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Abstract

Defects in DNA repair can result in oncogenic genomic instability. Cancers occurring from DNA repair defects were once
thought to be limited to rare inherited mutations (such as BRCA1 or 2). It now appears that a clinically significant fraction of
cancers have acquired DNA repair defects. DNA repair pathways operate in related networks, and cancers arising from loss of
one DNA repair component typically become addicted to other repair pathways to survive and proliferate. Drug inhibition of
the rescue repair pathway prevents the repair-deficient cancer cell from replicating, causing apoptosis (termed synthetic le-
thality). However, the selective pressure of inhibiting the rescue repair pathway can generate further mutations that confer
resistance to the synthetic lethal drugs. Many such drugs currently in clinical use inhibit PARP1, a repair component to which
cancers arising from inherited BRCA1 or 2 mutations become addicted. It is now clear that drugs inducing synthetic lethality
may also be therapeutic in cancers with acquired DNA repair defects, which would markedly broaden their applicability be-
yond treatment of cancers with inherited DNA repair defects. Here we review how each DNA repair pathway can be attacked
therapeutically and evaluate DNA repair components as potential drug targets to induce synthetic lethality. Clinical use of
drugs targeting DNA repair will markedly increase when functional and genetic loss of repair components are consistently
identified. In addition, future therapies will exploit artificial synthetic lethality, where complementary DNA repair pathways
are targeted simultaneously in cancers without DNA repair defects.

Our DNA is not contained pristine in the nucleus, but rather is sub-
ject to assault by endogenous and exogenous genotoxins.
Exogenous insults to DNA include hypoxia, lack of nutrients, radi-
ation, dietary carcinogens, and medications (1–3). Endogenous in-
sults include oxygen-free radicals from metabolism, aberrant
incision of DNA by immune or repair nucleases, and collision of
replication forks with messenger RNA transcription or noncanon-
ical DNA structures (1–4). Almost every element of the DNA struc-
ture can be damaged, from base damage to breaks in
phosphodiester bonds. Given the precarious existence of DNA and
the need to maintain genome stability to prevent cell death or neo-
plastic transformation, DNA repair is a critical function for all cells.

Defects in DNA repair can lead to an increase in genomic in-
stability, which is one mechanism of oncogenic transformation
(5–8). Genomic instability produces the mutations that dysregu-
late growth and promote tumor cell invasion and metastasis

(5,9,10). However, DNA repair defects can be exploited in cancer
therapy because excessive genomic instability itself can have
lethal consequences by inducing deadly mutations, mitotic ca-
tastrophe, or chromothripsis (11,12). The same defects in DNA
repair that produced oncogenesis in the first place make repli-
cation more stressful for that cell because the continuous DNA
replication a cancer cell undergoes requires many DNA repair
components (13,14). The cancer cell must find replacements for
the original oncogenic loss of the DNA repair component to con-
tinue replicating. These replacement DNA repair components
can be targeted to prevent the repair and restart of stressed rep-
lication forks (15,16).

There are four major types of DNA repair pathways, some with
multiple subpathways (Figure 1) (17–19). These repair pathways
operate within the DNA damage response (DDR), a complex net-
work of checkpoint signaling and DNA repair pathways that
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promote cell survival and genome stability or trigger programmed
cell death when damage is excessive (20–23). Defects in DDR com-
ponents predispose to cancer, determine tumor response to
chemo- and radiotherapy, and underlie several congenital condi-
tions including multiple types of Seckel syndrome, primordial
dwarfism, and premature aging syndromes (24–26). DDR compo-
nents are often defective in cancer, but the DDR comprises inter-
acting/crosstalking pathways, and defects in one can be
compensated by alternative pathways. Such compensatory path-
ways are formidable obstacles to successful cancer treatment.

Among the most dangerous DNA lesions are double-strand
breaks (DSBs), which can trigger apoptosis or lead to oncogenic
translocations (1–3,17–19,27). There are two major DSB repair path-
ways, nonhomologous end joining (NHEJ) and homologous recom-
bination (HR), each with two subpathways (Figure 1A) (17–19,27). In
NHEJ, DSB ends are trimmed and ligated, and NHEJ is therefore error
prone, while HR uses a homologous sequence (typically the sister
chromatid) as a repair template and is generally accurate (27,28).

NHEJ includes classical (cNHEJ) and alternative (aNHEJ) path-
ways (Figure 1A). The choice between these pathways is

Figure 1. DNA repair pathways in mammalian cells. A) Double-strand breaks (DSBs) activate DNA damage response signaling including checkpoint arrest through

ATM, ATR, and DNA-PKcs. DSB repair pathway choice is determined by the amount of 5’ end resection at the DSB, inhibited by 53BP1/RIF1, promoted by BRCA1/CtIP.

MRE11 initiates limited end resection, and this is followed by Exo1/EEPD1 and Dna2 nucleases for extensive resection. 53BP1/RIF1 and Ku protect DSB ends from resec-

tion, promoting classical nonhomologous end joining (cNHEJ). PARP1 competes with Ku and promotes limited end resection for alternative nonhomologous end joining

(aNHEJ). RAD51 catalyzes invasion by the resected 3’ end into the sister or other homologous sequences, and Pol d catalyzes repair synthesis across the DSB. The

amount of 3’ end resection regulates DSB pathway choice. cNHEJ requires little or no end resection, aNHEJ requires limited resection, and homologous recombination

(HR) and single-strand annealing (SSA) require extensive resection. DNA polymerase h (Pol h) promotes a microhomology search by the opposing 3’ single strands after

short resection in aNHEJ. The HR subpathway SSA requires extensive end resection to expose large homologous regions, usually direct repeats, with RAD52 promoting

annealing, producing large deletions between direct repeats. B) Base excision repair repairs minor lesions (eg, oxidized bases), promoted by PARP1. Repair intermedi-

ates include an abasic site and nicking of the DNA backbone, with short gap filling by Pol b. C) Nucleotide excision repair (NER) repairs large helix-distorting lesions and

involves excision of about 15 nucleotides on either side of the lesion, followed by gap filling. GG-NER and TC-NER differ in lesion recognition by XPA or CSA/B, respect-

ively. D) Mismatch repair involves recognition of the mismatched nucleotide by MutSa/b, followed by strand nicking with MutL, extensive resection with Exo1, and re-

pair synthesis. DNA ligases catalyze religation, the final step in all pathways. aNHEJ ¼ alternative nonhomologous end joining; cNHEJ ¼ classical nonhomologous end

joining; DDR ¼ DNA damage response; DSB ¼ double-strand break; HR ¼ homologous recombination; SSA ¼ single-strand annealing.
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regulated by 53BP1/RIF1, which promotes cNHEJ, the dominant
pathway (29), and PARP1, which promotes aNHEJ (30). Similar to
HR, aNHEJ involves 5’ strand end resection, which reveals
microhomologies for annealing. By contrast, cNHEJ directly li-
gates free DSB ends (29,31). aNHEJ serves as the backup repair
pathway for two important HR functions. If HR is not functional,
aNHEJ can rescue resected DSBs (31,32), such as might occur in
G0/G1 of the cell cycle or abnormally in BRCA1/2-mutant can-
cers. aNHEJ also provides a backup mechanism to repair broken
replication forks when HR is deficient at the cost of genome sta-
bility (2,31,32).

