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Abstract
Purpose To determine whether [18F]FDG PET/CT-derived radiomic features alone or in combination with clinical, laboratory
and biological parameters are predictive of 2-year progression-free survival (PFS) in patients with mantle cell lymphoma (MCL),
and whether they enable outcome prognostication.
Methods Included in this retrospective study were 107 treatment-naiveMCL patients scheduled to receive CD20 antibody-based
immuno(chemo)therapy. Standardized uptake values (SUV), total lesion glycolysis, and 16 co-occurrence matrix radiomic
features were extracted from metabolic tumour volumes on pretherapy [18F]FDG PET/CT scans. A multilayer perceptron neural
network in combination with logistic regression analyses for feature selection was used for prediction of 2-year PFS. International
prognostic indices for MCL (MIPI and MIPI-b) were calculated and combined with the radiomic data. Kaplan–Meier estimates
with log-rank tests were used for PFS prognostication.
Results SUVmean (OR 1.272, P = 0.013) and Entropy (heterogeneity of glucose metabolism; OR 1.131, P = 0.027) were
significantly predictive of 2-year PFS: median areas under the curve were 0.72 based on the two radiomic features alone, and
0.82 with the addition of clinical/laboratory/biological data. Higher SUVmean in combination with higher Entropy (SUVmean
>3.55 and entropy >3.5), reflecting high “metabolic risk”, was associated with a poorer prognosis (median PFS 20.3 vs.
39.4 months, HR 2.285, P = 0.005). The best PFS prognostication was achieved using the MIPI-bm (MIPI-b and metabolic risk
combined): median PFS 43.2, 38.2 and 20.3 months in the low-risk, intermediate-risk and high-risk groups respectively (P =
0.005).
Conclusion In MCL, the [18F]FDG PET/CT-derived radiomic features SUVmean and Entropy may improve prediction of 2-year
PFS and PFS prognostication. The best results may be achieved using a combination of metabolic, clinical, laboratory and
biological parameters.
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Introduction

Mantle cell lymphoma (MCL) is a rare subtype of B cell non-
Hodgkin lymphoma, and can be associated with an aggressive
or, less frequently, an indolent course [1]. Despite the avail-
ability of novel types of treatment, the prognosis in MCL
patients is generally considered to be poor [2], with 5-year
survival rates as low as 50% [1]. For estimation of prognosis,
adapted versions of the International Prognostic Score (IPI) –
the so-called MIPI scores, which incorporate age, ECOG per-
formance status, leucocyte count, lactic dehydrogenase levels
and in some variants also the Ki-67 proliferation index – are
used in clinical practice [1]. These MIPI scores were built
upon data for, and used for prediction of, 5-year survival, with
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a focus on overall survival (OS). No clinical, laboratory, or
biological markers are currently established for prediction of
shorter term clinical outcomes.

Pretherapy positron emission tomography/computed to-
mography after injection of the radiolabelled glucose ana-
logue 2-18F-fluoro-2-deoxy-D-glucose ([18F]FDG PET/CT),
which enables whole-body in vivo quantification of tumour
glucose metabolism, has been shown to provide prognostic
information in Hodgkin, diffuse large B cell (DLBCL), follic-
ular and T cell lymphomas in a considerable number of stud-
ies, using quantitative parameters including the maximum
standardized uptake value (SUVmax), total metabolic tumour
volume (TMTV) and total lesion glycolysis (TLG) [3–9]. In
MCL patients, only two studies have investigated the prog-
nostic value of pretherapy SUVmax, with only one of these
also including TMTVand TLG [10, 11]. The prognostic value
of quantitative measures of [18F]FDG uptake heterogeneity
across the TMTV, as can be provided by advanced radiomic
analyses, have not so far been investigated in MCL patients.

