
fnins-15-651439 June 1, 2021 Time: 12:15 # 1

ORIGINAL RESEARCH
published: 03 June 2021

doi: 10.3389/fnins.2021.651439

Edited by:
Ahmed Shalaby,

University of Louisville, United States

Reviewed by:
Jijun Wang,

Shanghai Jiao Tong University, China
Paola Valsasina,

San Raffaele Scientific Institute,
(IRCCS), Italy

*Correspondence:
Zongya Zhao

zhaozongya_paper@126.com
Yi Yu

121012@xxmu.edu.cn

Specialty section:
This article was submitted to

Brain Imaging Methods,
a section of the journal

Frontiers in Neuroscience

Received: 09 January 2021
Accepted: 19 April 2021

Published: 03 June 2021

Citation:
Zhao Z, Li J, Niu Y, Wang C,

Zhao J, Yuan Q, Ren Q, Xu Y and Yu Y
(2021) Classification of Schizophrenia

by Combination of Brain Effective
and Functional Connectivity.
Front. Neurosci. 15:651439.

doi: 10.3389/fnins.2021.651439

Classification of Schizophrenia by
Combination of Brain Effective and
Functional Connectivity
Zongya Zhao1,2,3,4* , Jun Li5, Yanxiang Niu1, Chang Wang1,2,3,4, Junqiang Zhao1,2,3,4,
Qingli Yuan1, Qiongqiong Ren1,2,3, Yongtao Xu1,2,3,4 and Yi Yu1,2,3,4*

1 School of Medical Engineering, Xinxiang Medical University, Xinxiang, China, 2 Engineering Technology Research Center
of Neurosense and Control of Xinxiang city, Xinxiang, China, 3 Engineering Technology Research Center of Neurosense
and Control of Henan Province, Xinxiang, China, 4 Xinxiang Key Laboratory of Biomedical Information Research,
Henan Engineering Laboratory of Combinatorial Technique for Clinical and Biomedical Big Data, Xinxiang, China, 5 School
of International Education, Xinxiang Medical University, Xinxiang, China

At present, lots of studies have tried to apply machine learning to different
electroencephalography (EEG) measures for diagnosing schizophrenia (SZ) patients.
However, most EEG measures previously used are either a univariate measure or a single
type of brain connectivity, which may not fully capture the abnormal brain changes of
SZ patients. In this paper, event-related potentials were collected from 45 SZ patients
and 30 healthy controls (HCs) during a learning task, and then a combination of partial
directed coherence (PDC) effective and phase lag index (PLI) functional connectivity
were used as features to train a support vector machine classifier with leave-one-
out cross-validation for classification of SZ from HCs. Our results indicated that an
excellent classification performance (accuracy = 95.16%, specificity = 94.44%, and
sensitivity = 96.15%) was obtained when the combination of functional and effective
connectivity features was used, and the corresponding optimal feature number was
15, which included 12 PDC and three PLI connectivity features. The selected effective
connectivity features were mainly located between the frontal/temporal/central and
visual/parietal lobes, and the selected functional connectivity features were mainly
located between the frontal/temporal and visual cortexes of the right hemisphere. In
addition, most of the selected effective connectivity abnormally enhanced in SZ patients
compared with HCs, whereas all the selected functional connectivity features decreased
in SZ patients. The above results showed that our proposed method has great potential
to become a tool for the auxiliary diagnosis of SZ.

Keywords: schizophrenia, effective connectivity, functional connectivity, classification, machine learning

INTRODUCTION

Schizophrenia (SZ) is one of the most severe and common mental disorders, and the World
Health Organization (WHO) stated that more than 21 million people worldwide are affected by
SZ. SZ is often accompanied by severe clinical symptoms including interrupted thinking and
speech, hallucinations, and cognitive impairments (Van and Kapur, 2009; Haro et al., 2014), which
usually lead to a significant reduction in the patients’ quality of life and bring huge economic
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burden to the society and family. Therefore, accurate diagnosis
has important implications for subsequent treatment of SZ.
Traditional clinical diagnosis of SZ mainly relies on interviews
with patients by experienced psychiatrists, but this method is
sometimes inaccurate and subjective (Andreas et al., 2009).
Therefore, lots of researchers tried to use different techniques
to identify objective and quantitative biomarkers of SZ, and
these techniques were involved in immunology (Nurjono et al.,
2012), genetics (Consortium, 2014), structural or morphological
imaging (James et al., 2016; Pergola et al., 2016; Kubera et al.,
2017; Woodward et al., 2018), functional imaging (Chyzhyk
et al., 2015; Moghimi et al., 2018; Ji et al., 2019), and
electroencephalography (EEG; Akar et al., 2016; Gomez-Pilar
et al., 2017; Hunt et al., 2017; Devia et al., 2019). Compared with
other methods, EEG still remains one of the most widespread
techniques so far due to its high time resolution and low cost.