HR has accurate (conservative) and inaccurate subpathways
that require extensive 5’ end resection to produce 3’ SS DNA tails,
a process that initiates when BRCA1/CtIP out-competes 53BP1/
RIF1 for DSBs (Figure 1A) (28,29). In the accurate HR subpathway,
3’ SS DNA coated with RAD51 invades a homologous sequence to
copy genetic information to effect repair. Inaccurate HR, termed
single-strand annealing (SSA), is RAD52 dependent and deletes
one repeat and DNA between linked repeats, or it can cause
translocations when two DSBs occur in or near repetitive elem-
ents on different chromosomes (33,34). RAD51-mediated HR is
the dominant pathway for restarting stalled or broken replication
forks, which if processed improperly by NHEJ cause genome in-
stability and neoplastic transformation (2,27,28).

Three pathways repair single-strand damage: base excision
repair (BER), mismatch repair (MMR), and nucleotide excision re-
pair (NER) (35–37). In these pathways, the undamaged, comple-
mentary strand serves as repair template. BER is initiated by
glycosylases that remove the damaged base, followed by strand
nicking, PARP1-promoted DNA synthesis across the lesion site
and strand religation (Figure 1B) (35). NER repairs bulky DNA le-
sions by excising approximately 30 nt containing the lesion, fol-
lowed by DNA synthesis and ligation (Figure 1C) (37). MMR
recognizes and excises mismatched nucleotides introduced dur-
ing DNA replication (and HR heteroduplex intermediates), and re-
pair is completed by DNA synthesis and ligation (Figure 1D) (36).

Like DSBs, DNA interstrand crosslinks (ICLs) are dangerous
because they present an absolute block to replication. ICL repair
in the G1/0 phase involves dual incisions flanking the ICL, exci-
sion via NER, and DNA synthesis to fill the gap. ICL repair in the
S phase is similar but involves HR to provide an accurate tem-
plate for repair synthesis across the excised lesion (Figure 2)
(38). When replication forks converge on an ICL, BRCA1 contrib-
utes to replisome dissociation, and the consequent SS DNA is
protected with RAD51. A host of Fanconi anemia proteins acti-
vate ATR and recruit XPF and MUS81-EME1 nucleases that make
two incisions on one strand flanking the ICL. This creates a sub-
strate for translesion synthesis in one duplex (39) and a DSB on
the other. NER then excises the lesion, and HR completes repair
(Figure 2).

Defects in any of these repair pathways can lead to malig-
nant transformation, and any pathway can also be subverted to
assist the cancer cell in resisting therapy. There is considerable
crosstalk among the single- and double-strand lesion repair
pathways and replication fork restart pathways. This crosstalk
reflects the many mechanistic commonalities in the pathways:
lesion recognition, SS DNA binding, structure-specific endo-
and exonuclease cleavage, strand annealing, polymerase gap
filling, and ligation. Repair pathways display several types of
crosstalk. There is signaling crosstalk between the HR and
cNHEJ pathways through ATR, ATM, and DNA-PK (40,41). There
is functional crosstalk, shown by several examples in which
overexpression of a DNA repair component in one pathway
compensates for a repair defect in another, conferring

therapeutic resistance (42). Finally, there is direct crosstalk
when specific components are shared among pathways, for ex-
ample, PARP1 functions in BER and in aNHEJ (Figure 1) (30).
Although PARP1 is not required for HR repair of frank DSBs (43),
PARP1 promotes MRE11 recruitment to collapsed replication
forks prior to HR repair (Figure 3). PARP1 may also promote HR
by increasing repair factor accessibility to damage by modifying
chromatin (44,45). Also, when PARP1-dependent BER is blocked,
unrepaired lesions cause fork collapse, which requires HR for
proper restart (13–15,46). Thus, PARP1 plays similar roles in re-
pairing different types of DNA lesions (27,30,35). This promiscu-
ous functionality makes PARP1 a common crutch for
malignancies that arise due to defects in DNA repair, and thus
an attractive synthetic lethal target. Other shared DNA repair
components may similarly prove useful as synthetic lethal tar-
gets, including RPA, DNA polymerases, and structure-specific
nucleases.

The Concept of Synthetic Lethality

Original oncogenic events are mutations that promote uncon-
trolled cell replication, and these will occur more frequently in
cells with inherited or acquired DNA repair defects (7,8,20). Cell
replication requires several of the DNA repair pathways to be

Figure 2. Interstrand crosslinks can be repaired by replication-independent (left)

and replication-dependent (right) mechanisms. Both repair pathways involve

dual incisions, translesion synthesis across the crosslinked segment, and

nucleotide excision repair (NER) to remove the incised crosslink. Replication-de-

pendent interstrand crosslink (ICL) repair also involves homologous recombin-

ation (HR). When forks converge on an ICL, BRCA1 and RAD51 protect the stalled

fork, and the Fanconi anemia (FA) repair pathway repairs the crosslink. FA

repair is initiated by the ubiqutination of FANCD2, which recruits nucleases XPF,

MUS81/EME1, and SLX1 to incise the crosslink, followed by translesion synthesis

across the lesion, NER to remove the lesion, and HR to repair the replication

fork. Both mechanisms are error free, except for mutations that may be intro-

duced by translesion synthesis polymerases. DSB ¼ double-strand break; FA ¼
Fanconi anemia; HR ¼ homologous recombination; ICL ¼ interstrand crosslink;

NER ¼ nucleotide excision repair; TC-NER ¼ transcription-coupled NER.
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functional (15,16,18,22,27). When there is a systemic and per-
sistent defect in DNA repair in the transformed cell, then that
cell becomes dependent on another repair pathway that can
back up the defective pathway for replication (27,28,34).
Synthetic lethality occurs when the backup pathway is
chemically inhibited and the cancer cell can no longer replicate
(13–15). Such stalled replication induces apoptosis.