Radiomics is an emerging field of research that is con-
cerned with the computer-assisted extraction of quantitative,
minable data from diagnostic medical images. Radiomic fea-
tures include both traditional, first-order features (such as
mean and maximum grey-level values), and more sophisticat-
ed features such as those that describe different aspects of
image texture, which cannot be perceived by the human eye
[12]. These image textural features have the potential to allow
assessment of tumour heterogeneity [13, 14], which is recog-
nized as a prognostic determinant of survival in different types
of cancer [15–17]. Indeed, several studies in different types of
cancer, and using different imaging techniques, have provided
data that support the prognostic potential of radiomics
[18–21], especially when processed by artificial intelligence-
based machine-learning algorithms.

We therefore aimed to determine (1) whether [18F]FDG
PET-derived radiomic features can predict 2-year progres-
sion-free survival (PFS), alone or in combination with clinical,
laboratory and biological parameters, using a machine-
learning algorithm, and (2) whether the [18F]FDG PET-
based radiomic signature has prognostic value in comparison
to, as well as in combination with, the established MIPI
scores, in MCL patients receiving CD20 antibody-based
immuno(chemo)therapy as first-line systemic treatment.

Materials and methods

Patients and design

Treatment-naive patients with histologically proven MCL (as
diagnosed by a reference pathologist according to the current
WHO classification), who had undergone [18F]FDG PET/CT
for routine pretherapy staging at a single tertiary care centre

between January 2010 and June 2016, were eligible for in-
clusion in this Health Insurance Portabil i ty and
Accountability Act (HIPAA)-compliant, retrospective study.
The study was approved by the Institutional Review Board of
Memorial Sloan Kettering Cancer Center; informed consent
was waived. Additional inclusion criteria were: documenta-
tion of clinical follow-up and imaging follow-up (by contrast-
enhanced CT or [18F]FDG PET/CT) over a period of at least
2 years, or up to the date of death or progression within the 2-
year observation period; clinical, laboratory and biological
data, including ECOG performance status, white blood cell
count (WBC), lactate dehydrogenase levels (LDH) and Ki-67
proliferation index, obtained within 1 week of the pretherapy
PET/CT scan; and treatment with an R-CHOP-based regimen
(rituximab, cyclophosphamide, doxorubicin, vincristine and
prednisone, alone or in combination with high-dose
cytarabine (HiDAC) and consecutive high-dose therapy and
autologous stem cell therapy (HDT/ASCT) consolidation, or
radioimmunotherapy with [90Y]-ibritumomab tiuxetan), or R-
BENDA/O-BENDA (rituximab or ofatumumab, and
bendamustine), or rituximab or ofatumumab monotherapy
(in patients with low tumour burden). Patients with blood
glucose levels >180 mg/dL and patients not examined with
one of five prespecified PET/CT scanners (see below) were
excluded.

Imaging protocol

PET/CTcovering the anatomy from the mid-skull to the upper
thigh was performed approximately 60 min after intravenous
administration of 12–15 mCi of [18F]FDG. Patients fasted for
at least 6 h prior to [18F]FDG injection. PETwas performed in
three-dimensional (3D) mode, with at least 3 min per bed
position, and a voxel size of 5.5 × 5.5 × 3.3 mm, using one
of the following PET/CT scanners: Discovery ST, Discovery
STE, Discovery 600, Discovery 690, or Discovery 710 (all
manufactured by GE Healthcare, Waukesha, WI, USA).
Spiral CT was performed with a tube current of 60 mAs, a
tube voltage of 120–140 kVp, and a 5-mm section thickness,
and was used for PET attenuation correction and anatomical
correlation.