In recent years, researchers have reported the following
hallmarks in SZ patients with the aid of EEG technique: abnormal
event-related potential (ERP) amplitude/latency (Wang et al.,
2003; Morris et al., 2008; Hamilton et al., 2017), altered spectral
power of different frequency bands (Kam et al., 2013; BaAr
et al., 2015; Hirano et al., 2015; Phillips and Uhlhaas, 2015; Hunt
et al., 2017), and changes in complexity of EEG signal (Akar
et al., 2015, 2016; Yu et al., 2016). However, most of the above
EEG hallmarks were identified by using group-level statistical
methods that do not provide a mechanism for classifying SZ at
the individual level. Thus, some researchers have tried to use
machine learning (ML) methods with these EEG biomarkers
to differentiate SZ patients from healthy controls (HCs). Devia
et al. (2019) used the ERP component evoked in a free-viewing
paradigm as a feature and linear discriminant analysis (LDA)
as a classifier to distinguish between SZ patients and HCs, and
they reported an overall accuracy of 71%. Shim et al. (2016)
used a combination of sensor-level (P300 amplitudes/latencies)
and source-level (cortical current density values) EEG features
during an auditory oddball task to train a support vector machine
(SVM) classifier and finally got a high classification accuracy
of 88.24%. Kim et al. (2015) tried to use delta band power
to classify SZ patients but got a relatively poor classification
accuracy of 62.2%. Bose et al. (2016) reported that when alpha
band power during hyperventilation and post-hyperventilation
was used as an input of a SVM classifier, a high classification
accuracy of 83.33% was yielded. Chu et al. (2017) used EEG
entropy during visual evocation of emotion as a feature and a
SVM classifier to yield a relatively high classification accuracy
of 81.5%. However, these studies seemed to have a common
limitation: they usually used univariate indexes, i.e., spectral
power/ERP/nonlinear measures of local electrodes or brain
regions, as an input of a ML classifier.

It has been recently suggested that SZ could affect distributed
brain neuronal network and induce a functional brain
disconnection syndrome (Andreou et al., 2015a). A large number
of EEG studies have confirmed dysfunctional connectivity
in SZ patients at the group level (Andreou et al., 2015b; Di
et al., 2015; Zhao et al., 2018). Thus, alterations in the brain
connectivity patterns seem to serve as additional biomarkers
of SZ. The so-called “brain functional connectivity” refers to

the statistical dependence between two or more brain regions’
electrophysiological or other signals. Among the usually applied
methods to study functional connectivity, such as spectral
coherence and correlation coefficient, phase lag index (PLI),
which allows for quantification of phase synchronization,
has been widely applied in many studies because its most
significant advantage is insensitivity to volume conduction
effect as compared with other methods (Stam et al., 2007;
Doesburg et al., 2013; Olejarczyk and Jernajczyk, 2017; Wang
et al., 2017). The so-called “brain effective connectivity” that
is another important dimension of functional connectivity
can measure the directional flows of information among
different brain areas. One of the most commonly used methods
to construct effective connectivity is called partial directed
coherence (PDC), which is a full multivariate spectral measure
to determine the directed influences of Granger causality
between any given signals in a multivariate set and has been
successfully applied in measuring the multichannel directed
cortical interactions (Silfverhuth et al., 2012; Sun et al., 2014a,b;
Huang et al., 2016; Khandoker et al., 2019). Although altered
brain connectivity patterns can provide useful information
in discriminating SZ patients from HCs, it seems that only
a few studies used EEG-based brain connectivity features as
features to differentiate SZ. For example, Khandoker et al.
(2019) used PDC effective connectivity as an input of a deep
convolutional neural network (CNN) classifier to achieve
a remarkable accuracy of 93.06%. However, brain functional
connectivity and effective connectivity are two distinctly different
methods and can reveal abnormal brain connectivity patterns
of SZ from different aspects. Therefore, we hypothesize that
the combination of brain functional connectivity and effective
connectivity could provide a good discrimination between SZ
patients and HCs.