A well-known example of this is the inherited mutations in
the HR components BRCA1 and 2 in breast and ovarian cancer
(13,14). All the patient’s cells have one mutated allele of BRCA1
or 2, but the cancer has both alleles mutated, and the cancer
cell has an unstable genome because it has lost HR capability.
Because HR is the most important pathway for repairing and
restarting stalled replication forks, these cancers become de-
pendent on PARP1-mediated SSB repair and alternative
nonhomologous end joining to repair and restart their replica-
tion forks (12–15). When PARP1 is inhibited by a drug, then
these cancers cannot repair and restart replication forks
(Figure 3) (13,14,19,42,44). The stalled forks collapse and can
aberrantly ligate together, and distinct chromosomes can fuse,
resulting in mitotic catastrophe and subsequent apoptosis
(45,46). Because the nonmalignant cells have normal HR as
they retain one normal BRCA1 and 2 allele, only the cancer
cells are sensitive to PARP1 inhibition (42–46).

Subversion of Synthetic Lethality: Synthetic
Rescue

Synthetic lethality is an important tool in cancer treatment, but
it has limitations. For example, PARP1 inhibitors are very effect-
ive against BRCA1-defective cancers, but treatment can lead to

development of resistance because of second-site mutations in
other checkpoint signaling or DNA repair proteins, such as
53BP1, Rif1, PTIP, SFLM11, JMJD1C, and REV7 (47–52). At least
three PARP1 inhibitor resistance mechanisms have been identi-
fied: restoration of HR, for example, by mutation or downregula-
tion of 53BP1; loss of PARP1 itself; and upregulation of the PgP
drug transporter (53). PARP1 inhibitor resistance by 53BP1 loss
appears specific to BRCA1-defective tumors, reflecting the inter-
play between BRCA1, 53BP1, and RIF1 (Figure 1A); in BRCA2-
defective tumors, resistance to PARP1 inhibition develops because
of secondary BRCA mutations (53).

These findings have clinical relevance. For example, 53BP1
expression is reduced in a fraction of sporadic triple-negative
and BRCA1-defective breast cancers (47). Generally, breast can-
cer patients respond well to PARP1 inhibitors, but eventually re-
sistance develops and disease progresses (54). This has
stimulated efforts to identify targets to prevent or overcome
resistance to PARP1 inhibition and to identify markers of re-
sistance (55–57).

Drugging Base Excision Repair

The most important rationale for targeting BER is that cancer
cells have a higher oxidative status than normal cells and there-
fore suffer more oxidative DNA damage (4,35,58). Oxidized nu-
cleotides can result in two forms of crosslinks that block
replication; the abasic deoxyribose can react with an adenine
on the opposing strand or covalently link with DNA polymerase
b (Pol b), forming a DNA-protein adduct (59–61). In addition, BER
repairs alkylation damage, and thus can mediate chemotherapy
resistance (35,62). The rate-limiting step in BER is APE1
phosphodiester cleavage 5’ to an abasic site, following glycosy-
lase removal of the oxidized base (35). Not surprisingly, APE1 is
overexpressed in many cancer types, and there have been mul-
tiple attempts to target APE1 for cancer therapy (42,63–65).
However, APE1 inhibitors have not had much clinical impact be-
cause their biochemical activity did not translate well to cell
and animal models (63–65).

We and others have described compounds that inhibit Pol b

(42,66,67), but these have not been pursued pharmaceutically
because of their relatively modest activity. In addition, specifi-
city for Pol b compared with other DNA polymerases has not
been defined, so these compounds may have in vivo toxicity
that would limit their usefulness (66,67). However, Pol b

remains an attractive target in BRCA1/2-defective tumors.
Inhibiting Pol b generates the same cleaved, unrepaired SS BER
intermediate that PARP1 inhibition does, and also causes rep-
lication fork DSBs (35,66–68). Thus, Pol b inhibitors should also
be effective in treating HR-deficient cancers, similar to PARP1
inhibitors.

PARP1 is an essential component for BER, and its inhibition
in HR-defective cancers has been by far the most effective
means of targeting of DNA repair for cancer therapy to date
(Figure 3) (69,70). Two groups demonstrated that BRCA1/2-
mutant tumors, defective in HR, were sensitive to PARP1 inhibi-
tors (13,14). DSBs generated at replication forks are largely
repaired by HR (2,27,28), and HR requires BRCA1/2 (27,28). PARP1
is required for BER, and catalytic inactivation causes accumula-
tion of SSBs. Thus, replication fork collision with SSBs causes
fork collapse to DSBs, and repair occurs predominantly (and
most accurately) by HR (Figure 3, middle). In BRCA1/2 mutants,
or other HR-defective cancers, such forks cannot be repaired ap-
propriately (13,14,69). Replication-associated DSBs are highly

Figure 3. PARP1 at intersecting repair pathways. PARP1 promotes base excision re-

pair (BER) and cell survival. PARP1 inhibitors (PARP1i) cause unrepaired intermedi-

ates such as SS nicks to accumulate. They also trap PARP1 on chromatin, causing

replication forks to stall. Double-strand breaks are either from the collision of the

fork with a BER SS nick repair intermediate or from nuclease cleavage of a stalled

replication fork. Collapsed replication forks are repaired and restarted by hom-

ologous recombination (HR) promoted by PARP1 modification of MRE11, which

initiates 5’ end resection. In HR-deficient cells (eg, BRCA1/2 mutants), HR repair

of stalled forks cannot occur, accounting for the synthetic lethality of PARP1i

in HR-deficient cancers. BER ¼ base excision repair; DSB ¼ double-strand break;

HR ¼ homologous recombination; SSB ¼ single-strand break.
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toxic DNA lesions that cause mitotic catastrophe and apoptosis
if improperly repaired or unrepaired (13,14,69,70). Apart from
SSB generation, PARP1 inhibition kills BRCA1/2-mutant cancer
in at least two other ways, trapping PARP1 on DNA at the lesion
site (71) and increasing ribonalactone-adenine and ribonalactone-
Pol b adducts (59–61). Trapped PARP1 and DNA adducts stall repli-
cation forks, which are cleaved by structure-specific nucleases
(MUS81-EME2, EEPD1, Metnase) (72–75), causing fork collapse
(Figure 3), again requiring HR for restart and lacking in BRCA1/2-
mutated malignancies (66–68). Thus, the remarkable efficacy of
PARP1 inhibitors in HR-deficient malignancies is due in part to
PARP1’s multiple roles in DNA repair.

