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Abstract: Hematopoietic stem/progenitor cells (HSPCs) participate in cardiovascular (CV) home-
ostasis and generate different types of blood cells including lymphoid and myeloid cells. Diabetes
mellitus (DM) is characterized by chronic increase of pro-inflammatory mediators, which play an
important role in the development of CV disease, and increased susceptibility to infections. Here,
we aimed to evaluate the impact of DM on the transcriptional profile of HSPCs derived from bone
marrow (BM). Total RNA of BM-derived CD34+ stem cells purified from sternal biopsies of pa-
tients undergoing coronary bypass surgery with or without DM (CAD and CAD-DM patients) was
sequenced. The results evidenced 10566 expressed genes whose 79% were protein-coding genes,
and 21% non-coding RNA. We identified 139 differentially expressed genes (p-value < 0.05 and
|log2 FC| > 0.5) between the two comparing groups of CAD and CAD-DM patients. Gene Set
Enrichment Analysis (GSEA), based on Gene Ontology biological processes (GO-BP) terms, led to
the identification of fourteen overrepresented biological categories in CAD-DM samples. Most of the
biological processes were related to lymphocyte activation, chemotaxis, peptidase activity, and innate
immune response. Specifically, HSPCs from CAD-DM patients displayed reduced expression of
genes coding for proteins regulating antibacterial and antivirus host defense as well as macrophage
differentiation and lymphocyte emigration, proliferation, and differentiation. However, within the
same biological processes, a consistent number of inflammatory genes coding for chemokines and
cytokines were up-regulated. Our findings suggest that DM induces transcriptional alterations in
HSPCs, which are potentially responsible of progeny dysfunction.

Keywords: diabetes; bone marrow; hematopoietic stem cells; CD34+, transcriptional profile; inflam-
mation

1. Introduction

Diabetes mellitus (DM) encompasses a group of metabolic disorders characterized
by hyperglycemia resulting from defects in insulin secretion, insulin action, or both. The
chronic hyperglycemia of DM is associated with long-term micro- and macrovascular
complications, finally resulting in end organ dysfunction and failure [1,2].
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Numerous evidence indicates that both chronic inflammation and activation of the
innate immune system are involved in type 1 and type 2 diabetes (T1DM and T2DM) patho-
genesis, as well as in the development of related complications [3,4]. Indeed, it has been
extensively documented that DM patients exhibit a chronic mild inflammatory state char-
acterized by increased levels of circulating pro-inflammatory cytokines [5] and non-specific
immunity activation, such as macrophages [6] and other innate immune cells [7–10]. Taken
together, these immunological alterations are believed to contribute to the development
of atherosclerosis and to the pathogenesis of DM complications, including nephropathy
and retinopathy [11,12]. Consistently, anti-inflammatory therapeutic approaches have also
been developed for diabetic complications [13].

Interestingly, in addition to underlying chronic inflammation, DM patients are highly
susceptible to infectious diseases, often associated with impaired wound healing [14,15].
This evidence suggests that bactericidal and wound healing capacities of innate immune
cells are compromised in DM context. Indeed, numerous studies in T2DM patients showed
impaired phagocytic and chemotactic activity of monocytes and neutrophils [16–19], as
well as decreased natural killer and dendritic cell functions [20,21].

However, the molecular mechanism underlying the paradox of innate immune sys-
tem function in DM is not fully understood. Recent data suggest that hematopoietic
stem/progenitor cell (HSPC) differentiation and function might be governed by metabolic
reprograming at bone marrow (BM) level. In this view, dysregulated genes related to
innate immune cell function could be carried down through progenitor cells to terminally
differentiated cells [22].

Herein, through an innovative next generation sequencing technique (NGS), we show,
for the first time, that DM promotes, at BM level, a primitive gene expression signature
in HSPCs that once conveyed to differentiated cells may eventually result in the intrinsic
pro-inflammatory and dysfunctional phenotype of their immune cell progenies.

