engineering techniques, one of the key
characteristics of MV-CNN is that it adopts a “divide-and-
aggregation” strategy that is able to independently learn deep
features from each individual view of multichannel sEMG.
'e MV-CNN framework showed promising success in
multichannel sEMG-based gesture recognition, as the ges-
ture recognition accuracy achieved by MV-CNN signifi-
cantly outperformed the state-of-the-art deep learning
approaches.

From the perspective of multiview learning, there are
generally two types of features, namely, the “view-specific
feature” or “private feature” particular for each individual
view and the “view-shared feature” or “public feature”
shared by all views [32]. 'e independent learning under
each individual view is able to learn view-specific features
[33]; on the other hand, it is unable to learn shared in-
formation across different views [34]. 'e MV-CNN

framework [31] did consider view-shared learning by an
early fusion strategy that concatenates the output from the
lowest convolutional layers of all view-specific CNN
branches. However, from our perspective, the early fusion
strategy used in MV-CNN is still a naive approach based
on concatenation; it also ignores the original input feature
spaces of different views.

Aiming at improving multichannel sEMG-based ges-
ture recognition via better learning of view-shared deep
features, in this paper, we proposed a hierarchical view
pooling network (HVPN) framework, in which view-
shared feature spaces were hierarchically pooled from
multiview low-level features for view-shared learning. In
order to build up more discriminative view-shared feature
spaces, we proposed a CNN-based view pooling technique
named the feature-level view pooling (FLVP) layer, which
is able to learn a unified view-shared feature space from
multiview low-level features. Compared to MV-CNN [31],
the application of hierarchical view pooling and FLVP layer
results in a wider (i.e., with more CNN branches) and
deeper (i.e., with more convolutional layers in the view-
shared learning branches) network architecture, respec-
tively, thus enabling the learning of more representative
view-shared deep features.

'e remainder of this paper is organized as follows.
Section 2 formulates the multiview learning problem, de-
scribes the databases, and details the proposed HVPN
framework. Section 3 introduces the experiments in this
paper and provides the experimental setup. Section 4
presents and discusses the experimental results. Finally,
Section 5 concludes the paper.

2. Materials and Methods

2.1. Problem Statement. According to Wei et al. [31], the
problem of multiview deep learning-based gesture recogni-
tion using multichannel sEMG signals can be formulated as

y � H v1, v2, . . . , vn; θ( 􏼁, (1)

where v1, v2, . . . , vn denote multiview representations from n

different views of C-channel sEMG signals x ∈ RC, H de-
notes a deep neural network with parameters θ, and y

denotes the final gesture classification results.
'e relationship between v1, v2, . . . , vn and x can be

formulated as

vi � fvci
(x), (2)

where fvci
, i � 1, 2, . . . , n denotes view construction func-

tions that generate multiview representations from raw
sEMG signals.

In the field of multiview deep learning, a common ap-
proach is to build up n neural networks Hli

, i � 1, 2, . . . , n to
learn deep representations from n views, respectively, and
then use a view aggregation network Ha to fuse the learned
multiview deep representations together and obtain the final
decisions y. 'us, equation (1) can be written as
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y � Ha Hl1
v1; θl1

􏼐 􏼑, Hl2
v2; θl2

􏼐 􏼑, . . . , Hln
vn; θln

􏼐 􏼑; θa􏼐 􏼑.

(3)

2.2.Databases. 'e evaluations in this work were performed
offline using multichannel sEMG signals from the publicity
available NinaPro databases [35]. We chose 5 subdatabases
of NinaPro, which contain multichannel sEMG signals
recorded from intact and transradial amputees through
different types of electrodes. Details of these databases are as
follows:

'e first subdatabase (denoted as NinaProDB1) contains
sEMG signals collected from 27 intact subjects; each subject
was asked to perform 53 gestures, including 12 finger
movements (denoted as Exercise A), 17 wrist movements
and hand postures (denoted as Exercise B), 23 grasping and
functional movement (denoted as Exercise C), and the rest
movement; each gesture was repeated 10 times (i.e., 10 trials
per gesture). 'e sEMG signals in NinaProDB1 were
recorded by 10 Otto Bock 13E200-50 electrodes at a sam-
pling rate of 100Hz [13]. As most of the existing studies on
this database excluded the rest movement for gesture rec-
ognition [10, 26, 31, 36], in our experiments we also excluded
the rest movement for the convenience of performance
comparison.

'e second subdatabase (denoted as NinaProDB2)
contains sEMG signals collected from 40 intact subjects;
each subject was asked to perform 50 gestures, including
Exercises B and C in NinaProDB1, 9 force patterns (denoted
as Exercise D), and the rest movement; each gesture was
repeated 6 times (i.e., 6 trials per gesture). 'e sEMG signals
in NinaProDB2 were recorded by 12 Delsys Trigno Wireless
electrodes at a sampling rate of 2000Hz [13].