Drugging Mismatch Repair

During DNA replication, incorrect nucleotides are occasionally
incorporated into the daughter DNA strand, creating mis-
matched base pairs corrected by MMR (36); mismatches also
form in heteroduplex DNA during HR (76). MMR comprises four
key steps: mismatch recognition, excision of the lesion, DNA
synthesis across the SS gap, and ligation (Figure 1D) (36,77). Two
heterodimeric proteins recognize the lesion: MutSa (MSH2/6
complex) recognizes short mismatches, and MutSb (MSH2/3
complex) recognizes longer insertion-deletion loops (36,77,78).
Binding of either heterodimer recruits the heterodimer MutL
(MLH1 and PMS2 complex). MutL recruits Exo1, which excises
the mismatched DNA (79) in a reaction enhanced by PARP1 (80).
Pol d fills in the gap, and DNA ligase I seals the nick (81).

Hereditary nonpolyposis colorectal cancer (HPNCC or Lynch
syndrome) is an inherited autosomal-dominant disease result-
ing from defects in MMR proteins, with the majority of muta-
tions affecting MLH1, MSH2, and MSH6 (82). Silencing by somatic
methylation of MMR gene promoters also decreases MMR
(83,84) and confers resistance to platinum-based chemotherapy
(85). DNA demethylating agents such as 5-azacytidine induce
re-expression of MMR components in these cancers, restoring
sensitivity to cisplatin or carboplatin (86,87).

Cancers with MLH1, MSH2, or MSH6 defects display syn-
thetic lethality with therapeutic potential, but it is important to
identify the specific MMR deficiency in the tumor as they differ
in therapeutic response. For example, MSH2-mutant cancers are
sensitive to methotrexate, an antimetabolite that inhibits DNA
synthesis, and psoralen, a DNA crosslinking agent, but MLH1-
mutant cancers are resistant to both treatments (88,89).

Unrepaired oxidized nucleotides accumulate upon BER re-
pression (eg, Pol b or PINK1 inhibition) or methotrexate treat-
ment, which increases mismatch formation during DNA
synthesis, increasing the burden on MMR, and mutagenesis.
These effects are strongly exacerbated in MMR-defective can-
cers, a dynamic that presents synthetic lethal opportunities. For
example, Pol b inhibition is synthetically lethal in MSH2- or
MLH1-deficient tumors (90) (Figure 4A). Thus, Pol b inhibitors
are promising agents for treatment of MMR-deficient cancers,
as well as the aforementioned BRCA1/2-mutant cancers (42,66).

Some MMR-deficient cancers behave like BRCA1/2-mutant
cancers, with defects in stressed replication fork repair. MSH3 is
critical for loading RAD51 during HR repair, and thus MSH3-defi-
cient cancers are sensitive to PARP1 inhibition (Figure 4B)
(91,92). Clinical trials with PARP1 inhibitors in MSH3-mutant
colon cancer are warranted, especially in conjunction with an
immune checkpoint inhibitor because genomic instability asso-
ciated with MMR-deficient colon cancer increases neoantigen

production and thus increases the chance of immune recog-
nition (93).

Drugging Nucleotide Excision Repair

NER processes DNA lesions resulting from exposure to UV light,
environmental toxins, and some chemotherapeutic drugs
(37,94,95). NER has two subpathways: global genome NER (GG-
NER) and transcription-coupled NER (TC-NER). GG-NER repairs
lesions across the whole genome, whereas TC-NER repairs le-
sions in transcribed DNA, initiated by RNA polymerase II stall-
ing at DNA lesions. These pathways differ in only two respects:
how the DNA lesion is recognized and kinetically (TC-NER is
faster than GG-NER) (37).

In GG-NER DNA, damage is recognized by XPC-RAD23B,
which binds to the undamaged DNA strand opposite the lesion,
recruiting downstream NER components. Helicase XPB unwinds
the DNA, and XPD recruits the RPA/XPA/XPG complex. This
complex recruits the nuclease ERCC1-XPF, which incises 5’ to
the lesion, and initiates DNA synthesis across the gap by Pol d

and Pol j or Pol e, followed by 3’ incision by XPG to remove the
damaged DNA and ligation by DNA ligase III/XRCC1 or DNA lig-
ase I (Figure 1C) (37,94,95). In TC-NER lesions that stall RNA
polymerase II are recognized by WD repeat protein CSA, SWI/
SNF family member CSB, and XAB2. This complex is exchanged
with the TFIIH complex, and repair proceeds as above (96).

Three known autosomal recessive inherited diseases are asso-
ciated with defects in the NER pathway: xeroderma pigmentosum
(XP), Cockayne syndrome (CS), and trichothiodystrophy (TTD).
These inherited mutations result in either an extreme predispos-
ition to cancer (XP) or neurodevelopmental defects associated with
rapid aging but without cancer predisposition (CS and TTD) (97).

NER deficiency confers sensitivity to crosslinking agents
such as cisplatin, reflecting reduced crosslink repair (98,99).
The ERCC1-XPF nuclease complex is essential for repair of
platinum-DNA crosslinks, as well as trimming flaps during
DSB repair by SSA (98) and aNHEJ (100). Unrepaired crosslinks
cause replication stress and eventually apoptosis (2,17,18).
Importantly, lower expression of ERCC1 correlated with
increased sensitivity to platinum agents in several tumor types
(98,99,101). Low expression of ERCC1 is a biomarker for re-
sponse to cisplatin in non–small cell lung cancers (NSCLCs),
and PARP1 inhibitors are synthetically lethal in cancers with
low ERRC1 (102), implying that PARP1 inhibitors may be effect-
ive in this fraction of NSCLC patients, especially when com-
bined with cisplatin (103). Inhibitors targeting the ERCC1-XPF
active site are in development as adjuncts to platinum-based
chemotherapy (104,105).

Protein-DNA interactions that mediate NER have also been
targeted, and small molecules have been identified that block
DNA interaction with RPA and XPA (106,107). RPA is important
for both NER and HR, and RPA inhibition causes cell cycle arrest,
cell death, and enhances sensitivity to cisplatin and etoposide
(106,108). This suggests that RPA inhibitors could be combined
with PARP1 inhibitors to mediate synthetic lethality in cancers
with nonmutated BRCA1/2.