2. Results
2.1. Experimental Design

We hypothesized that DM might induce persistent transcriptional alternations in
HSPCs at BM level, potentially responsible for innate immune cell dysfunction of the
patients. To verify this hypothesis, we performed genome wide transcriptional comparison
of CD34+ HSPCs isolated from the sternal BM biopsies of both normoglycemic and T2DM
coronary artery disease patients (CAD and CAD-DM, respectively) undergoing coronary
artery bypass graft (CABG) A total of 23 patients, 11 CAD (controls) and 12 CAD-DM
(cases) matched for gender and with similar age, were enrolled (Table 1).

Within this cohort, on the basis of mRNA availability, BM-CD34+ stem cell samples
from 6 CAD and 8 CAD-DM patients were selected for genome-wide expression analysis
(Table 2).

Table 1. Clinical profile, cardiovascular (CV) risk factors and therapies characterizing the coronary
artery disease (CAD) cohort enrolled for this study. Patients have been categorized for the presence
of diabetes mellitus (DM) as comorbidity.

CAD CAD-DM p-Value

N 11 12
Gender (male) 91% 92% 1.000

Age (years) 70 [57–77] 70 [65–74] 0.916
BMI (Kg/mq) 28.05 ± 4.04 27.01 ± 3.87 0.536

Glycemia (mg/dL) 111 ± 14 155 ± 49 ◦ 0.015
LDL (mg/dL) 136 [93–157] # 75 [72–89] ◦ 0.018
HDL (mg/dL) 44.3 ± 9.2 # 47.3 ± 12.0 ◦ 0.536

Total cholesterol (mg/dL) 190.2 ± 43.2 # 156.1 ± 34.2 ◦ 0.058
Creatinine (mg/dL) 0.92 [0.88–1.05] 1.03 [0.85–1.24] 0.338
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Table 1. Cont.

CAD CAD-DM p-Value

Other CV Risk Factors
Hypertension 82% 100% 0.217
Dyslipidemia 73% 67% 1.000

Smoke 18% 42% 0.370

DM Therapies
Oral antidiabetic agents 0 83%

Insulin 0 8.5%
Oral antidiabetic agents + insulin 0 8.5%

Other Therapies
Antihypertensive drugs 100% 92% ◦ 1.000

Lipid-lowering drugs 45% 75%◦ 0.214

# Data available for 10 out of 11 patients, ◦ data available for 11 out of 12 patients.

Table 2. Clinical profile, CV risk factors, and therapies characterizing the subgroup of CAD patients
selected for RNA sequencing. Patients have been categorized for the presence of DM as a comorbidity.

CAD CAD-DM p-Value

N 6 8
Gender (male) 100% 100% 1.000

Age (years) 66.3 ± 11.6 70.1 ± 5.36 0.427
BMI (Kg/mq) 26.80 ± 3.26 26.31 ± 3.10 0.782

Glycemia (mg/dL) 120 ± 15 # 162 ± 44 ◦ 0.049
LDL (mg/dL) 134 [70–146] # 75 [70–85] ◦ 0.287
HDL (mg/dL) 43.0 ± 10.4 # 48.7 ± 12.5 ◦ 0.424

Total cholesterol (mg/dL) 176.8 ± 48.5 # 151.6 ± 39.8 ◦ 0.345
Creatinine (mg/dL) 0.94 [0.90–1.06] 0.98 [0.85–1.24] 0.880

Other CV Risk Factors
Hypertension 83% 100% 0.429
Dyslipidemia 67% 63% 1.000

Smoke 0% 50% 0.085

DM Therapies
Oral antidiabetic agents 0 87.5%

Insulin 0 0
Oral antidiabetic agents + insulin 0 12.5%

Other Therapies
Antihypertensive drugs 100% 88% 1.000

Lipid-lowering drugs 50% 75% 0.580

# Data available for 5 out of 6 patients, ◦ data available for 7 out of 8 patients.

Nanopore-based sequencing, as outlined in Figure 1, was used to this aim. The entire
cohort of 23 patients was subsequently included in the validation phase.