'e third subdatabase (denoted as NinaProDB3) con-
tains sEMG signals collected from 11 transradial amputees;
each subject was asked to perform exactly the same 50
gestures as those in NinaProDB2; each gesture was repeated
6 times (i.e., 6 trials per gesture). 'e sEMG signals in
NinaProDB3 were recorded by 12 Delsys Trigno Wireless
electrodes at a sampling rate of 2000Hz [13]. According to
the authors of NinaPro database, during the sEMG re-
cording process of NinaProDB3, three amputated subjects
performed only a part of gestures due to fatigue or pain, and
in two amputated subjects, the number of electrodes was
reduced to ten due to insufficient space [13]. To ensure
training and testing of the model can be completed, we
omitted data from these subjects following the experimental
configuration used by Wei et al. [31].

'e fourth subdatabase (denoted as NinaProDB4)
contains sEMG signals collected from 10 intact subjects;
each subject was asked to perform exactly the same 53
gestures as those in NinaProDB1; each gesture was repeated
6 times (i.e., 6 trials per gesture). 'e sEMG signals in
NinaProDB4 were recorded by the Cometa Wave Plus
Wireless sEMG system with 12 electrodes, and the sampling
rate was 2000Hz [37]. After checking the data, we found that
two subjects (i.e., subject 4 and subject 6) did not complete
all hand movements; their data were omitted in our
experiments.

'e fifth subdatabase (denoted as NinaProDB5) contains
sEMG signals collected from 10 intact subjects; each subject
was asked to perform exactly the same 53 gestures as those in
NinaProDB1; each gesture was repeated 6 times (i.e., 6 trials
per gesture). Following the experimental configuration in
[37], we chose 41 gestures (i.e., Exercise B and C plus rest
movement) from all 53 gestures in NinaProDB5 for clas-
sification. 'e sEMG signals in NinaProDB5 were recorded
by two'almic Myo armbands at a sampling rate of 200Hz;
each Myo armband contains 8 sEMG electrodes [37].

2.3. Data Preprocessing and View Construction. Due to
memory limitation of the hardware, for experiments on
NinaProDB2-DB4, we downsampled the sEMG signals from
2000Hz to 100Hz following the experimental configuration
used in [31].

In multiview learning, view construction is usually de-
fined as generation of multiple views from a single view of
original data [38]. Considering the fairness of performance
comparison, the view construction process in this paper was
exactly the same as that in MV-CNN framework [31]. As a
result, three different views of multichannel sEMG, denoted
as v1, v2, and v3, are represented by images of discrete
wavelet packet transform coefficients (DWPTC), discrete
wavelet transform coefficients (DWTC), and the first Phi-
nyomark’s feature set (Phin_FS1) that are extracted from
raw sEMG signals, respectively.

For the generation of the feature images, we followed the
image generation algorithm proposed by Jiang and Yin [39],
which is described in Algorithm 1.

Although the abovementioned three views of multichannel
sEMG were proven to be the most discriminative views for
gesture recognition in [31], the construction of them still re-
quires a lot of computational time and resources, as well as
their high-dimensionality results in the increase of the number
of neural network parameters, making us consider the trade-off
between gesture recognition accuracy and computational
complexity.'us, in this paper, we also evaluated a “two-view”
configuration, which selected the two most discriminative
views (i.e., v1 and v2, represented by images of DWPTC and
DWTC, resp.) out of these three views of multichannel sEMG
and used them as the input of the proposedHVPN framework.
Details of the evaluations on the “two-view” configuration will
be presented in the following sections of this paper.

For extraction of sEMG features during view construc-
tion, sliding windows were used to segment the multichannel
sEMG. Early studies in MCI have pointed out that the re-
sponse time of a real-time MCI system should be kept below
300ms to avoid a time delay perceived by the user [40, 41]. For
this reason, the sliding window length was set to 200ms for
most of the experiments, and the window increment was set
to 10ms except for experiments on NinaProDB5 using the
sliding window length of 200ms. For experiments on
NinaProDB5 using 200ms sliding windows, we followed the
experimental configuration used by Pizzolato et al. [37] and
Wei et al. [31], which set the window increment to 100ms.

Suppose the images that represent the ith view have an
sEMG feature dimension of Mi and an sEMG channel
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dimension of C, the Mi × C (width, height, respectively,
depth� 1) feature space of vi is firstly transformed into an
Mi × C × 1 (depth, width, and height, respectively) feature
space before it is input into neural network architecture of
HVPN for gesture recognition. 'e transformation is based
on the experimental results presented in [15], where the 20 ×

10 × 1 (depth, width, and height, respectively) sEMG images
significantly outperformed the 1 × 20 × 10 (depth, width,
and height, respectively) sEMG images as the input of an
end-to-end CNN in gesture recognition using 10-channel
sEMG signals segmented by 20-frame sliding window.

2.4. ,e HVPN Framework. A diagram of our proposed
HVPN framework with all three views of multichannel
sEMG is illustrated in Figure 1. 'e deep learning archi-
tecture of HVPN can be divided into three parts: view-
specific CNNs, hierarchical view pooling CNNs, and a view
aggregation network. For HVPN with the “two-view”
configuration, there are two view-specific CNN branches to
learn view-specific deep features from v1 and v2, respectively,
and other parts are almost the same as those illustrated in
Figure 1. 'e following sections describe the detailed net-
work architecture and hyperparameter configurations of
these parts.