Perturbation of NER components may be synthetically lethal
with PARP1 inhibition. For example, PARP1 inhibition in com-
bination with DDB1 or XAB2 deficiency is synthetically lethal in
non-BRCA mutant cells (109), and combined inhibition of PARP1
and topoisomerase I (with camptothecin) has greater cytotox-
icity in cancer cells depleted of XPF-ERCC1 (Figure 5) (110).
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ATR inhibition in ERCC1-depleted cancer cells is synthetic-
ally lethal (111). ERCC1 depletion not only increases DNA mis-
matches, but also single-strand lesions, which stall replication
forks. Repair of stalled forks requires ATR, accounting for the
synthetic lethality of ATR inhibition and ERCC1 depletion; this
effect of ATR inhibition is specific to ERCC1 as no other NER defi-
ciencies are sensitive to ATR inhibition, consistent with ERCC1-XPF
functioning in other DNA repair pathways (99). The combination of
an ERRC1 inhibitor with a PARP1 or ATR inhibitor may create artifi-
cial synthetic lethality, where one DNA repair inhibitor induces de-
pendency on another pathway blocked by a second drug. An
example of this, mentioned above, is combining RPA and PARP1 in-
hibitors, which could generate artificial synthetic lethality in can-
cers that do not harbor an HR defect. This principle could be widely
applied to many clinical scenarios (66–68).

Drugging HR and CrossLink Repair

In addition to defects in BRCA1 or 2, cancer genome sequencing
revealed mutations in many other HR pathway components
that promote oncogenesis, including PALB2 (112),
BRCA1-interacting protein 1 (BRIP1; also termed FANCJ and
BACH1) (113), BARD1 (114), BAP1 (115) and RAD51C (116). This ex-
pansion of HR driver mutations should broaden the clinical ap-
plication of PARP1 inhibitors (117). To achieve this goal,
oncologists need reliable methods to identify patients carrying
mutations in any HR components. Exome sequencing is cur-
rently the most common method and is accepted by regulatory
bodies that approve PARP1 inhibitor indications (118,119).
However, such sequencing misses a fraction of tumors that are
functionally deficient in HR but lack mutations in known HR

Figure 5. Synthetic lethal targeting with PARP1 and ERCC1-XPF deficiencies. Camptothecin traps TopoI covalently onto DNA, blocking replication. Repair can proceed

via a PARP-TDP and ERCC1-XPF1 pathway (left) or by fork repair and restart via homologous recombination; PARP1 inhibition, coupled with ERCC1-XPF deficiency, is

synthetically lethal (middle). PARP1 inhibition also blocks base excision repair of single-strand lesions that block replication; these lesions are similarly lethal with

ERCC1-XPF deficiency (right). BER ¼ base excision repair; CPT ¼ camptothecin; DSB ¼ double-strand break; HR ¼ homologous recombination.

Figure 4. Synthetic lethality with mismatch repair (MMR) defects. A) MSH2 or MLH1 defects are synthetically lethal, with increased oxidative damage caused by inhib-

ition of Pol b or PINK1, or by treatment with methotrexate. PINK1 increases oxidation of nucleotides, burdening base excision repair (BER), and Pol b inhibition de-

creases BER repair of oxidized nucleotides, which induce DNA mismatches during DNA synthesis. B) MSH3 assists in loading RAD51 onto end-resected SS DNA during

homologous recombination (HR) repair. MSH3 defects can behave similarly to HR defects and are synthetically lethal when BER is blocked by inhibition of PARP1. MSH3

deficiency could also increase neoantigen generation within the tumor, which would result in synergy between the PARPi and immune checkpoint inhibitors in these

cancers. BER ¼ base excision repair; HR ¼ homologous recombination; i ¼ inhibition; MMR ¼mismatch repair.
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genes. One solution to this problem is to use DNA sequencing to
measure genomic abnormalities that are due to functional HR
loss, such as loss of heterozygosity, telomeric allelic imbalance,
and chromosomal translocations (118,120,121). In this way,
tumors with functional HR deficiency but without mutations in
known HR genes can be identified and treated using synthetic
lethal approaches. Such an approach has been used with great
success in recent trials with PARP1 inhibitors (118,120).

Several upstream modulators of HR have been identified as
synthetic lethal targets that can sensitize cancer cells to PARP1
inhibitors (Figure 6). For example, several cyclin-dependent kin-
ases (CDKs) are upstream HR regulators, and a recent study
showed that the pan-CDK inhibitor dinaciclib impairs HR repair
and sensitizes cancer cells to the PARP1 inhibitor veliparib (122).
Dinaciclib probably acts by blocking required phosphorylation
of the HR components Exo1 and BRCA1 (17,28,29,122). ATR is an-
other upstream HR regulator that promotes restart/repair of
stalled replication forks. Not surprisingly, PARP1 inhibition syn-
ergizes with ATR blockade (123).

Interestingly, PARP1 is also essential for the survival of
malignancies with isocitrate dehydrogenase 1 and 2 mutations
(IDH1 or 2, mainly glioblastomas and acute myeloid leukemias).
These IDH1/2 mutations generate the oncometabolite 2-hydrox-
uglutarate (2-HG). 2-HG inhibits the dioxygenase class of en-
zymes, such as histone demethylases, and inhibits HR repair.
These IDH1/2-mutant cancers are exquisitely sensitive to PARP1
inhibition with olaparib or BMN-673 (124). Adding exogenous 2-
HG to non-IDH1/2-mutant cancers produced PARP1 sensitivity
(124). Thus, PARP1 inhibitors may be effective to treat these
malignancies, and 2-HG itself may be another tool to induce
artificial synthetic lethality.

The tumor suppressor phosphatase and tensin homolog
(PTEN) promotes HR repair during replication stress (125). PTEN is
mutated in a fraction of malignancies; this mutation sensitizes
cancer cells to PARP1 inhibitors (Figure 6) (125). These results sug-
gest that clinical trials might be warranted to test PARP1 inhibitor
effects on cancers with PTEN mutations, including breast cancer
and glioma (126). PTEN mutations are also responsible for PTEN
hamartomatous syndromes (such as Cowden’s syndrome), and
while not true malignancies, these syndromes are debilitating
and disfiguring and can progress to cancer. The relatively low
toxicities of PARP1 inhibitors suggest these syndromes as attract-
ive targets for such intervention (127).