In order to test the above hypothesis, ERP data were first
recorded from SZ patients and HCs during a reinforcement
learning task. Then, PLI and PDC methods were used to
construct EEG-based brain functional and effective connectivity,
respectively. Based on the constructed functional and effective
connectivity, three strategies were tried to select appropriate
brain connectivity features as an input of a supervised SVM
classifier to classify SZ patients and HCs: SVM with only
functional connectivity as features, SVM with only effective
connectivity as features, and SVM with a combination of
functional and effective connectivity. To the best of our
knowledge, this is the first study using a combination of PDC
effective connectivity and PLI functional connectivity as features
for ML-based classification of SZ.

MATERIALS AND METHODS

Electroencephalography Data
The EEG data used in our study were provided by Albrecht
et al. (2016) and can be downloaded from an open access
database called Zenodo (doi://10.5281/zenodo.29601 and
doi://10.5281/zenodo.29064). The subjects, task, EEG
recording, and preprocessing have been described in detail
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in Albrecht et al. (2016) and our recently published paper
(Zhao et al., 2020). Therefore, we followed the methods of
Zhao et al. (2020) in the following part. In brief, 45 SZ patients
were recruited from the Maryland Psychiatric Research Center
or other nearby clinics according to the Structured Clinical
Interview for the Diagnostic and Statistical Manual of Mental
Disorders, Fourth Edition (DSM-IV), and a group of 30 healthy
subjects matched for sex and age was also recruited. For the
experimental task, four image stimuli were presented to subjects
(48 times/each image), and subjects were asked to respond by
pressing a button (“Go”) or withholding a response (“NoGo”)
to gain rewards (“Win,” monetary gain) or avoid punishments
(“Avoid,” monetary loss). Therefore, four kinds of stimuli would
appear throughout the experiment, i.e., “Go-to-Win,” “Go-to-
Avoid,” “NoGo-to-Win,” and “NoGo-to-Avoid”; and subjects
were asked to make the best response to win as much money
as possible. For “Go-to-Win” and “NoGo-to-Win” stimuli, the
subject was rewarded at a probability of 80% and got nothing
(no reward and punishment) at a probability of 20% for a
correct response; the subject got nothing at a probability of
80% and was rewarded at a probability of 20% for a wrong
response. For “Go-to-Avoid” and “NoGo-to-Avoid” stimuli, the
subject got nothing at a probability of 80% and punishment
at a probability of 20% for a correct response; the subject got
nothing at a probability of 20% and punishment at a probability
of 80% for a wrong response. Monetary gain or loss was set
at $0.05 each trial. The stimulus presentation sequence was as
follows: a cross was presented for 400–600 ms, and then one
of the four image stimuli was presented for 1,000 ms; next, a
blank period was shown for 250–2,000 ms, and then a response
period presented for 2,500 ms is indicated with an “O” for
1,500 ms; next a cross was presented for 1,000 ms; and finally,
feedback image was shown for 2,000 ms. In this task, there
were three types of feedback, i.e., positive feedback (thumb
up image reflecting monetary gain), negative feedback (thumb
down image reflecting monetary loss), and neutral feedback
(thumb to the side image reflecting no monetary gain or loss).
Here, we only used negative feedback-evoked ERPs. In their
previously published paper, Albrecht et al. (2016) have described
the procedure of EEG recording and preprocessing in detail, so
we do not want to repeat them here. In a word, 32 channel EEG
data were recorded during the above task, re-referenced to linked
mastoids and down-sampled to 256 Hz. After standard EEG
preprocessing process, the cleaned negative feedback-locked
ERPs [(-1,500, 1,500) ms around negative feedback stimulus,
baseline corrected to (-1,000) ms] were obtained for further
analysis. In addition, 20 EEG channels (FP1, FP2, Fz, F3, F4, F7,
T7, T8, C3, C4, Cz, Pz, P4, P3, F8, P8, P7, Oz, O2, and O1) were
selected in our study.