2.2. Gene Expression Biotype in HSPCs of CAD and CAD-DM Patients

We performed long-reads cDNA sequencing of samples obtained from 8 CAD-DM
and 6 CAD matched patients (Table 2). The results evidenced 10,566 expressed genes,
of which 79% were mRNA, while the remaining 21% were non-coding RNAs as shown in
Figure 2. Notably, out of the 21% non-coding RNAs, the 76% were pseudogenes (16%) and
~ 5% novel RNA isoforms or putative novel genes (1%), namely, loci expressed in intergenic
or intronic regions not yet annotated. The complete list of expressed genes, including gene
symbols, locus, and relative gene expression is gathered in Table S1.
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Figure 2. Pie chart of expressed genes, grouped by biotypes provided by the ensemble annotation.
Out of 10,566 expressed genes, 79% (8388) was represented by protein coding genes. The remaining
21% was constituted by non-coding RNAs (16% pseudogenes, 3% and 1% long and small non-coding,
respectively, and 1% novel genes).

2.3. DM Induces a Distinct Transcriptome Profile in BM-Derived HSPCs

To gain insights into global gene expression modifications induced by the diabetic
BM microenvironment, a differential expression analysis was performed. We identified
139 differentially expressed genes (p-value < 0.05 and |log2 FC| > 0.5) between the two
groups of CAD and CAD-DM patients. Of these, 55 were down-regulated (blue dots), and
84 up-regulated (red dots) in CAD-DM vs. CAD, as shown in the Volcano plot of Figure
3A. Moreover, unsupervised hierarchical clustering based on differentially expressed
genes revealed distinctive expression patterns within each cell type, ensuring an utter
discrimination between CAD and CAD-DM samples (Figure 3B). The complete list of
differentially expressed genes, including gene symbols, locus, and relative gene expression,
is gathered in Table S2.
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2.4. Functional Genomics Analysis Reveals a Disease-Specific Genomic Signature in HSPCs of
CAD-DM Patients

Gene Set Enrichment Analysis (GSEA), based on Gene Ontology biological processes
(GO-BP) terms, was implemented to infer the functional roles of overrepresented genes in
CAD-DM samples, allowing for the identification of disease-specific genomic signatures.
Gene Ontology annotation led to the identification of fourteen overrepresented biological
categories in CAD-DM samples. Remarkably, eight out of fourteen biological processes
were related to lymphocyte activation, chemotaxis, peptidase activity, and innate immune
response (e.g., ‘response to bacterium’, ‘toll-like receptor signaling’, ‘response to interferon
gamma’, cytokine production) as shown in Figure 4. Notably, all these categories included
a large proportion of downregulated genes involved in migration (i.e., CXCR4, CKLF,
ITGAX, PPBP), antivirus, antifungal, and antibacterial host defense (i.e., TRIM22, TRIM5,
AZU1, MPO, RNASE3, FPR1, FPR2, PPBP, DEFAs) as well as macrophage differentiation,
lymphocyte emigration, proliferation, and differentiation (i.e., CSF1R, TNFSF13B, IGLL1,
ADAM28, HLA-DQA1, HLA-DQB2). Importantly, within the same biological processes,
a consistent number of inflammatory genes such as CCL2, IL1β, IL18RAP, CCL1, IL7,
CCL3L1, CCL13, CCL4, NFKB1, and ADAM17 resulted in being upregulated. Interestingly,
besides immune system categories, biological processes related to cell division, cell cycle,
catabolic process, RNA processing and WNT signaling pathways also resulted as overrep-
resented in BM-CD34+ HSPCs of CAD-DM patients, suggesting a direct impact of DM on
HSPC proliferation, metabolism, and differentiation. The lists of the genes representative
of each biological category displayed in the Figure are gathered in Table S3. Moreover, all
the processes identified by GSEA related to the downregulated and the upregulated genes
are reported in Table S4 and Table S5, respectively.

2.5. Validation of Sequencing Data with qPCR

To validate results obtained with sequencing analyses, we selected 6 genes involved
in chemotaxis, immune response, and host defense to further assess their expression levels
by qPCR. According to RNA sequencing, we chose three top differentially expressed genes