2.5. View-Specific CNNs. After view construction, we built
up three view-specific CNN branches to learn view-specific
deep features from v1, v2, and v3, respectively. As shown in
Figure 1, all view-specific CNN branches share the same
network architecture but do not share their weights. 'e
network architecture of each view-specific CNN branch is

based on GengNet [10], which has been extensively used in
sEMG-based gesture recognition [15, 31, 42]. Specifically, the
images of each view are input into two convolutional layer
with 64 3× 3 filters (stride� 1), followed by two locally
connected (LC) layers with 64 1× 1 filters (stride� 1) and
one fully connected (FC) layer with 1024 hidden units. For
each CNN branch, we applied batch normalization and the
ReLU nonlinearity function after each layer and added
dropout layers to the FC layer and the last LC layer to
prevent overfitting. 'e input of each CNN is also nor-
malized through batch normalization.

2.6. Hierarchical View Pooling CNNs. 'e hierarchical view
pooling CNNs are composed of two CNN branches, namely,
the first-level view pooling CNN (denoted as L1-VPCNN)
and the second-level view pooling CNN (denoted as L2-
VPCNN); each of them starts with an FLVP layer, which is
used to learn a view-shared feature space from multiview
low-level features. As illustrated in Figure 2, the FLVP layer
firstly concatenates the input feature maps from different
views together and then learns a unified feature space from
the concatenated feature maps through a 1× 1 convolutional
layer with 64 filters.'e FLVP layers in our proposed HVPN
framework play two important roles: (1) each of them learns
a unified feature space shared by all views from concatenated
multiview low-level features for view-shared learning; (2)
compared with the extensively used view pooling technique
based on simple element-wise maximum [43] or average
[44] operation, each FLVP layer can guarantee that its
corresponding hierarchical view pooling CNN branch is
deep enough to learn representative features.

Input: sEMG features z ∈ RD×C, which are extracted from a sliding window that is used to segment C-channel sEMG signals.
Output: 'e generated image, denoted as v ∈ RM×C

(1) if D%2 �� 0 then
(2) D � D + 1;
(3) end if
(4) seq � [′1′]; index � [1];
(5) i � 1; j � i + 1;
(6) while i≠ j do
(7) l � “ij”; r � “ji”;
(8) if j>D then
(9) j � 1;
(10) else if l ∉ seq&& r ∉ seq then
(11) seq.append(′j′);
(12) index.append(j);
(13) i � j; j � i + 1;
(14) else
(15) j � j + 1;
(16) end if
(17) end while
(18) index � index[: − 1];
(19) v �;
(20) for k � 1; k≤ length(index) do
(21) v.append(z[: , index[k]])

(22) end for

ALGORITHM 1: 'e image generation algorithm used in this paper [39].
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Suppose we have v1 ∈ RM1×C×1, v2 ∈ RM2×C×1,
v3 ∈ RM3×C×1, and the multiview low-level features learned
by the bottom convolutional layers of three view-specific
CNN branches are 􏽢v1, 􏽢v2, 􏽢v3 ∈ R64×C×1, respectively. 'e
hierarchical view pooling process by FLVP layers can be
formulated as follows.

'e 1st-level view pooling:

vc1
� v1 v2

����
����v3,

􏽢vl1
� Hfv1

vc1
; θfv1

􏼐 􏼑,

vc1
∈ RM×C×1

, M � M1 + M2 + M3,

􏽢vl1
∈ R64×C×1

.

(4)

'e 2nd-level view pooling:

vc2
� 􏽢v1 􏽢v2

����
���� 􏽢v3

����􏽢vl1
,

􏽢vl2
� Hfv2

vc2
; θfv2

􏼐 􏼑,

􏽢vc2
∈ R256×C×1

,

􏽢vl2
∈ R64×C×1

,

(5)

where ‖ denotes the feature-level concatenation operation,
􏽢vli

denotes the learned feature space after level-i view
pooling, Hfvi

denotes the FLVP layer in Li-VPCNN, and θfvi

denotes its parameters.
'e remaining parts of L1-VPCNN and L2-VPCNN

perform view-shared learning from 􏽢vl1
and 􏽢vl2

, respectively.
'ey share the same network architecture, which is com-
posed of one convolutional layer with 64 3× 3 filters
(stride� 1), followed by two LC layers with 64 1× 1 filters
(stride� 1) and one FC layer with 1024 hidden units.
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2.7. View Aggregation Network. 'e view aggregation net-
work is used for the following: (1) the fusion of all view-
specific CNN branches and hierarchical view pooling CNN
branches and (2) final gesture classification. As shown in
Figure 1, the view aggregation network adopts a two-step
view aggregation strategy. Specifically, it concatenates the
output view-specific deep features learned by three view-
specific CNN branches together at first. 'en, the concat-
enated view-specific deep features and the view-shared deep
features learned by L1-VPCNN and L2-VPCNN are input
into three branches, respectively. Each branch consists of
one FC layer with 512 hidden units and a classifier module,
and each classifier module is composed of a G-way FC layer
and a softmax classifier for gesture classification. At the top
of HVPN, there is an element-wise summation operation
that sums up the softmax scores predicted by all three
classifier modules together to form the final classification
results.