Image analysis and radiomic signature

Using the Beth Israel PET/CT viewer plugin for FIJI [22],
TMTVs were semiautomatically constructed, using the previ-
ously recommended 41% SUVmax threshold (Fig. 1) [23].
When there was low [18F]FDG uptake relative to the sur-
rounding tissues, coregistered CT was used to aid manual
lesion delineation. Based on the TMTVs, the SUVmax,
SUVmean, SUVpeak and TLG (product of TMTV and
SUVmean), as well as the following 16 textural features de-
rived from the grey-level co-occurrence matrix were
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calculated in 3D: Entropy, Homogeneity, Contrast,
Correlation, Angular second moment, Difference entropy,
Difference variance, Inverse difference moment, Sum aver-
age, Sum entropy, Sum variance, Cluster prominence,
Cluster shade, Maximum probability, and two Informational
measures of correlation [24]. Equations for these textural fea-
tures can be accessed at https://pyradiomics.readthedocs.io/
en/latest/features.html. The 3D co-occurrence matrix was cal-
culated with an interpixel distance of 1, and 13 directions; a
minimum of 20 pixel pairs were used for each direction.
Based on this, an arithmetic mean was calculated to provide
a single value for each individual feature.

Radiomic features were harmonized using the previ-
ously described ComBat method to correct for technical
differences between the PET/CT data from the different
scanners. ComBat harmonization was originally described
for use with genomic data and was subsequently validated
for normalization of PET radiomic features so as to re-
move the centre effect while retaining the pathophysiolog-
ical information [25]. This method is applied directly to
the numerical values of the radiomic features, rather than
to the PET images from which the radiomic features are
calculated, and consequently, it does not lead to a reduc-
tion in the quality of subsets of images. ComBat-based
transformations differ between the individual radiomic
features obtained from each VOI and scanner, and are

applied to the measured data so that they can be pooled
without the need for separate training datasets [25].

Pearson and Kendall tau-b correlation coefficients were
used, as appropriate, to evaluate the relationships between
the different radiomic features, and also between radiomic
features and overall PFS (in months) as well as 2-year PFS
status, respectively. Univariate binary logistic regression anal-
yses were used to identify radiomic features that were signif-
icantly predictive, at P ≤ 0.05, of 2-year PFS (i.e. 2-year PFS
achieved or not). Based on radiomic features that were statis-
tically significant in the univariate analysis, a multivariate lo-
gistic regression analysis with forward selection (based on
likelihood ratio) was performed. Features that were significant
in the multivariate analysis were regarded as representing the
radiomic “signature” of MCL on [18F]FDG PET.

Clinical data and MIPI score calculation

ECOG performance status, WBC, LDH level, Ki-67, Ann
Arbor stage and blastoid differentiation (including blastic
and pleomorphic variants) of the patients with MCL were
recorded. Two established variants of the MIPI score were
calculated, as previously described:

– The “classic” MIPI (based on age, ECOG performance
status, WBC and LDH level) with three risk categories
(high, intermediate, and low risk) [26]

– The “biological”MIPI-b (which also considers the Ki-67
index) with three risk categories (high, intermediate, and
low risk) [26]

Simplified versions of the MIPI scores were not obtained.
PFS was obtained from the electronic medical records of the
hospital information system using the oncologist’s assessment
and the original [18F]FDG PET/CT and CT reports. For PET/
CT and CT, the Lugano response criteria for disease progres-
sion were applied [27].

Machine learning for 2-year PFS prediction

A multilayer perceptron (MLP) feed-forward artificial neural
network which relies on a back-propagation learning algo-
rithm [28] was used to determine whether the [18F]FDG
PET/CT radiomic signature can predict 2-year PFS. Because
the starting point of the neural network is an initial guess at the
weights of the individual radiomic features, the classification
step was performed five times. The population of 107 patients
was split into a training dataset and a validation dataset to
which 70% and 30%, respectively, were randomly assigned;
i.e. randomization of patients to the training and validation
datasets differed for each repetition of the classification step.
A minimum of one hidden layer (activation function: hyper-
bolic tangent), with a minimum of three neurons per hidden