Int. J. Mol. Sci. 2021, 22, 1423 6 of 14

(i.e., FPR2, CSFR1, and DEFA3), and three that showed the tendency to be up- and down
modulated (i.e., CCL2, MS4A3, and CXCR4) to strength the appropriateness of our global
transcription analysis. Then, we compared the expression levels obtained by qPCR and
RNA-Seq for each selected gene. The analysis displayed a strong and significant correlation
for all tested genes (Figure 5).
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Notably, we further corroborated our results on mRNA of BM-CD34+ stem cell samples
isolated from patients who were not included in the sequencing cohort but originally
enrolled (Table 1). In line with sequencing data, qPCR analysis confirmed the same
expression trend that was statistically significant for all selected genes (Figure 6, panel A).
Importantly, the analysis by flow-cytometry of CXCR4 protein expression, a gene that by
sequencing displayed a down-regulation trend, also demonstrated a significant reduction
of the receptor at membrane level (Figure 6, panel B).
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3. Discussion

There is a close link between DM and atherosclerotic CV disease, which remains the
most prevalent cause of morbidity and mortality in diabetic patients. The exact pathogenic
mechanisms linking accelerated atherosclerotic cardiovascular complications, resulting
in long-term damage and failure of various organ systems, and diabetes, are rather com-
plex [23]. However, it is widely reported that in all stages of atherosclerosis, both in the
absence and presence of diabetes, monocytes and macrophages are key players [24]. Preclin-
ical and clinical studies support the role of inflammation in the initiation and progression
of atherosclerosis that despite representing the intrinsic capacity of the body to react to
tissue injury or pathogens can have detrimental effects on tissue and organs, if chronically
activated [25,26]. To this regard, a chronic low-grade inflammation and immune activation
have been described both in pre-diabetic and diabetic states [27–30]. A consisting body
of literature suggests that the impact of hyperglycemia on HSPCs in the BM niche may
be the primary factor contributing to CV disease development [31,32]. Indeed, numerous
preclinical data show the ability of BM diabetic environment to boost HSPC differentiation
toward myeloid lineage as well as to promote abnormal generation and accumulation of
immune cell subpopulations (e.g., monocytes and macrophages) with more aggressive
phenotypes [33–35]. Paradoxically, this state of chronic inflammation, characterized by in-
creased myelopoiesis and circulating inflammatory cytokines, which account for increased
risk of atherosclerosis, coexists with a dysfunctional immune response that renders diabetic
patients more susceptible to infections [36].
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Interestingly, though the molecular mechanisms underpinning the paradox of immune
system function in DM is not fully understood, preclinical data suggest that epigenetic
modifications in HSPCs triggered by diabetic BM microenvironment can, once passed
to their progeny, be responsible for the gene expression and phenotypical alteration of
terminally differentiated immune cells [22]. Herein, in order to explore if a transcriptional
signature predictive of immune cell dysfunction was already present in HSPCs of DM
patients, we compared the transcripts of CD34+ HSPCs isolated from sternal BM biopsies
of CAD patients with or without T2DM by genome-wide expression analyses. The study
involved the use of nanopore-based sequencing, a new NGS technique that allowed us
to obtain a complete picture of RNA transcripts, specifically 79% mRNA and 21% non-
coding RNA. Succeeding analysis of the data by the Gene GO-BP-based GSEA, revealed
fourteen overrepresented biological categories in CAD-DM vs. CAD samples. Remarkably,
most of the relevant biological processes were related to immune system function, namely
‘chemotaxis’, ‘response to bacterium’, ‘toll-like receptor signaling’, ‘response to interferon
gamma’, cytokine production, and response to bacterium. In addition, narrowing our
analysis down within the gene lists of biological processes, we found a down-regulation
of numerous genes coding for cytotoxic peptides related to innate immune system with
bactericidal, antifungal, and antiviral properties. These included AZU1, a neutrophil-
monocyte-derived antibacterial and chemotactic glycoprotein with cytotoxic action against
Gram-negative bacteria [37], defensins family members (i.e., DEFA1, DEFA1B, DEFA3,
and DEFA4), abundant in the granules of neutrophils, as well as MPO and RNASE3,
additional genes encoding for proteins with microbicidal activity against a wide range
of organisms [38–40]. Notably, CD34+ HSPCs from CAD-DM patients also displayed a
defective expression of genes involved in the regulation of macrophage differentiation
(CSFR1), phagocytic cell recruitment and activation (i.e., PPBP, CXCR4, and FPR2), as well
as antigen presentation (i.e., HLA-DQA1 and HLA-DQB2) [41]. Consistently in DM, despite
increased myelopoiesis, there is a defense mechanism impairment of granulocytes and
monocytes including migration to the site of inflammation, phagocytosis, ROS production,
and germicidal activity. The functional failure of these cells, which are the first cells
recruited to the sites of injury, plays a crucial role in inflammatory response against
microbial infections and it is associated with an increased incidence of infections in DM
patients [42].