The clinical success of PARP1 inhibitors stimulated efforts to
identify other proteins whose inactivation in cancer might
make those cancers responsive to PARP1 inhibition. RNAi
screening approaches have identified the deubiquitinating en-
zyme USP11 (128), CDK12 (129), and cohesins (130) that when
silenced or mutated cause synthetic lethality with PARP1 inhibi-
tors (Figure 6). Interestingly, acute myeloid leukemia driven by
aberrant transcription factors is also highly sensitive to PARP1
inhibition (131), suggesting that PARP1 inhibition may be syn-
thetically lethal in many types of cancers with defects in vari-
ous DNA repair genes.

HR is important for the resolution of DNA crosslinks by the
Fanconi anemia (FA) DNA repair pathway (Figure 2) (38,132), and
inherited mutations in FA components cause cancer predispos-
ition syndromes (133). Although autosomal recessive biallelic
mutations of FA genes contribute to leukemogenesis, targeting
FA components may be exploited for therapeutic gain in malig-
nancies in patients without FA. For example, cancer cells
depleted of FA components are extremely sensitive to crosslink-
ing agents such as cisplatin (134,135), and FA pathway inhib-
ition confers sensitivity to PARP1 inhibition (136). Thus,

combining FA and PARP1 inhibitors might expand the use of
PARP1 inhibitors beyond BRCA1/2-mutant cancers.

The FA component FANCD2 must be mono-ubiquitinated to
activate FA pathway crosslink repair (Figure 2), and most thera-
peutic efforts have targeted this event (136). For example, pro-
teosome inhibition with bortezomib was reported to decrease
FANCD2 mono-ubiquitination and block crosslink repair (137). A
PARP1 inhibitor may enhance bortezomib efficacy in mantle cell
lymphoma or myeloma (136,137). A small molecule inhibitor of
NEDD8 activation, MLN4924, decreases FANCD2 activation,
which would sensitize cancer cells to crosslink damage (138).
Small molecule inhibitors of USP1-UAF-mediated deubiquitina-
tion of FANCD2 prevent FANCD2 recycling and ultimately de-
crease FA pathway activity (134,139). These selective USP1/UAF1
deubiquitinase inhibitors also enhance sensitivity of cancer
cells to crosslinkers such as cisplatin (134–136,139).

RAD52 mediates SSA (Figure 1A) in humans and also serves
as a backup for BRCA2 to load RAD51 onto SS DNA during HR
(140). BRCA1/2-mutant cancer cells are forced to rely on RAD52
to repair replication forks (140,141). Thus, depleting RAD52 in
BRCA1/2-mutant cancer presents another synthetic lethal ap-
proach distinct from PARP1 inhibition (141,142). Several groups,
including ours, have generated small molecule inhibitors of
RAD52 that are cytotoxic to cancer cells with BRCA1/2 defects
(143–145). RAD52 and PARP1 inhibitors could be combined to
treat HR-deficient cancers to increase the duration or depth of
response (66–68).

Drugging NHEJ

There is substantial crosstalk among DSB repair pathways
(15,17,28,29), and this presents many opportunities to exploit

Figure 6. Repression of or mutation in several upstream regulators of homolo-

gous recombination (HR) can be synthetically lethal with PARP1 inhibition be-

cause they can cause a variety of HR repair defects that prevent fork restart.

These upstream regulators include several CDKs, PTEN, USP11, and the cohe-

sins. Inherited or acquired mutations in downstream HR components such as

RAD51, MRE11, BLM, and WRN can lead to cancer. Such cancers also demon-

strate synthetic lethality with PARP1 inhibition, although there could be bio-

logically significant normal tissue toxicity when the mutation is an inherited

autosomal recessive. When HR is defective in any of these cases, Pol h inhibition

would also be synthetically lethal because Pol h is also required for the alterna-

tive nonhomologous end joining backup replication fork repair pathway.
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synthetic lethal interactions to improve cancer therapy (68). HR,
cNHEJ, and aNHEJ share the MRE11/RAD50/NBS1 (MRN) com-
plex, an early DSB sensor important for activation of ATM-
dependent DNA damage checkpoint signaling (15,28,29,146). HR
and aNHEJ share 5’ end resection, which is regulated by 53BP1/
RIF1, DNA-PK, and BRCA1/CtIP (28,29,32,146) and mediated by
several nucleases (MRE11, Dna2, Exo1, EEPD1) (17,75,147). As dis-
cussed above, the extent of 5’ end resection regulates DSB repair
pathway choice (Figure 1A) (28,29,147).

In cNHEJ, broken ends are initially bound by the Ku hetero-
dimer that inhibits end resection and recruits DNA-PKcs, which
then recruits the end-ligation complex XRCC4/ligase 4/XLF
(31,148). PARP1 initiates aNHEJ by out-competing Ku for DSB
ends (Figure 1A) (30,148). Thus, Ku and PARP1 competition regu-
lates cNHEJ vs aNHEJ choice, and it is likely that cNHEJ is favored
approximately 10:1 because Ku is more abundant and has high
affinity for DNA ends (30,148–150).

In aNHEJ, Mre11/CtIP promote limited 5’ end resection, and
Pol h mediates micro-homology-mediated alignment between 3’
SS DNA tails at each end of the break (151,152). This creates 3’
flaps that are trimmed by one or more structure-specific endo-
nucleases such as FEN1; repair is completed by ligase III/XRCC1
(148,150,153). Although cNHEJ is inaccurate, producing small in-
sertions and deletions at the repair junction, inherited defects
in cNHEJ confer genome instability and predispose to cancer
(18,27,28,148,150), probably because the aNHEJ backup pathway
is even more inaccurate, generating larger deletions
(148,153,154) and mediating most chromosomal translocations
(34,69,155,156).

Targeting cNHEJ to enhance cancer treatment was originally
studied in radiation therapy (42,157,158). Radiation therapy typic-
ally uses x-rays or protons, whose most deleterious lesions are
DSBs repaired by cNHEJ (157). Carbon ion radiotherapy uses high-
mass/high-charge particles to create dense ionization tracks that
produce clustered DNA damage that is effective against radio-
resistant cancers (159). While cNHEJ is the dominant repair path-
way for sparsely ionizing x-rays and protons, HR appears to play
a more important role in repair of clustered DSBs (160–163).
HSP90 inhibitors can block HR by downregulating RAD51, and
these agents sensitize cancer cells to carbon ions (163–166).