2.8. EvaluationMetric andMethodology. For experiments in
this study, we calculated the gesture recognition accuracy for
each subject as the evaluation metric, which is defined as

accuracy �
number of correct classifications
Ttotal number of classifications

∗ 100%.

(6)

'e evaluation methodology in this paper can be cate-
gorized into intrasubject evaluation and intersubject eval-
uation. Generally speaking, in intrasubject evaluation, the
deep learning model is trained on a part of the data from one
subject and tested on the nonoverlapping part of the data
from the same subject, whereas in intersubject evaluation,
the deep learning model is usually trained on data from one
or a group of subjects and tested on data from another group
of subjects.

For fair performance comparison, we adopted the same
intrasubject and intersubject evaluation schemes as those
were most commonly used in existing studies on NinaPro
database [10, 13, 26, 31, 36, 42], which are described as
follows.

Intrasubject Evaluation. For intrasubject evaluation, we
followed the evaluation scheme proposed by the NinaPro
team [13]. Specifically, for each subject, approximately 2/3 of
the gesture trials are used as the training set; the remaining
gesture trials constitute the test set. 'e final gesture rec-
ognition accuracy is obtained by averaging the achieved
accuracy over all subjects. 'e selection of gesture trials for
training and testing are based on the literature [13, 37].

Intersubject Evaluation. For intersubject evaluation, we
followed the leave-one-subject-out cross-validation
(LOSOCV) scheme used in the literature [31, 36, 42].
Specifically, in each fold of the cross-validation, data from
one subject is used as the test set, and data from the
remaining subjects is used as the training set. 'e final
gesture recognition accuracy of the evaluation is obtained by
averaging the achieved accuracy over all folds.

Specifications of the evaluation methodology on dif-
ferent sEMG databases are presented in Table 1.

2.9. Deep Domain Adaptation for Intersubject Evaluation.
In intersubject evaluation, the training (i.e., source domain)
and test (i.e., target domain) data comes from two non-
overlapping groups of subjects; thus, there exist distribution
mismatch and domain shift across the source target domain
caused by electrode shifts, changes in arm position, muscle
fatigue, skin condition [45], and individual differences
among subjects [46], which may dramatically degrade the
classification performance of the model [47].

To reduce the negative effect of distribution mismatch
and domain shift on classification performance, a number of
existing deep learning based approaches [31, 42, 48] in this
field have applied a novel unsupervised deep domain ad-
aptation technique named multistream AdaBN (MS-
AdaBN) [42]. 'e MS-AdaBN technique uses a multistream
network to incrementally update the batch normalization
statistics of the network training process with the calibration
data.

In this work, the MS-AdaBN was also implemented for
deep domain adaptation in LOSOCV, because our pre-
liminary experiments on NinaProDB1 revealed that the
LOSOCV accuracy achieved by our proposed model without
deep domain adaptation is far from practical applications
(i.e., < 30%). Similar results were achieved by MV-CNN and
reported by Wei et al. [31].

For selection of training, calibration, and test data, we
followed exactly the same MS-AdaBN configuration as that
used in previous works [31, 42]. It should be mentioned that
as MS-AdaBN requires a relatively large amount of cali-
bration data, it may not be the best solution for domain
adaptation in the context of multichannel sEMG-based
gesture recognition. Nevertheless, MS-AdaBN is not a
contribution of this work, and we used it in our experiments
because we wanted to ensure a fair comparison of LOSOCV
accuracy between our proposed method and the previously
proposed MV-CNN [31], which is a multiview deep learning
framework that also adopted MS-AdaBN for domain
adaptation.

3. Experiments

All experiments were performed offline (i.e., not real-time)
on a DevMax401 workstation with NVIDIA GeForce
GTX1080Ti GPU. 'e proposed HVPN framework was
trained using the stochastic gradient descent (SGD) opti-
mizer with 28 epochs. For all experiments, the batch size was
set to 1000, and a learning rate decay strategy was adopted
during training to improve convergence, which initialized
the learning rate at 0.1 and divided it by 10 after 16 and 24
epochs. For all layers with dropout, the dropout rate was set
to 0.65 during training.

3.1. Evaluation of the Hierarchical View Pooling Strategy.
Evaluation of the hierarchical view pooling strategy can be
divided into two steps. First, we carried an ablation study to
verify the effectiveness of FLVP layer. Second, we carried out
an ablation study to validate the effectiveness of the pro-
posed hierarchical view pooling CNNs. For all experiments
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in these ablation studies, the sliding window length was set
to 200ms.

In the first step of the evaluation, the standard HVPN
was firstly compared with its two variants, namely, HVPN-
maxpool and HVPN-avgpool, on five databases (i.e.,
NinaProDB1-DB5). In HVPN-maxpool, the FLVP layer in
L2-VPCNNwas replaced by view pooling based on element-
wise maximum, while in HVPN-avgpool the FLVP layer in
L2-VPCNNwas replaced by view pooling based on element-
wise average. Meanwhile, the FLVP layers in the L1-VPCNN
of HVPN-maxpool and HVPN-avgpool were retained, be-
cause the input feature spaces of L1-VPCNN have different
sizes, which make it impossible for performing element-wise
maximum or average operation among them.