However, such a gene expression pattern in CD34+ HSPCs, predictive of innate im-
mune system impairment, was associated with upregulation of numerous genes encoding
for pro-inflammatory interleukins, chemokine, and receptors, critical not only in the re-
cruitment, accumulation, and activation of immune cells to the site of injury, but also in
all inflammatory stages of atherosclerosis [42,43]. Among these, it is noteworthy men-
tioning CCL13, a chemotactic factor able to identify with a very high degree of accuracy
subjects with clinically significant atherosclerotic heart disease [44]. The upregulation of
pro-inflammatory genes in HSPCs of CAD-DM patients strongly suggests the acquisition
of senescent-associated secretory phenotype (SASP). Similar to aging, diabetes is known to
induce cell senescence with mechanisms involving, together with others, mitochondrial
dysfunction and increased reactive oxygen species [45]. These do not spare immune cells
and stem/progenitor cells that, as all other cells, are susceptible to developing premature
senescence [45,46]. SASP profile, characterized by sustained release of pro-inflammatory
cytokines, chemokines, and growth factors, may in turn, with a vicious positive feedback
cycle, contribute to establishing a chronic low-grade pro-inflammatory status [47], and
exacerbate immune dysfunction [45,48].

Despite the limitation of the study related to the particularity of biological samples that
constrains the number of subjects, to our knowledge this is the first study revealing the gene
expression profile of BM-derived CD34+ HSPCs from CAD patients who are distinguished
by the only presence of T2DM. In line with recent evidence demonstrating the ability of
DM to induce stable epigenetic modifications responsible for gene expression alteration in
BM progenitors [22,49], our study suggests that diabetic BM microenvironment, regardless
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of the combination of comorbid CAD, establishes a transcriptional signature in HSPCs that
is predictive of unrestrained inflammatory and dysfunctional phenotype of their daughter
cells in the peripheral tissues. Epigenetic aberrant modifications, which are cell-type-
specific and can be mitotically heritable contributing to long-term gene expression changes,
are associated with many human diseases, including diabetes. Numerous studies already
provide evidence that DNA methylation and post-translational modifications of histone
proteins are involved in the development of diabetes and its vascular complications [50].
Differences in activator (e.g., H3K9ac, H3K4me) and repressive (e.g., H3K36me3, H3K9me3)
chromatin marks have been found at the level of pro-fibrotic and inflammatory genes
in numerous tissues [51,52], including immune cell components (i.e., monocytes and
lymphocytes) of diabetic patients [53,54]. While it is becoming evident that diabetes,
by glucose metabolism alteration and oxidative stress (ROS), can affect the function of
epigenetic machinery [55,56], big gaps still exist in knowledge about the interplay between
cell signaling and epigenetic machinery. However, as epigenetic enzymes can regulate
cell signaling pathways (e.g., NF-κB, RAS/RAF/MEK/MAPK, PI3K/Akt, Wnt/β-catenin,
p53, and ERα) [57], it is very likely that signal transduction pathways and transcription
factors abnormally activated by diabetic conditions or hyperglycemia can cooperate, in
a still not fully elucidated way, with epigenetic factors to promote sustained expression
of pathological genes [58]. To this regard, we are currently studying the molecular and
epigenetic mechanisms involved in glucose-induced dysfunction of HSPCs.

Overall, our results may open the way to further studies aimed at unravelling the
profound mechanisms underlying the paradox of innate immune training in diabetes with
the finally scope of discovering novel therapeutic targets to be exploitable for limiting
and/or preventing infectious diseases and devastating complications in DM patients.