Time-Frequency Power Calculation
Time-frequency power calculation of a single trial data was
performed with Morlet wavelet transform where peak frequency
ranging from 3.9 to 40 Hz and cycle number varying from 3 cycles
at 3.9 Hz to 11.4 cycles at 40 Hz were linearly divided into 50
points, respectively. Finally, for every trial data, we obtained a 2D
matrix of 50 (frequency points)× 768 (time points).

Phase Lag Index Functional Connectivity
Feature
Phase lag index, a phase synchronization index, was used for
quantification of functional connectivity between each EEG
channel pair in the present study (Stam et al., 2007):

PLI(f ,t) =

∣∣∣∣∣ 1
M

M∑
m =1

sgn(M ϕm
a,b
(
f , t
)
)

∣∣∣∣∣ (1)

where M ϕm
a,b
(
f , t
)

stands for phase difference between channel
a and b at frequency f and time t of trial m, M stands for the
number of trials, and sgn indicates the sign (−1 for negative
values,+1 for positive values, and 0 for zero values).

With the use of the above equation, a 20 × 20 PLI functional
connectivity matrix could be obtained at each time-frequency
point. In the present study, PLI values were averaged over theta
band (4–7 Hz) and a time period from 0.1 to 0.6 s after stimulus
onset to obtain a weighted 20× 20 functional connectivity matrix
used as candidate feature for each subject.

Partial Directed Coherence Effective
Connectivity Feature
In this study, PDC was used to determine the directed influences
among these 20 channel EEG signals. Detailed descriptions and
calculation methods can be found in some previously published
literatures (Sun et al., 2014a,b). In brief, let X(n) = [x1(n), x2(n),
x3(n), . . ., xN(n)]T stand for EEG signal of N channels (N = 20
here), and then a multivariate autoregressive (MVAR) model can
be used to describe X(n):

X (n) =

p∑
r =1

ArX(n− r)+W (n) (2)

where W(n) is a multivariate uncorrelated noise vector, Ar is the
coefficient matrix, and p is the MVAR model order, which can be
measured by using the Bayesian information criterion (BIC). In
the current study, an optimal order of 9 was used. The Ar can be
computed by using Yule–Walker equations:

p∑
r =1

ArR
(
−k+ r

)
= 0 (3)

where R(m) = < X(n) XT(n + m)> are the covariance matrices
of all X(n) with lag m, k = 1, 2, . . ., p. The Levinson–Wiggins–
Robinson (LWR) algorithm is one of the most used methods to
determine Ar(Morf et al., 1978). For ERP data, many trials of the
same process are available, and a modified adaptive procedure for
estimating the MVAR model can be applied (Ding et al., 2000).
Briefly, the covariance matrices Rn(m) (n = 1, 2, . . ., T) for T
trials were computed to obtain the averaged covariance matrix

(R̄ (m) =
T∑

n= 1
Rn(m)/T) for each subject, then the R(m) in Eq

(3) was replaced with R̄ (m), and finally, the Ar was determined.
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After the MVAR model is estimated, the PDC value from
channel j to channel i at frequency f can be computed as follows:

PDC
(
i, j, f

)
=

∣∣Aij
(
f
)∣∣√∑

k A∗kj
(
f
)

Akj
(
f
) (4)

where A
(
f
)

stands for the difference between the N-dimensional
identity matrix and the Fourier transform of Ar , ∗ stands for
matrix transposition and complex conjugation, and Aij

(
f
)

are
the elements of the matrix A

(
f
)
.

A nonparametric method based on surrogate data was applied
here to test the significance of PDC value (Astolfi et al., 2005).
In brief, the phase of the Fourier coefficients of original EEG
signals from each epoch was randomly shuffled, and the inverse
Fourier transform was performed to obtain a surrogate data.
Then, the obtained surrogate data were used to re-compute PDC.
After the above-mentioned shuffling procedure were repeated
5,000 times, an empirical distribution of PDC values could be
obtained. Based on this empirical distribution, a significance
threshold of p = 0.05 was used to determine if the PDC value was
a real connection.

In this study, we used time window of (0.1, 0.6) s after stimulus
onset to compute PDC, and the obtained PDC

(
i, j, f

)
value was

averaged over the theta band (4–7 Hz) to obtain a 20 × 20
PDC effective connectivity matrix used as a candidate feature
for each subject.