In the second step of the evaluation, the proposed HVPN
was compared with the following deep neural network
architectures:

VS-L1VP: a deep network that is equivalent to HVPN
without the L2-VPCNN.
VS-L2VP: a deep network that is equivalent to HVPN
without the L1-VPCNN.
VS-ONLY: a deep network that only consists of view-
specific CNNs, followed by a concatenation operation
that fuses their output together, a FC layer with 512
hidden units and a classifier module.

'e schematic illustration of VS-L1VP, VS-L2VP, and
VS-ONLY is depicted in Figure 3. Compared to HVPN that
contains hierarchical view pooling CNNs, there is only one
view pooling CNN in VS-L1VP, as well as VS-L2VP, for
view-shared learning.

3.2. Comparison with Related Works. 'e gesture recogni-
tion accuracy achieved by the proposed HVPN framework,
as well as the gesture recognition accuracy achieved by the
proposed HVPN framework with the “two-view” configu-
ration (denoted as HVPN-2-view), was further compared
with related works on five databases (i.e., NinaProDB1-
DB5). For the aim of fairness in this comparison, among
various machine learning methods that were proposed for
sEMG-based gesture recognition and tested on NinaPro, we
only considered the ones that meet the following require-
ments: (1) their reported gesture recognition accuracy was
achieved using exactly the same intrasubject or intersubject
gesture recognition schemes as described in Section 2; (2)
the input of their machine learning models were engineered
features, not raw sEMG signals.

To prevent overfitting, a pretraining strategy that has
been widely used by the compared methods [26, 31] was also
adopted in this work. Specifically, for each experiment, a
pretrained model was firstly trained using all available
training data; then, the gesture recognition model for each
subject was initialized by the pretrained model. For all layers
with dropout, the dropout rate was set to 0.5 during the
pretraining stage.

For comparison of intrasubject gesture recognition ac-
curacy, we evaluated the gesture recognition accuracy
achieved with 50ms, 100ms, 150ms, and 200ms sliding
windows. Moreover, the gesture recognition accuracy ob-
tained by majority voting on all 200ms windows within each
trial is also presented in the column labeled “Trial.” For
comparison of LOSOCV (i.e., intersubject gesture recog-
nition) accuracy, we only evaluated the gesture recognition
accuracy achieved with 200ms sliding windows.

4. Results and Discussion

4.1.Multichannel sEMG-BasedGestureRecognitionEnhanced
by Hierarchical View Pooling. Table 2 presents the intra-
subject and LOSOCV accuracy achieved by the standard
HVPN, HVPN-maxpool, and HVPN-avgpool on five da-
tabases. 'e proposed HVPN framework achieved the
intrasubject gesture recognition accuracy of 86.8%, 84.4%,
68.2%, 70.8%, and 88.6% on NinaProDB1, DB2, DB3, DB4,
and DB5, respectively, and achieved the LOSOCV accuracy
of 83.1%, 79.0%, 65.6%, 67.0%, and 87.1% on NinaProDB1,
DB2, DB3, DB4, and DB5, respectively. 'e gesture rec-
ognition accuracy achieved by HVPN was higher than that
achieved by HVPN-maxpool and HVPN-avgpool in all
experiments, indicating that the FLVP layer can achieve
better gesture recognition accuracy than the conventional
view pooling approaches based on element-wise maximum
or average operation. However, when evaluated on
NinaProDB1, DB2, DB3, and DB4, the performance im-
provement brought by the FLVP layer was subtle (i.e., from
+0.2% to +0.4% over element-wise max or average pooling).
'is is likely due to the fact that in HVPN-maxpool and
HVPN-avgpool we only replaced the FLVP layer in L2-
VPCNN with conventional view pooling, making them very
similar to the original HVPN.

Table 3 presents the intrasubject and LOSOCV accuracy
achieved by HVPN, VS-L1VP, VS-L2VP, and VS-ONLY on
five databases (i.e., NinaProDB1-DB5). According to the
experimental results in Table 3, the deep neural network
architectures with view pooling CNNs (i.e., HVPN,

Table 1: Specifications of the evaluation methodology on different sEMG databases.

Databases Intrasubject IntersubjectTrials for training Trials for testing
NinaPro DB1 1st, 3rd, 4th, 6th, 7th, 8th, 9th 2nd, 5th, 10th LOSOCV
NinaPro DB2 1st, 3rd, 4th, 6th 2nd, 5th LOSOCV
NinaPro DB3 1st, 3rd, 4th, 6th 2nd, 5th LOSOCV
NinaPro DB4 1st, 3rd, 4th, 6th 2nd, 5th LOSOCV
NinaPro DB5 1st, 3rd, 4th, 6th 2nd, 5th LOSOCV

Computational Intelligence and Neuroscience 7
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Figure 3: Schematic diagrams of (a) VS-L1VP, (b) VS-L2VP, and (c) VS-ONLY.

Table 2: Gesture recognition accuracy achieved by the standard HVPN, HVPN-maxpool, and HVPN-avgpool on five databases.