Fig. 1 A 66-year-old patient with stage IV mantle cell lymphoma: left
[18F]FDG PET maximum intensity projection image; right 3D radiomic
analysis based on the total metabolic tumour volumes (blue) constructed
using the previously recommended 41% SUVmax threshold; the
SUVmax (red dot) was measured in the periportal nodal bulk
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layer, was used for the MLP neural network (output activation
function: softmax). Following the purely radiomics-based
analysis described above, the classification step was repeated,
again five times, this time using ECOG performance status,
WBC, LDH level and Ki-67 index as additional input vari-
ables, to determine whether the integration of radiomic, clin-
ical, laboratory and biological data could improve 2-year PFS
prediction. Areas under the receiver operating characteristic
(ROC) curves (AUCs) as well as classification accuracies for
training and validation datasets were used as the main out-
come measures.

Radiomic signature and MIPI for PFS prognostication

Radiomic signature features were dichotomized using their
respective ROC curve-based cut-off values. A single ordi-
nal radiomic signature parameter reflecting the “metabolic
risk” was then calculated using a “majority vote” system,
with the categories “high metabolic risk” and “low meta-
bolic risk”, and, in case of an even number of radiomic
signature features, an additional “intermediate metabolic
risk” category (same number of features above and below
their respective cut-off values). Metabolic risk, as well as
MIPI and MIPI-b were tested for PFS prognostication
using Kaplan–Meier estimates, and the log-rank test was
used for group comparisons. To determine whether the ad-
dition of metabolic risk improved MIPI risk categories in
terms of PFS prognostication, the following strategy for
MIPI and MIPI-b score modification was used:

– “High metabolic risk”: MIPI score +1, unless already
highest score (i.e. MIPI or MIPI-b score 3, in which case
MIPI score unmodified)

– “Lowmetabolic risk”: MIPI score −1, unless already low-
est score (i.e. MIPI orMIPI-b score 1, in which caseMIPI
score unmodified)

– “Intermediate metabolic risk” (if applicable): MIPI score
unmodified

Based on these modified MIPI and MIPI-b scores (termed
“MIPI-m” and “MIPI-bm”), which included information
about the metabolic risk, Kaplan–Meier estimates and log-
rank tests were again performed. All statistical tests were per-
formed using SPSS 24.0 (IBM Corp., Armonk, NY, USA).

Results

A total of 107 consecutive patients (35 women and 72 men;
mean age 64.5 ± 10.8 years) met the criteria for participation
in the study (Fig. 2). [18F]FDG PET/CTwas performed using
the Discovery STE scanner in 43 patients, the Discovery 690
scanner in 41 patients, the Discovery 600 and 710 scanners in
10 patients each, and the Discovery ST scanner in 3 patients.
Of the 107 patients, 58 were treated with an R-CHOP-based
regimen (with additional HiDAC and HDT/ASCT in 42 pa-
tients, of whom 10 also received radioimmunotherapy), 38
with R-BENDA or O-BENDA, and 11 with rituximab or
ofatumumab monotherapy. After 2 years, progression had

Fig. 2 CONSORT diagram
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occurred in 35 of the107 patients (37.2%), including 8 who
had died. The median follow-up period was 52.6 months from
registration, the median PFSwas 50.4 months, and the median
time to progression was 16.3 months. The patients’ baseline
clinical, laboratory and biological characteristics are provided
in Table 1.

Radiomic signature

While radiomic features were not significantly correlated with
absolute PFS (in months), 2-year PFS status was significantly
correlated with SUVmean (r = 0.21, P = 0.008), SUVpeak
(r = 0.19, P = 0.015), SUVmax (r = 0.19, P = 0.018),
Entropy (r = 0.20, P = 0.012), Angular second moment (r =
0.18, P = 0.042) and Sum entropy (r = 0.17, P = 0.033).
SUVmean (odds ratio, OR, 1.272, 95% confidence interval,
CI, 1.037–1.560; P = 0.021) and Entropy (OR 5.070, 95% CI
1.156–22.234; P = 0.031) were the only radiomic features that
were significantly predictive of 2-year PFS in the univariate
analysis. Both SUVmean and Entropy, which did not show a
significant correlation with each other (r = 0.17, P = 0.077),
retained their statistical significance in the multivariate analy-
sis (P = 0.022 and P = 0.034, respectively). Mean SUVmean
was 3.78 (range 0.95–14.49) and mean Entropy was 3.48
(range 2.35–4.13). ROC analyses revealed an optimal
SUVmean cut-off value of 3.55, and an optimal Entropy cut-
off value of 3.5.