4. Materials and Methods
4.1. Study Participants

Twenty-three patients, 11 CAD and 12 CAD-DM, were enrolled in the study. All proce-
dures performed on subjects were in accordance with the Helsinki Declaration of 1975. The
investigation was approved by Centro Cardiologico Monzino Research Ethics Committee
(No. CCM 205–RE1973/1) and each participant provided written informed consent. The
inclusion criteria for CAD-DM patients were age above 35 years, diagnosis of T2DM as de-
fined by the American Diabetes Association [59], with at least one year of disease duration
at the time of the screening visit. The exclusion criteria were T1D diagnosis, inflamma-
tory/infective/autoimmune disorders, and/or history of cancer. At admission, CAD-DM
patients were treated with any combination of oral anti-diabetic therapies with/without
insulin.

4.2. Sternal Bone Marrow Biopsy and CD34+ Stem Cell Isolation

During surgical procedure, two or three milliliters of sternal BM were withdrawn by
bone biopsy needle (15G× 25/90mm; MDL). Blood aspirate was suspended in saline buffer,
and mononuclear cell (MNC) fraction was isolated by density gradient centrifugation
using LymphoprepTM (Sentinel Diagnostic Spa; Milan, Italy). CD34+ stem cells were then
magnetically sorted by MiniMACS system (CD34 Microbead Kit; Miltenyi Biotec GmbH;
Bologna, Italy). Purity of isolated cells was assessed during experimental settings by flow
cytometry (Beckman-Coulter Gallios, Life Science; Milan, Italy). The test was carried out
three times on samples deriving, randomly, from both cohort of patients. Isolated cells were
single stained for the hematopoietic stem cell markers CD34 and for CD14, CD3, CD80,
and CD86 to determine the level of cell lineage contamination. The 90% ± 4.08 (SD) of the
cells resulted positive for CD34 and negative for all other considered markers (Figure S1).
Isolated CD34+ cells were then cryopreserved for subsequent RNA isolation and analysis.
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4.3. Total RNA Extraction

Total RNA from CAD and CAD-DM CD34+ cells was isolated using the Direct-zol
RNA Kit (Zymo Research; EuroClone S.p.A., Milan, Italy) following the manufacturer’s
instructions. At the end of the procedure RNA concentration and quality were assessed,
respectively, by microvolume spectrophotometry using a ND-1000 NanoDrop (Thermo
Fisher Scientific; Milan, Italy) and by microfluidics-based automated electrophoresis, using
the RNA 6000 Nano Assay Kit on 2100 BioAnalyzer system (Agilent Technologies S.p.A.;
Milan, Italy).

4.4. MinION Nanopore Sequencing

RNA sequencing was performed on 6 CAD and 8 CAD-DM samples selected on the
basis of RNA amount availability using a MinION Mk1B sequencer (Oxford Nanopore
Technologies; Oxford, UK) on a R9.4.1 (FLO-MIN106) flow cell (Oxford Nanopore Technolo-
gies; Oxford, UK). Clinical characteristics of the sequenced patients are shown in Table 2.
The libraries were prepared using the SQK-LSK108 Sequencing kit (Oxford Nanopore
Technologies; Oxford, UK) following the 1D Strand switching cDNA-by-ligation proto-
col. Briefly, reverse transcription was performed starting from 500 ng of RNA using the
PCR-VN-RT primer and the Strand Switch Oligo PCR_SW_mod_3G, followed by First
Strand cDNA PCR amplification for full-length transcripts (18 cycles, 3 min extension).
After purification by Agentcourt AMPure XP beads (Beckman Coulter), end-repairing and
dA tailing steps were performed on 1 µg of DNA/sample before the ligation of specific
adapters to 0.2 pmols of end-prepped DNA. A single library was loaded on each flowcell
following protocol instructions. After reaching at least 5 GB of acquired data, the sequenc-
ing was stopped and the flowcell washed in order to allow the loading of a new sample.
Then the flow cell underwent QC analysis to verify the presence of enough pores to run the
sequencing. In case of insufficient pores availability, a new flow cell was loaded. Albacore
software v2.3.1 (Oxford Nanopore Technologies; Oxford, UK) was used for basecalling.