Feature Selection and Classification of
Schizophrenia
Until now, we obtained a total of 570 features including
20 × (20 − 1)/2 = 190 functional connectivity features and
20 × (20 − 1) = 380 effective connectivity features. It is
undesirable to use all the features that usually contain lots
of irrelevant features for direct classification, because these
irrelevant features will lead to a bad classification performance.
In order to select relevant and key features for SZ classification,
Fisher score was used as a feature selection criterion, which has
been widely used in many previously published classification
studies (Hwang et al., 2014; Zhang et al., 2015; Shim et al.,
2016). A higher Fisher score means that this feature has
a higher discriminative power than a feature with a lower
Fisher score. Based on the Fisher score, three strategies were
implemented to select appropriate brain connectivity features: (1)
only functional connectivity features: for functional connectivity
feature set, the top N features with the highest Fisher scores
were selected for classification, and N varies from 1 to 50 to
find optimal feature number. (2) Only effective connectivity
features: for effective connectivity feature set, the top M
features with the highest Fisher scores were selected for
classification, and M also varies from 1 to 50 to search optimal
feature number. (3) A combination of functional and effective
connectivity features: the total number of features was set to
L varying from 2 to 50, which contained the top n and m
(L = n + m) features with the highest Fisher scores from
functional and effective connectivity feature set, respectively. In
order to search the optimal combination of these two kinds

of features, n varies from 1 to L − 1, while m changed from
L− 1 to 1.

The classification of SZ patients and HCs was performed
using an SVM classifier with a linear kernel function. The SVM
classifier used in the present study was provided by LIBSVM
toolbox (Chang and Lin, 2011). The classification accuracy
(ACC), specificity (SPE), sensitivity (SEN), and area under the
receiver operating characteristic (AUC) curve were determined
using the leave-one-out cross-validation (LOOCV).

Statistics
In the present study, we performed the comparison of time-
frequency power maps between SZ patients and HCs, which
involved a total of 15,350 comparisons (307 time points from
−0.2 to 1.0 s, 50 frequency points from 3.9 to 40 Hz). Thus,
we applied a cluster-based nonparametric permutation test to
control multiple comparison problem (Maris and Oostenveld,
2007). Briefly, 10,000 random permutations of the time-
frequency power maps between two groups were performed. For
each permutation, t-test was carried out between the permuted
time-frequency maps, all pixels with an uncorrected p value
below 0.01 were formed into clusters, and the largest cluster
(i.e., the cluster with the largest number of pixels) was stored.
Therefore, we obtained a null distribution of the largest clusters
after 10,000 random permutations. Finally, the original time-
frequency maps of two groups were also compared using
t-test, all pixels with p values below 0.01 were formed into
clusters, and any clusters that were less than the (1 − α)
percentile of the null distribution of largest clusters expected
were removed. In our current study, the family-wise α level
was set to 0.05.

The nonparametric permutation test is one of the most
popular methods to access the statistical significance of the
classification performance (Golland and Fischl, 2003; Ojala
and Garriga, 2010). However, traditional permutation test for
accessing how likely the observed classification ACC would be
obtained by chance usually determines the null distribution
by permuting the labels in the data. Therefore, a modified
permutation test procedure that was proposed by Ojala and
Garriga (2010) was applied in the present study. In brief, a
randomized version of training data was obtained by applying
independent permutation to the elements of each feature of the
original training data, and then the LOOCV was performed on
the permutated training data to produce a classification accuracy
(denoted as ACCrand). After the above process was repeated N
times (N = 10,000 in current study), an empirical distribution
of the ACCrand under null hypothesis was obtained. The p value
of nonparametric permutation test was defined as the ratio of
the number of ACCrand in the null distribution that was larger
than the ACC obtained on the original training data to the total
number of permutations.

In addition, the comparison of connectivity strength
between two groups was carried out using nonparametric
Wilcoxon signed rank test with false discovery rate (FDR)
correction for controlling multiple comparison problem
(Genovese et al., 2002).
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FIGURE 1 | Time-frequency power maps for (A) schizophrenia (SZ) and (B) healthy controls (HCs). Time-frequency power maps were averaged over two channels
(F3, F4) and plotted as 10log10 change over baseline (from −0.2 to −0.1 s). (C) The result of the statistical comparison. Red color indicates time–frequency regions
with significant difference between two groups, and blue color indicates no significant difference.