Machine learning for 2-year PFS outcome prediction

With absolute SUVmean and Entropy values as input for
the neural network, AUCs for 2-year PFS prediction
were 0.70–0.73 (median 0.72); classification accuracies
were 71.0–76.7% (median 74.4%) in the training dataset
and 70.6–86.8% (median 74.3%) in the validation
dataset. When, in addition to SUVmean and Entropy,
ECOG performance status, WBC, LDH level and Ki-67
were added as inputs for the neural network, AUCs for
2-year PFS prediction were 0.77–0.83 (median 0.82;
Fig. 3); here, classification accuracies were 72.5–82.9%
(median 79.2%) in the training dataset, and 69.2–84.0%
(median 76.7%) in the validation dataset.

Radiomic signature and MIPI for PFS prognostication

The [18F]FDG PET radiomic signature, consisting of di-
chotomized SUVmax and Entropy, was used to construct
a two-category and a three-category prognostic model of
metabolic risk for progression. In the two-category mod-
el, patients with high metabolic risk (SUVmean >3.55
and Entropy >3.5) had a median PFS of 20.3 months,
with a 2-year PFS of 40.7% (11/27 patients), whereas
patients with low metabolic risk (SUVmean ≤3.55 and/
or Entropy ≤3.5) had a median PFS of 39.4 months, with
a 2-year PFS of 76.3% (61/80 patients). PFS differed

Table 1 Baseline demographic,
clinical, laboratory and biological
data of 107MCL patients, and the
results of binary logistic
regression analyses for
continuous and categorical data

Characteristic Frequency Univariate analysis for 2-year PFS

OR (95% CI) P value

Age – 1.000 (0.961–1.041) 1.0

≥65 years 51 (47.7%) 1.251 (0.557–2.810) 0.59

Ann Arbor stage – – –

I 5 (4.7%) 1 –

II 13 (12.1%) 1.286 (0.158–10.450) 0.81

II 23 (21.5%) 0.417 (0.054–3.221) 0.40

IV 66 (61.7%) 0.750 (0.117–4.822) 0.76

Blastoid differentiation 20 (18.7%) 0.857 (0.298–2.462) 0.78

Blastic 18 (16.8%) – –

Pleormorphic 2 (1.9%) – –

WBC – 1.017 (0.982–1.053) 0.35

Elevated 18 (16.8%) 1.837 (0.653–5.165) 0.25

Ki-67 index – 1.007 (0.991–1.022) 0.39

≥30% 56 (52.3%) 0.890 (0.396–2.001) 0.78

LDH level – 1.004 (0.999–1.009) 0.096

Elevated 29 (27.1%) 1.116 (0.453–2.748) 0.81

ECOG performance status – – –

≥2 7 (6.5%) 1.594 (0.337–7.545) 0.56

OR odds radio, CI confidence interval
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significantly between the two groups (P = 0.005; Table 2,
Fig. 4). In the three-category model, patients with high meta-
bolic risk (SUVmean >3.55 and Entropy >3.5) had a median
PFS of 20.3 months, with a 2-year PFS of 40.7% (11/27 pa-
tients), patients with intermediate metabolic risk (SUVmean
≤3.55 or Entropy ≤3.5) had a median PFS of 40.3 months,
with a 2-year PFS of 71.4% (35/49 patients), and patients with
low metabolic risk (SUVmean ≤3.55 and Entropy ≤3.5) had a
median PFS of 38.2 months, with a 2-year PFS of 83.9% (26/
31 patients). PFS differed significantly among the three
groups (P = 0.017; Table 2, Fig. 4).