Database Evaluation methodology HVPN HVPN-maxpool HVPN-avgpool
NinaProDB1 Intrasubject 86.8% 86.4% 86.5%
NinaProDB2 Intrasubject 84.4% 84.1% 84.1%
NinaProDB3 Intrasubject 68.2% 68.0% 67.9%
NinaProDB4 Intrasubject 70.8% 70.5% 70.5%
NinaProDB5 Intrasubject 88.6% 88.1% 88.1%
NinaProDB1 LOSOCV 83.1% 82.7% 82.8%
NinaProDB2 LOSOCV 79.0% 78.8% 78.7%
NinaProDB3 LOSOCV 65.6% 65.4% 65.3%
NinaProDB4 LOSOCV 67.0% 66.6% 66.6%
NinaProDB5 LOSOCV 87.1% 86.4% 86.6%
Results in bold entries indicate best performance.
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VS-L1VP, and VS-L2VP) significantly outperformed VS-
ONLY, indicating that combining view-specific learning
with view-shared learning is better than performing view-
specific learning alone in the context of multiview deep
learning for multichannel sEMG-based gesture recognition.
Moreover, the intrasubject and LOSOCV accuracy achieved
by HVPN was higher than that achieved by VS-L1VP and
VS-L2VP on all databases, which proves the effectiveness of
our proposed hierarchical view pooling strategy in im-
proving gesture recognition accuracy.

4.2. Comparison with Related Works Based on Intrasubject
Evaluation. Table 4 presents the intrasubject gesture rec-
ognition accuracy achieved by various methods on the first
five subdatabases of NinaPro. Among these methods, the
methods proposed in [13, 36, 37] are shallow learning
frameworks, the methods proposed in [25–27, 49, 50] are
single-view deep learning frameworks, and the method
proposed in [31] is a multiview deep learning framework
(i.e., MV-CNN). All the above-mentioned methods are non-
end-to-end methods using engineered sEMG features as
their input, and they used exactly the same intrasubject
evaluation scheme as that was used in our work.

Experimental results in Table 4 demonstrate that when
using all three views of multichannel sEMG as input, the
proposed HVPN achieved the intrasubject gesture recog-
nition accuracy of 88.4%, 85.8%, 68.2%, 72.9%, and 90.3% on
NinaProDB1, DB2, DB3, DB4, and DB5, respectively, with
the sliding window length of 200ms, which outperformed
not only shallow learning frameworks [13, 36, 37] but also
deep learning frameworks [25, 26, 31, 49, 50] that were
proposed for sEMG-based gesture recognition in recent
years.

Compared to MV-CNN, which is also a multiview deep
learning framework, experimental results show the follow-
ing: (1) when using exactly the same input, the gesture
accuracy achieved by MV-CNN was significantly inferior to
that achieved by HVPN on all databases; (2) when the
number of input views of HVPN was reduced to two (i.e.,
denoted as HVPN-2-view in Table 4), it still outperformed
MV-CNN framework onmost of the databases (i.e., NinaPro
DB2, DB3, DB4, and DB5), and their gesture recognition
accuracy on NinaProDB1 was almost the same. For example,

when the sliding window length was set to 200ms, the
HVPN-2-view achieved the intrasubject gesture recognition
accuracy of 88.1%, 85.0%, 67.9%, 72.1%, and 90.1% on
NinaPro DB1, DB2, DB3, DB4, and DB5, respectively. By
comparison, the intrasubject gesture recognition accuracy
achieved by MV-CNN on NinaPro DB1, DB2, DB3, DB4,
and DB5 was 88.2%, 83.7%, 64.3%, 54.3%, and 90.0%, re-
spectively. 'ese results indicate that compared to MV-
CNN, the HVPN framework can achieve better or similar
intrasubject gesture recognition accuracy using less input
data.

We also found that the intrasubject gesture recognition
accuracy achieved by MV-CNN on NinaPro DB4 was much
lower than that achieved by a shallow learning method (i.e.,
random forests [37]). By comparison, our proposed HVPN
achieved the intrasubject gesture recognition accuracy of
72.9% on NinaPro DB4, with the sliding window length of
200ms, which significantly outperformed both MV-CNN
[31] and the random forests-based method [37].

4.3. Comparison with MV-CNN Based on Intersubject
Evaluation. As very few studies in this field have presented
the LOSOCV accuracy of recognizing all gestures in any of
the NinaPro subdatabases, considering the difference in
evaluation methodology and domain adaptation strategy, in
this section, we focused on comparison with the MV-CNN
framework [31], which used exactly the same intersubject
evaluation scheme and domain adaptation technique as our
proposed HVPN framework.

'e LOSOCV accuracy achieved by MV-CNN and our
proposed HVPN framework on five databases is presented in
Table 5. 'e MV-CNN framework achieved the LOSOCV
accuracy of 84.3%, 80.1%, 55.5%, 52.6%, and 87.2% on
NinaProDB1, DB2, DB3, DB4, and DB5, respectively, with
the sliding window length of 200ms. By comparison, the
HVPN framework achieved the LOSOCV accuracy of 84.9%,
82.0%, 65.6%, 70.2%, and 88.9% on NinaPro DB1, DB2,
DB3, DB4, and DB5, respectively, with the sliding window
length of 200ms, which significantly outperformed MV-
CNN. Similar to the results of intrasubject evaluation, the
LOSOCV accuracy achieved by HVPN framework with the
“two-view” configuration (i.e., denoted as HVPN-2-view in
Table 5) also outperformed that achieved by MV-CNN

Table 3: Gesture recognition accuracy achieved by HVPN, VS-L1VP, VS-L2VP, and VS-ONLY on five databases.