RESULTS

Time-Frequency Analysis
The time-frequency analysis result showed that SZ patients
exhibited obvious theta/alpha band desynchronization,
which began to occur at about 0.2 s after stimulus onset
(Figure 1A). Unlike SZ patients, HCs showed obvious theta
band synchronization that occurred immediately after stimulus
onset and alpha/beta band desynchronization that started to
occur at about 0.2 s after stimulus onset (Figure 1B). Statistical
comparison between the two groups indicated that theta band
power of HCs was stronger compared with that of SZ during
the time window from about 0.17–0.6 s after stimulus onset
(Figure 1C, p = 0.003). Therefore, it was reasonable to compute
PDC and PLI brain connectivity as classification features over
the theta band and time period of 0.1, 0.6 s after stimulus onset
in our current study.

Brain Functional and Effective
Connectivity Patterns
Figures 2A,B show the group average PLI functional connectivity
pattern of SZ patients and HCs, respectively, and we qualitatively

observed that the main difference between two groups was that
SZ patients exhibited much less and much weaker long-range
connections between the frontal/temporal cortexes and the visual
cortex than did HCs. However, the PDC effective connectivity
pattern seemed to reveal the abnormal connections of SZ patients
from another aspect, and we found that HCs showed obvious
long-range down-top information flows from the parietal to
frontal regions (Figure 2D), whereas there was almost no such
directional information transmission for SZ patients (Figure 2C).

Classification Result
In the present study, three feature sets were tested in order
to get a good discrimination between SZ patients and HCs:
(1) only functional connectivity features, (2) only effective
connectivity features, and (3) a combination of functional and
effective connectivity features. We repeated the LOOCV with
a varying number of features. Table 1 shows the obtained best
performance with the corresponding feature numbers. As shown
in Table 1, a good classification performance (SPE = 88.89%,
SEN = 76.92%, AUC = 0.825, and ACC = 83.87%, p < 0.0001)
was achieved with feature number of 6 when using only
PLI functional connectivity feature set. A better classification
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FIGURE 2 | Group average phase lag index (PLI) functional connectivity pattern for schizophrenia (SZ) patients (A) and healthy controls (HCs) (B), and sparsity was
set to 0.3 to obtain a better illustration. Group average partial directed coherence (PDC) effective connectivity pattern for SZ patients (C) and HCs (D), and sparsity
was set to 0.15 to obtain a better illustration. Color bar shows the connectivity strength. Brain connectivity was visualized with the BrainNet Viewer toolbox
(http://www.nitrc.org/project/bnv/).

TABLE 1 | The obtained best classification performance (ACC, SPE, SEN, and AUC) with the corresponding feature numbers on three different feature sets.

Feature set Best classification performance Feature number

ACC (%) SPE (%) SEN (%) AUC

PLI connectivity 83.87 88.89 76.92 0.825 6

PDC connectivity 87.97 86.11 88.46 0.909 14

Combination of PLI and PDC connectivity 95.16 94.44 96.15 0.952 15 (12 effective and 3 functional connectivity)

ACC, classification accuracy; SPE, specificity; SEN, sensitivity; AUC, area under the receiver operating curve; PLI, phase lag index; PDC, partial directed coherence.

performance (SPE = 86.11%, SEN = 88.46%, AUC = 0.909, and
ACC = 87.97%, p < 0.0001) was obtained with feature number
of 14 when using only PDC functional connectivity. However,
we obtained the best classification performance (SPE = 94.44%,
SEN = 96.15%, AUC = 0.952, and ACC = 95.16%, p < 0.0001)
when using the combination of PLI and PDC connectivity
features, and the corresponding selected feature number was
15, which included 12 PDC and three PLI connectivity
features. The above results indicated that the combination of
functional and effective connectivity features could provide a
better discrimination between SZ patients and HCs than single
functional or effective connectivity. The spatial distribution
of the selected 15 connectivity features (12 PDC and three