Both metabolic risk scores (i.e. with two and three risk
categories) were superior to MIPI and MIPI-b (Table 2, Fig.
4). However, the best PFS prognostication with three risk
categories was achieved with MIPI-bm (P = 0.005), i.e. the
MIPI-b modified using the three metabolic risk categories
(Table 2, Fig. 4).

Discussion

Our study identified two main image-based predictors of 2-
year PFS in MCL patients receiving CD20 antibody-based
immuno(chemo)therapy: the average glucose metabolism
across the entire MTV, as reflected by the SUVmean on
pretherapy [18F]FDG PET/CT scans, and the heterogeneity
of glucose metabolism within this MTV, as reflected by
Entropy. The combination of the two radiomic features – i.e.
the [18F]FDG PET radiomic signature –may also be useful for
outcome prediction: higher SUVmean and higher Entropy ap-
pear to be associated with a shorter PFS (Fig. 4).

The three “metabolic risk” categories based on the
radiomic signature were superior to the MIPI risk categories
in terms of PFS prognostication, regardless of whether or not
the Ki-67 proliferation index was considered in the calculation
of the MIPI (Table 2, Fig. 4). The performance of the MIPI
scores is not necessarily surprising, as OS, and not PFS, was
the primary endpoint used in the development of MIPI and
MIPI-b [26]. Notably, both MIPI and MIPI-b scores were
considerably improved through combination with the
[18F]FDG PET-based metabolic risk. In particular, unlike the
MIPI-b, the MIPI-bm not only emerged as a statistically sig-
nificant predictor of PFS, but was superior to metabolic risk
alone (Table 2, Fig. 4), indicating that the best results may be
achieved when clinical, laboratory and biological, as well as
metabolic information, are integrated in a singlemodel. This is
also supported by the results of our machine-learning experi-
ment, in which the addition of ECOG performance status,
WBC, LDH level and Ki-67 index to the radiomic features
clearly improved 2-year PFS prediction (Fig. 3). Since
[18F]FDG PET/CT is currently recommended for staging
and treatment response assessment in patients with MCL by
the International Conference on Malignant Lymphoma
(ICML) [27] – i.e. it is considered a standard procedure in
these patients – information on the metabolic risk represents
routine data, which may facilitate its integration into risk as-
sessment in clinical practice.

The prognostic value of pretherapy quantitative [18F]FDG
PET/CT in treatment-naive MCL patients has, to our knowl-
edge, only been investigated in two prior studies. In a series of
81 patients, Karam et al. used the SUVmax to identify groups
of MCL patients at risk of shorter survival [10]. The design of
their study differed from ours in several ways. First, the
SUVmax, which provides information about the single voxel
with the highest glucose metabolism within the tumour vol-
ume, was the only [18F]FDG PET-based parameter evaluated,
whereas radiomic analysis as performed in our study captures
multiple facets of glucose metabolism across the entire meta-
bolic lymphoma volume. Second, patients in the study by
Karam et al. were chiefly treated with single-agent or combi-
nation chemotherapy (e.g. chlorambucil or CHOP), which
does not reflect the present-day therapeutic state-of-the-art