Database Evaluation methodology HVPN VS-L1VP VS-L2VP VS-ONLY
NinaProDB1 Intrasubject 86.8% 86.5% 86.2% 85.8%
NinaProDB2 Intrasubject 84.4% 84.1% 83.9% 83.4%
NinaProDB3 Intrasubject 68.2% 67.7% 67.5% 67.2%
NinaProDB4 Intrasubject 70.8% 69.9% 69.7% 68.5%
NinaProDB5 Intrasubject 88.6% 87.9% 88.3% 87.2%
NinaProDB1 LOSOCV 83.1% 82.6% 82.5% 81.9%
NinaProDB2 LOSOCV 79.0% 78.7% 78.7% 78.1%
NinaProDB3 LOSOCV 65.6% 65.5% 65.0% 64.7%
NinaProDB4 LOSOCV 67.0% 66.3% 65.7% 65.2%
NinaProDB5 LOSOCV 87.1% 86.2% 86.5% 84.7%
Results in bold entries indicate best performance.
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Table 4: Intrasubject gesture recognition accuracy in comparison with related works on five databases.

Machine learning
(ML) model

Type of ML
model

Input of ML
model Database Num. of gestures for

classification
Window length

50ms 100ms 150ms 200ms Trial

Random forests [13] Shallow
learning

5 hand-crafted
features NinaProDB1 50 N.A. N.A. N.A. 75.3% N.A.

Dictionary learning
[36]

Shallow
learning

MLSVD-based
features NinaProDB1 52 N.A. N.A. N.A. N.A. 97.4%

HuNet [26] CNN-RNN Phinyomark
feature set NinaProDB1 52 N.A. N.A. 86.8% 87.0% 97.3%

MV-CNN [31] Multiview
CNN 3 views of sEMG NinaProDB1 52 85.8% 86.8% 87.4% 88.2% N.A.

ChengNet [49] CNN Multi-sEMG-
features image NinaProDB1 52 N.A. N.A. N.A. 82.5% N.A.

HVPN-2-view Multi-view
CNN 2 views of sEMG NinaProDB1 52 85.4% 86.5% 87.2% 88.1% 97.8%

HVPN Multi-view
CNN Same as [31] NinaProDB1 52 86.0% 86.9% 87.7% 88.4% 98.0%

Random forests [13] Shallow
learning

Hand-crafted
features NinaProDB2 50 N.A. N.A. N.A. 75.3% N.A.

ZhaiNet [25] CNN sEMG
spectrogram NinaProDB2 50 N.A. N.A. N.A. 78.7% N.A.

HuNet [26] CNN-RNN Phinyomark
feature set NinaProDB2 50 N.A. N.A. N.A. 82.2% 97.6%

MV-CNN [31] Multiview
CNN 3 views of sEMG NinaProDB2 50 80.6% 81.1% 82.7% 83.7% N.A.

HVPN-2-view Multiview
CNN 2 views of sEMG NinaProDB2 50 82.7% 83.8% 83.3% 85.0% 97.8%

HVPN Multiview
CNN Same as [31] NinaProDB2 50 82.3% 84.1% 84.8% 85.8% 98.1%

Support vector
machine (SVM) [13]

Shallow
learning

5 hand-crafted
features NinaProDB3 50 N.A. N.A. N.A. 46.3% N.A.

MV-CNN [31] Multiview
CNN 3 views of sEMG NinaProDB3 50 N.A. N.A. N.A. 64.3% N.A.

ED-TCN [27] TCN MAV sequences NinaProDB3 41 N.A. N.A. 63.5% N.A. N.A.

HVPN-2-view Multiview
CNN 2 views of sEMG NinaProDB3 50 64.4% 65.7% 66.8% 67.9% 80.3%

HVPN Multiview
CNN Same as [31] NinaProDB3 50 64.5% 65.9% 66.9% 68.2% 80.7%

Random forests [37] Shallow
learning mDWT features NinaProDB4 53 N.A. N.A. N.A. 69.1% N.A.

MV-CNN [31] Multiview
CNN 3 views of sEMG NinaProDB4 53 N.A. N.A. N.A. 54.3% N.A.

HVPN-2-view Multiview
CNN 2 views of sEMG NinaProDB4 53 60.1% 63.2% 67.6% 72.1% 81.1%

HVPN Multiview
CNN Same as [31] NinaProDB4 53 58.3% 67.1% 70.5% 72.9% 81.7%

SVM [37] Shallow
learning mDWT features NinaProDB5 41 N.A. N.A. N.A. 69.0% N.A.

ShenNet [50] Stacking-
based CNN

TD, FD and TFD
features NinaProDB5 40 N.A. N.A. N.A. 72.1% N.A.

MV-CNN [31] Multiview
CNN 3 views of sEMG NinaProDB5 41 N.A. N.A. N.A. 90.0% N.A.