Other HR inhibitors such as the CDK inhibitor dinaciclib, or
ATR inhibitors, may also potentiate the lethal effects of heavy
ion DNA damage, but these agents may have limited use in
x-ray or proton therapy, where cNHEJ dominates. Thus, it is crit-
ical to have a clear understanding of the relevant repair path-
ways when attempting to augment particular radiotherapy
modalities. This concept also extends to chemotherapy. For
example, repressing cNHEJ sensitizes tumor cells to etoposide, a
TopoIIa inhibitor that generates DSBs, but the same cNHEJ
defect confers resistance to camptothecin, a TopoI inhibitor
that produces SSBs (167).

PARP1 functions in multiple DNA repair pathways (Figures 1,
3, and 6), and synthetic lethal strategies that exploit this fact are
promising (13,14,68–70,93,94). For example, nearly 60% of pros-
tate cancer patients carry a TMPRSS2–ERG translocation event,
and this fusion protein interferes with cNHEJ (168). PARP1 func-
tions in aNHEJ and BER, suggesting that TMPRSS2-ERG prostate
cancer cells treated with a PARP1 inhibitor would be deficient in
BER, cNHEJ, and aNHEJ. This would increase unrepaired DNA
damage with lethal consequences (168). Indeed, the PARP1 in-
hibitor olaparib was effective in relapsed prostate cancers carry-
ing BRCA1/2 mutations, although these patients were not
stratified by TMPRSS2-ERG (69,119).

KRAS mutations are common in acute leukemias, and it was
recently found that these mutations correlate with overexpres-
sion of the aNHEJ factors PARP1, ligase III, and XRCC1 (169).
Overexpression of these aNHEJ components produced an
increased reliance on aNHEJ to repair DNA damage in these
malignancies, and this could mediate treatment resistance.
Combining PARP1 inhibitors with chemotherapeutics that in-
duce replication stress may overcome resistance of KRAS-
mutant leukemias and improve outcomes (169).

Histone deacetylases (HDACs) play important regulatory
roles in chromatin function, and HDAC inhibitors have been de-
veloped as antineoplastic agents and radiosensitizing agents
(170,171). HDACs are not restricted to histone targets; they are
more properly described as protein deacetylases. Acetylation is
important for activation of certain NHEJ components.
Consistent with this, the pan-HDAC inhibitor trichostatin A en-
hances acetylation of the critical cNHEJ factor Ku and the aNHEJ
initiator PARP1, which inhibits cNHEJ and traps PARP1 on chro-
matin. This blocks both NHEJ pathways and is synthetically le-
thal in leukemia cells (172).

Recent evidence implicates the aNHEJ component Pol h as a
key target for cancer therapy. High Pol h levels are associated
with poor breast cancer patient survival (173); Pol h is overex-
pressed in greater than 80% of NSCLCs, and expression levels cor-
relate with poor outcomes (174). One reason that cancer cells are
addicted to DNA repair is that they are programmed to prolifer-
ate, regardless of whether their environment is impoverished or
the extent of genome damage. Many (but not all) cancers must
divide to survive, and replication fork arrest is fatal (15,16,32,75).
The common mechanism of action of many chemotherapeutic
agents is replication stress (2,19,28). Thus, cancers with HR defi-
ciency become addicted to aNHEJ, which is the backup repair
pathway for stalled replication forks (Figure 7) (31,32). It is not sur-
prising then that there appears to be a synthetic lethal relation-
ship between aNHEJ and HR mediated by Pol h. HR-deficient
cancers need all the components of aNHEJ, not just PARP1, to
continue replication in the face of an oxidized genome.
Consistent with this model, Pol h depletion in BRCA1/2-deficient
ovarian cancer cells was synthetically lethal (175,176). Thus, Pol h

is a very exciting target for HR-deficient cancers (177).

Figure 7. Collapsed forks are normally repaired by homologous recombination

(HR). If HR fails, double-strand breaks on different chromosomes may be re-

paired by the alternative nonhomologous end joining (aNEHJ) backup pathway.

The aNHEJ pathway can mediate chromosomal translocations, however, and

thus is a riskier repair mechanism for the cell. aNHEJ ¼ alternative nonhomolo-

gous end joining; DSB ¼ double-strand break; HR ¼ homologous recombination.
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Clinical Effectiveness of Targeting DNA Repair

The most effective clinical drugging of the addiction of cancer to
DNA repair has been with PARP1 inhibitors (13,14,68–70,118–121).
Many of these compounds also inhibit PARP2 to some extent, al-
though their activity is thought to be due to their PARP1 inhib-
ition (13,14,68–70). The first PARP1 inhibitor to complete clinical
evaluation was olaparib (AZD-2281, Lynparza, AstraZeneca).
The first phase I trial examined single-agent olaparib in
relapsed breast, ovarian, and prostate cancer (178). In that trial,
60 patients were treated with various doses, but objective anti-
tumor activity was observed only in eight ovarian cancer pa-
tients who had documented BRCA1/2 mutations. Based on a
phase II trial in BRCA1/2-mutant ovarian cancer showing a 34%
objective response rate (95% confidence interval ¼ 26% to 42%)
and a median response duration of 7.9 months, olaparib was
granted accelerated approval by the US Food and Drug
Admnistration (179–181). Olaparib was similarly effective
against BRCA1/2-mutant ovarian cancers that were sensitive or
resistant to platinum-based chemotherapy. Randomized and
nonrandomized phase II trials in patients with previously
treated ovarian cancer confirmed that approximately one-third
of patients with BRCA1/2-mutant ovarian cancer experience ob-
jective tumor regression with olaparib monotherapy (182,183).

Modest gastrointestinal toxicity and hematopoietic toxicity
seem to be the most common side effects of olaparib, and these
are manageable (180,181,183). More worrisome is the 2% rate of
myelodysplasia and acute myeloid leukemia seen in olaparib-
treated patients (182,183). However, these are known risks of
chemotherapeutics used in ovarian cancer, and it is possible
that these adverse events were not due to olaparib but rather to
prior chemotherapy. Olaparib does not appear to produce ob-
jective responses in tumors lacking BRCA1/2 function, although
there was some benefit in terms of progression-free survival
(182,183).

Ovarian cancers with BRCA1/2 mutations are not the only
HR-deficient cancers that respond to olaparib. A recent phase II
trial of olaparib in relapsed and refractory metastatic prostate
cancer found that 16 of 49 patients had an objective response,
and 14 of the responders had mutations in HR components
such as BRCA1/2 or ATM (119). This indicates that a clinically
significant fraction of prostate cancers have HR defects treat-
able with PARP1 inhibitors, perhaps as frontline agents to attack
metastatic disease given their minimal toxicity.