Fig. 3 Results of the multi-layer perceptron (MLP) neural network-based
prediction of 2-year PFS. With a single “hidden” layer with four neurons
(top H(1:1) to H(1:4)), and SUVmean, Entropy, lactate dehydrogenase
level (LDH), white blood count (WBC), Ki-67 index and ECOG perfor-
mance status as inputs, the receiver operating characteristic (ROC) curve
(bottom) yielded an area under the curve (AUC) of 0.83, whereas the use
of just the two radiomic features (SUVmean and Entropy) as input for the
neural network yielded an AUC of 0.73
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for first-line systemic treatment in MCL [29]. Third, three
different PET scanners were used, but no correction was per-
formed for the technical differences. Finally, while Karam
et al. were able to successfully identify two MCL risk catego-
ries using an SUVmax cut-off value of 5, a further subdivision
of MCLs with SUV >5 failed; no combination with MIPI
scores or individual clinical/laboratory/biological data was
attempted. In the second, very recent study, Albano et al. ret-
rospectively evaluated three quantitative [18F]FDG PET/CT
parameters – baseline SUVmax, TMTV and TLG – for out-
come prediction in 87MCL patients, using two different PET/
CT scanners, also without applying correction for possible
technical differences. These authors found that TMTV and
TLG, but not SUVmax, were significantly associated with
PFS using two risk categories. Contrary to our own study,
neither SUVmean nor radiomic textural features reflecting
the heterogeneity of glucose metabolism across the entire tu-
mour, were included in their analysis, and no comparison or
combination with MIPI scores was performed [11].

Entropy, a radiomic textural feature derived from the co-
occurrence matrix, describes the degree of randomness, or
disorder, in the distribution of image voxel grey-level values.

Moon et al. recently demonstrated that [18F]FDG PET/CT-
derived Entropy is correlated with the genetic heterogeneity
index in lung cancer [13], whereas Choi et al. found that dual-
energy CT-derived radiomic features, including Entropy, are
also strongly correlated with the pathological heterogeneity
index in lung cancer [14]. Entropy extracted from [18F]FDG
PET/CT has recently been used for PFS prediction in patients
with high-risk squamous cell carcinoma of the oropharynx
after chemoradiation [30], and in patients with lung cancer
after EGFR tyrosine kinase inhibitor treatment [31], and has
also been found to be associated with failure to respond to
third-line systemic treatment in metastatic colorectal cancer
[32]. In lymphoma, however, pretherapy [18F]FDG PET/CT-
based Entropy has so far been evaluated for prediction of
interim response (i.e. the outcome after two therapy cycles)
in paediatric Hodgkin lymphoma [33], and for prediction of
disease-free survival and OS in aggressive B cell non-
Hodgkin lymphoma (predominantly DLBCL, with a follow-
up period of 3–54 months) [34], but did not emerge as a
statistically significant marker in either study. Our study is
therefore the first to show the value of Entropy on [18F]FDG
PET/CT for outcome prediction in patients with a distinct

Table 2 Descriptive data and
results of log-rank tests for MIPIs,
with and without modification
due to “metabolic risk” on
[18F]FDG PET/CT, for 107 MCL
patients

Characteristic Frequency Median PFS
(months)

Hazard radio
(95% CI)