HVPN-2-view Multiview
CNN 2 views of sEMG NinaProDB5 41 88.7% 89.1% 89.9% 90.1% 98.8%

HVPN Multiview
CNN Same as [31] NinaProDB5 41 88.7% 89.3% 90.0% 90.3% 98.4%

N.A. denotes not applicable, and bold entries indicate our proposed method. HVPN-2-view refers to the proposed HVPN framework with the “two-view”
configuration (i.e., using v1 and v2 as its input). †It should be mentioned that existing MCIs seldom segment raw sEMG signals by trial due to the constraint
that the maximal response time of an MCI should be kept below 300ms [40, 41]. ‡For experiments on HVPN, the predicted class label of each gesture trial is
obtained by majority voting on all 200ms sliding windows within it.
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framework on all databases, indicating that HVPN frame-
work can achieve better LOSOCV accuracy than MV-CNN
using less input data.

5. Conclusions

'is paper proposed and implemented a hierarchical view
pooling network (HVPN) framework, which improves
multichannel sEMG-based gesture recognition by not only
view-specific learning under each individual view but also
view-shared learning in feature spaces that are hierarchically
pooled from multiview low-level features.

Ablation studies were conducted on five multichannel
sEMG databases (i.e., NinaPro DB1–DB5) to validate the
effectiveness of the proposed framework. Results show the
following: (1) when the FLVP layer in L2-VPCNN was
replaced by conventional view pooling based on element-
wise max pooling or average pooling, both intrasubject and
LOSOCV accuracy degraded; (2) the proposed HVPN
outperformed its two simplified variants that have only one
view pooling CNN, as well as a deep neural network ar-
chitecture that only consists of view-specific CNNs, in both
intrasubject evaluation and LOSOCV. According to the
above results, the effectiveness of the proposed hierarchical
view pooling strategy can be proven.

Furthermore, we carried out performance comparison
with the state-of-the-art methods on five databases (i.e.,

NinaPro DB1–DB5). Experimental results have demon-
strated the superiority of the proposed HVPN framework
over other deep learning and shallow learning-based
methods. When using sliding windows of 200ms, the
proposed HVPN achieved the intrasubject gesture rec-
ognition accuracy of 88.4%, 85.8%, 68.2%, 72.9%, and
90.3% on NinaPro DB1, DB2, DB3, DB4, and DB5, re-
spectively. 'e LOSOCV accuracy achieved on NinaPro
DB1, DB2, DB3, DB4, and DB5 using 200ms sliding
windows was 84.9%, 82.0%, 65.6%, 70.2%, and 88.9%,
respectively.

Limited by experimental conditions, we only considered
offline experiments to verify our proposed HVPN frame-
work. Our future work will focus on online evaluation of the
proposed multiview deep learning framework. Moreover, in
the future, we will investigate the integration of our pro-
posed framework with hardware systems, such as upper-
limb prostheses [51, 52] and space robots [53, 54] that are
driven by multichannel sEMG signals.

Data Availability

'emultichannel sEMG data supporting the findings of this
study are from the NinaPro dataset, which is publicly
available at http://ninapro.hevs.ch. Papers describing the
NinaPro dataset are cited at relevant places within the text as
references [13, 37]. 'e processed data and trained deep

Table 5: LOSOCV accuracy in comparison with MV-CNN on five databases.

ML model Type of ML model Domain adaptation
method Database Num. of gestures for

classification

LOSOCV accuracy
(achieved with 200ms

window)
MV-CNN
[31] Multiview CNN MS-AdaBN NinaProDB1 52 84.3%

HVPN-2-
view Multiview CNN MS-AdaBN NinaProDB1 52 84.5%

HVPN Multiview CNN MS-AdaBN NinaProDB1 52 84.9%
MV-CNN
[31] Multiview CNN MS-AdaBN NinaProDB2 50 80.1%

HVPN-2-
view Multiview CNN MS-AdaBN NinaProDB2 50 81.8%

HVPN Multiview CNN MS-AdaBN NinaProDB2 50 82.0%
MV-CNN
[31] Multiview CNN MS-AdaBN NinaProDB3 50 55.5%

HVPN-2-
view Multiview CNN MS-AdaBN NinaProDB3 50 65.4%

HVPN Multiview CNN MS-AdaBN NinaProDB3 50 65.6%
MV-CNN
[31] Multiview CNN MS-AdaBN NinaProDB4 53 52.6%

HVPN-2-
view Multiview CNN MS-AdaBN NinaProDB4 53 69.9%

HVPN Multiview CNN MS-AdaBN NinaProDB4 53 70.2%
MV-CNN
[31] Multiview CNN MS-AdaBN NinaProDB5 41 87.2%

HVPN-2-
view Multiview CNN MS-AdaBN NinaProDB5 41 88.8%

HVPN Multiview CNN MS-AdaBN NinaProDB5 41 88.9%
N.A. denotes not applicable, and bold entries indicate our proposed method. HVPN-2-view refers to the proposed HVPN framework with the “two-view”
configuration (i.e., using v1 and v2 as its input).

Computational Intelligence and Neuroscience 11

http://ninapro.hevs.ch


learningmodels used to support the findings of this study are
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