Responses to olaparib in other BRCA1/2-mutant cancers
have not been as clinically significant as in ovarian cancer.
BRCA1/2-mutant breast cancers often have a worse outcome
than comparable nonmutated breast cancer, with a response
rate of 12.9% in one trial (179). In addition, BRCA1/2-mutant pan-
creatic cancers did not respond as well to olaparib as a single
agent as did the ovarian cancers (179). Multiple studies are
exploring whether combining olaparib with crosslinking agents
such as carboplatin or cisplatin in triple-negative breast cancer
will enhance responses in these cancers. However, a random-
ized study of adding the PARP1 inhibitor veliparib to cyclophos-
phamide in relapsed triple-negative breast cancer did not show
any benefit compared with veliparib alone (184). Veliparib did
show single-agent activity in ovarian cancer though, with a 26%
response rate (185).

Niraparib is a highly selective PARP1/2 inhibitor soon to be
approved in the United States and Europe. Similar to olaparib,
niraparib was evaluated in patients with platinum-sensitive
ovarian cancer in maintenance therapy. This trial was a
randomized, placebo-controlled, phase III study that enrolled

553 patients over 35 months (120). Patients were not required to
have BRCA1/2-mutated cancer but were stratified into BRCA1/2-
mutated and wild-type cohorts. Patients with wild-type BRCA1/
2 were analyzed to determine if tumors were functionally HR
deficient by assaying for increased genomic and telomeric re-
arrangements (120,121). Importantly, niraparib monotherapy
showed statistically significant improvement in the primary
end point, progression-free survival (PFS), in all three groups.
PFS improved from 5.5 to 21.0 months in the BRCA1/2-mutant
cohort, from 3.9 to 12.9 months in the BRCA1/2 wild-type/HR-de-
ficient cohort, and from 3.8 to 6.9 months in the BRCA1/2 wild-
type/HR-proficient cohort (120). The improvement in PFS with
niraparib in the HR-proficient cohort was surprising and could
be due to several factors. It could indicate that many HR-
proficient ovarian cancers depend on active PARP1 for survival,
perhaps to repair oxidative DNA damage. It is also possible that
the responsive BRCA1/2 wild-type tumors could have expressed
ERCC1 at low levels (102). As PARP1 inhibitors with improved
specific activity are developed, they may prove effective against
a far broader range of malignancies than originally considered,
similar to niraparib.

At least 16 additional PARP1 inhibitors are under clinical de-
velopment (70). PARP1 inhibitors are being evaluated in combin-
ation regimens with DNA-damaging agents, such as platinum
analogs or ionizing radiation, or with agents that interfere with
other steps in DNA repair or replication. For example, olaparib
potentiates the activity of the TopoI inhibitor SN-38 (the active
metabolite of the chemotherapeutic agent irinotecan) by block-
ing RAD51-dependent DNA repair (186). However, a phase I trial
combining olaparib with the TopoI inhibitor topotecan was ter-
minated early because of hematologic toxicity at doses below
the known effective single-agent dosing levels of each drug
(187). Notably, adequate doses of veliparib and topotecan were
safely administered together in another phase I study, sup-
porting additional studies of this combination in cervical can-
cers, where activity was seen in patients with cancers having
low PARP1 expression at baseline (188). Veliparib was also
examined in multiple types of relapsed hematologic malignan-
cies in combination with carboplatin and topotecan, with
some activity seen in chronic myelomonocytic leukemia; inter-
estingly, leukemias with FA pathway deficiency showed the
best responses (189).

Summary

There is not a one-to-one correspondence between loss of a
repair process and a druggable addiction, and not every cancer
has a systemic defect in a DNA repair pathway. While all can-
cers have many DNA mutations, this is by no means equivalent
to the systemic loss of a DNA repair pathway. Such mutations
could be random events, with all DNA repair pathways intact.
However, the systemic loss of a DNA repair pathway is more
common than previously appreciated, and therefore offers a
wealth of opportunities to exploit in therapy.

Given the complexity of DSB repair pathways and crosstalk
with DNA damage signaling networks, many more synthetic le-
thal strategies are likely to be revealed through continued study
of the regulators of cellular responses to genotoxic cancer thera-
pies. As more data are reported on targeting DNA repair for can-
cer therapy, several principles are evident that will extend DNA
repair targeting beyond those cancers with BRCA1 or 2 defects.
First, cancer cells must overcome more endogenous DNA dam-
age than normal cells because of increased oxidative damage
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and replication stress from forced cell division (2,28,29,58,190).
Because specific DNA repair pathways are backed up by other
repair pathways, synthetic lethality only occurs when the pri-
mary pathway is defective and the backup rescue pathway is
repressed (66–68).

Interestingly, it appears that cancer cell death is less due to
the lack of repair, but rather the persistence of toxic repair inter-
mediates (75). Incomplete repair can be more toxic than if a re-
pair pathway is never initiated (191). Therefore, defining repair
pathway relationships will reveal additional synthetic lethal
targets. For example, the understanding that aNHEJ backs up
HR in replication fork restart (32) leads to the concept that in-
hibiting other aNHEJ components besides PARP1, such as Pol h,
will also confer synthetic lethality in HR-defective cancers (177).
Such investigations will increase the number of DNA repair
components that can be targeted.

A second principle is that cancers can be responsive to drugs
that target DNA repair even if they do not carry mutations in
known repair proteins such as BRCA1 or 2. Thus, cancers may
be functionally defective in repair but not genetically deficient
in any known repair pathway (120,121). It will be important to
reach a consensus on methods for identifying cancers that are
functionally defective in specific repair pathways, such as the
genomic instability assay used in the niraparib trial (120), be-
cause this will expand the patient base that could benefit from
DNA repair–targeted therapies.

Finally, many cancers do not have an identifiable functional
or genetic deficiency in a DNA repair pathway that would lend
itself to synthetic lethality. Such cancers may be best treated
with drug combinations that induce artificial synthetic lethality
by blocking primary and backup repair pathways. In these
cases, the therapeutic index is not due to differential repair cap-
acity in normal vs cancer cells, but rather to the heavier load of
endogenous DNA damage characteristic of many cancers. Such
approaches would permit DNA repair targeting to be much
more widely applied in cancer therapy. It is also important to
identify synthetic rescue pathways and develop strategies to
block these before therapeutic resistance develops. It is clear
that while drugging DNA repair is still in its infancy, there is
enormous potential to this approach because it will be applic-
able to many other malignancies besides those with BRCA1 or 2
mutations.
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