P value

Metabolic riska – two category model – – – 0.005

Low risk 80 (74.8%) 20.3 1 –

High risk 27 (25.2%) 39.4 2.285 (1.264–4.131) 0.005

Metabolic riska – three category model – – – 0.017

Low risk 31 (29.0%) 38.2 1 –

Intermediate risk 49 (45.8%) 40.3 1.225 (0.590–2.543) 0.59

High risk 27 (25.2%) 20.3 2.597 (1.212–5.564) 0.14

MIPI – – – 0.27

Low risk 30 (28.0%) 41.7 1 –

Intermediate risk 45 (42.1%) 38.1 0.866 (0.424–1.771) 0.69

High risk 32 (29.9%) 27.7 1.463 (0.715–2.992) 0.30

MIPI-b – – – 0.37

Low risk 15 (14.0%) 43.8 1 –

Intermediate risk 36 (33.6%) 35.7 1.441 (0.523–3.969) 0.48

High risk 56 (52.3%) 32.0 1.872 (0.724–4.843) 0.20

MIPI-mb – – – 0.14

Low risk 35 (32.7%) 41.7 1 –

Intermediate risk 41 (38.3%) 37.6 1.344 (0.657–2.750) 0.42

High risk 31 (29.0%) 26.6 2.013 (0.984–4.120) 0.055

MIPI-bmb – – – 0.005

Low risk 20 (18.7%) 43.2 1 –

Intermediate risk 58 (54.2%) 38.2 2.675 (0.935–7.653) 0.066

High risk 29 (27.1%) 20.3 4.884 (1.647–14.607) 0.004

HR hazard radio, relative to low risk group, CIconfidence interval
a Based on the radiomic signature (combination of dichotomized SUVmean and Entropy)
bModified according to metabolic risk
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histological lymphoma subtype, a finding that could be due to
the fact that MCL is a “genomically unstable” tumour that
may be associated with marked (sub)clonal heterogeneity,
and also with heterogeneity between different topographic
sites in the same patient, and with modulation of the initial
mutational profile during disease progression [35].

We used PFS instead of OS as the clinical endpoint, which is
contrary to many lymphoma studies investigating prognostic
features. This strategy was chosen because MCL is a less com-
mon lymphoma subtype, and hence smaller patient populations
and shorter follow-up periods may have to be used to obtain a
sufficiently large number of cases with the event of interest.
While OS is the established outcome, PFS has been recognized
by the Food and Drug Administration as a valid surrogate end-
point in MCL and other haematological malignancies [36]. In a
recent analysis of multiple randomized trials in DLBCL,

including a total of 7,507 patients, PFS was significantly corre-
lated with OS, supporting its use as a surrogate marker (https://
www.fda.gov/Drugs/DevelopmentApprovalProcess/
DevelopmentResources/ucm613636.htm).

Our study had some limitations. Themost obvious limitations
were the retrospective design and the modest cohort size.
However, this was a hypothesis-generating study, as [18F]FDG
PET-derived radiomic features have not been previously evalu-
ated for outcome prediction and prognostication in MCL pa-
tients. Furthermore, with a sample size of 107 patients, this is
the largest study on this topic at present. Our approach involving
the combination of radiomic features andMIPI scores – i.e. using
the three categories of metabolic risk to modify MIPI scores –
was exploratory. However, MIPI scores were clearly improved
by applying this strategy, and in addition, the combination of the
(continuous) radiomic feature values and the clinical, laboratory

Fig. 4 Kaplan–Meier estimates
and log-rank tests show that the
[18F]FDG PET/CT radiomic sig-
nature (combination of SUVmean
and Entropy), which reflects
“metabolic risk”, enables PFS
prognostication. MIPI and MIPI-
b are clearly improved by com-
bining with metabolic risk, as
assessed on [18F]FDG PET/CT.
The best results are achieved with
MIPI-bm (i.e. combination of
MIPI-b and metabolic risk)
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and biological parameters (which were also used for calculation
of theMIPI scores), using a machine-learning algorithm, showed
the same trend: best results were achieved when all parameters
were integrated into a single model. We used an MLP neural
network for outcome prediction, which is a universal function
approximator with the ability to model any type of regression or
classification problem [37]. While MLP networks are well
established in the machine-learning community as powerful pre-
diction algorithms [38], it is possible that even more advanced,
deep machine-learning techniques such as convolutional neural
networks (CNN), with their larger numbers of hidden layers and
their interconnection between neurons within the same layer,
may have performed even better. However, CNNs are mainly
intended for use with large datasets (“big data”). In a patient
population such as our own, however, their complexity would
have increased the probability of “overfitting”, i.e. loss of gener-
alizability of the model, in our case for PFS prediction [39].

In conclusion, an [18F]FDG PET radiomic signature com-
prising SUVmean and Entropy has prognostic value in MCL
and may be useful for predicting early tumour progression.
This metabolic risk reflected by radiomic features can be in-
tegrated intoMIPI scores and may possibly improve risk strat-
ification in MCL. Further studies are warranted to validate
these findings in external cohorts.
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