4.5. Bioinformatics and Statistical Analysis

Reads were mapped to the human genome reference GRCh38.96 by the ‘minimap2′

aligner, properly set for minION long reads (custom options: -x map-ont -Y) [60]. Genes
were considered as “expressed” when showing a minimum of 10 counts in at least 50%
of samples. Gene expression quantification was performed by ‘featureCount’ (custom
option: -L) [61], while gene filtering and variance-stabilizing normalization (VSN) were
carried out by the ‘DaMiRseq’ R package [62]. The statistical analysis was accomplished
by the ‘limma’ R package [63]. The Benjamini–Hochberg procedure was used to control
for the false discovery rate (FDR). Differences were deemed significant if the p-value was
< 0.05 and the |log2 FC| > 0.5. Clustering analysis was performed by the ‘pHeatmap’ R
package. Demographic and clinical profile of enrolled patients are expressed as mean ±
standard deviation, median [25–75% confidence interval], or percentage, as appropriate.
Shapiro–Wilk normality test has been used to verify Gaussian distribution of the consid-
ered covariates. For comparison between two groups, Student’s T or Mann–Whitney U
test have been performed, as appropriate. Fisher’s exact test has been used to compare
categorical covariates. Dot-plots of qPCR validation were drawn by GraphPad Prism (v.5,
GraphPad Software,) and given as mean ± SEM. All data expressed as fold-change were
log2-transformed before analysis and tested for the normality by using the Shapiro–Wilk
normality test. Differences between data were evaluated by unpaired Student’s t test
(2-group comparisons).

4.6. Functional Analysis

The Gene-Set Enrichment Analysis (GSEA v.4.0.0) with pre-ranked mode was per-
formed to infer biological function, associated with CAD and CAD-DM phenotypes [64];
the ranking metrics was based on the t-statistics values of differential expression analysis
(only protein coding genes) and only the gene ontology biological process (GO-BP) were
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taken into account. Pathways significantly associated with phenotypes (p < 0.05) were
visually represented by the Enrichment Map (v.3.0.0) Cytoscape (v3.7.1) plug-in [65,66].

4.7. qPCR Validation

The gene expression levels were technically validated by qPCR on 6 genes (i.e., FPR2,
CSFR1, DEFA3, CCL2, MS4A3, and CXCR4). The validation was performed on samples ob-
tained from the entire cohort of 23 CAD and CAD-DM patients (Table 1). Total RNA (400 ng)
was reverse-transcribed using 5x-All-in-One RT Master Mix (Applied Biological Materials;
Gentaur, Bergamo, Italy) and the resulting cDNA diluted to 5 ng/µL with RNASe free
water. Single assay Real Time qPCR was performed using specific Taqman Gene Expression
Assays (Thermo Fisher Scientific; Milan, Italy) for each target, according to manufacturer’s
instructions, and run on Viia 7 RT-qPCR system. Ct values were normalized (Delta Ct),
using beta globulin as reference gene. Data, expressed as fold-changes (FC; 2−∆∆CT) over
CAD after normalization to each housekeeping gene, were log2-trasformed before analysis.
The Pearson’s correlation indexes and the corresponding p-values of sequenced samples
were calculated by the native R base functions (v.3.6.1) [67] and represented by the ‘ggplot2′

R package [68].

4.8. Flow Cytometric Assay

The purity of the cells and protein expression of non-significantly downregulated gene
(CXCR4) was validated by flow-cytometry. CD34+ stem cells were single stained for 30 min
with antihuman CD34, CD14, CD3, CD80, CD86, and CXCR4 monoclonal antibodies (BD
Biosciences). After 30 min, cells were washed and analyzed. The Beckman-Coulter Gallios
platform (Beckman-Coulter Life Science; Milan, Italy) and Kaluza analysis software (v2.1.1)
were used to analyze samples by use of appropriate physical gating. At least 104 events in
the indicated gates were acquired.

Supplementary Materials: Supplementary materials can be found at https://www.mdpi.com/1422
-0067/22/3/1423/s1.
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BM Bone marrow
CABG Coronary artery bypass surgery
CAD Coronary artery disease
CV Cardiovascular
DM Diabetes mellitus
FDR False discovery rate
GO-BP Gene Ontology-biological processes
GSEA Gene set enrichment analysis
HPSCs Hematopoietic stem/progenitor cells
MNC Mononuclear cell
NGS Next generation sequencing
T1DM Type 1 diabetes mellitus
T2DM Type 2 diabetes mellitus
VSN Variance-stabilizing normalization
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