PLI connectivity features) is shown in Figure 3. As shown in
Figure 3A, the 12 PDC connectivity features with the highest
discriminative power mainly contained four kinds of effective
connectivity pattern: (1) long-range “top-down” and “down-
top” interactions between frontal cortex and occipital/parietal
cortexes (F8→P7, F8→P8, P4→F3, O1→FP1, and Oz→F7);
(2) top-down links from the temporal/central cortexes to
the visual/parietal cortexes (T7→P7, T7→P8, Cz→O2, and
C4→P4); (3) top-down information flow from the frontal cortex
to the central cortex (F3→C4); and (4) local information flows
in the frontal and parietal cortexes (F3→F4 and P4→P8).
Interestingly, the three selected PLI connectivity features with
the highest discriminative power showed an asymmetric right
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FIGURE 3 | The spatial distribution of the 12 partial directed coherence (PDC) (A) and three phase lag index (PLI) (B) connectivity features selected from the
combined feature set when the classification performance was optimal. Color bar represents the discriminative power i.e., Fisher score.

hemisphere lateralized pattern (Figure 3B) and mainly exhibited
long-range connections between the frontal/temporal cortexes
and the visual cortex (F8-Oz, T8-Oz, and T8-O2).

Table 2 summarizes the values of the selected 12 PDC and
three PLI connectivity features and the results of statistical
comparison between SZ patients and HCs. As shown in Table 2,
SZ patients exhibited reduced down-top information flows from
the occipital and parietal cortexes to the frontal cortex (P4→F3,
O1→FP1, and Oz→F7) than did HCs. As for other PDC
effective connectivity features, SZ patients showed abnormally
enhanced values as compared with HCs. More interestingly, we

TABLE 2 | The brain connectivity values of the selected 12 PDC and three PLI
connectivity features and the result of statistical comparison between SZ patients
and HCs.

Brain
connectivity

Strength (mean ± SEM) p (FDR corrected)

SZ HC

P4→F3 0.015 ± 0.011 0.094 ± 0.020 ↓ <0.001

F3→F4 0.057 ± 0.015 0.004 ± 0.004 ↑ 0.011

F3→C4 0.047 ± 0.014 0.000 ± 0.000 ↑ 0.011

F8→P7 0.052 ± 0.016 0.002 ± 0.002 ↑ 0.015

O1→FP1 0.043 ± 0.015 0.139 ± 0.033 ↓ 0.011

F8→P8 0.040 ± 0.013 0.000 ± 0.000 ↑ 0.011

Cz→O2 0.150 ± 0.032 0.044 ± 0.021 ↑ 0.019

T7→P8 0.036 ± 0.011 0.003 ± 0.003 ↑ 0.013

T7→P7 0.123 ± 0.031 0.028 ± 0.014 ↑ 0.014

P4→P8 0.253 ± 0.034 0.128 ± 0.032 ↑ 0.014

C4→P4 0.107 ± 0.025 0.029 ± 0.013 ↑ 0.032

Oz→F7 0.041 ± 0.015 0.110 ± 0.022 ↓ 0.011

F8-Oz 0.145 ± 0.007 0.223 ± 0.013 ↓ <0.001

T8-Oz 0.149 ± 0.009 0.247 ± 0.020 ↓ <0.001

T8-O2 0.147 ± 0.009 0.245 ± 0.022 ↓ <0.001

“↓” and “↑” indicate that the connectivity strength of SZ patients is lower and
higher than that of HCs, respectively.
SEM, standard error of mean; PDC, partial directed coherence; PLI, phase lag
index; SZ, schizophrenia; HCs, healthy controls; FDR, false discovery rate.

found that SZ patients exhibited significantly decreased phase
synchronization between the frontal/temporal cortexes and the
visual cortex (F8-Oz, T8-Oz, and T8-O2) than did HCs. The
result of statistical comparison implied that all the 15 selected
brain connectivity features had statistical difference between
two groups, which proved that the proposed feature selection
method in our study could reliably find the connectivity with high
discriminative power.

DISCUSSION

In this study, we proved that simultaneous application of
brain functional and effective connectivity could greatly
improve overall classification performance in the ML-based
discrimination of SZ. An excellent classification ACC of
95.16% was obtained when the combination of functional
and effective connectivity feature was used, which was much
higher than either the functional connectivity feature set
(83.87%) or the effective connectivity feature set (87.97%).
Studying the 15 connectivity features (12 PDC and three PLI
connectivity features) selected from the combined feature
set implied that brain effective and functional connectivity
could reveal altered brain connectivity pattern of SZ from
different aspects: all the down-top information flows from
the occipital/parietal cortexes to the frontal cortex (P4→F3,
O1→FP1, and Oz→F7) were reduced, whereas other effective
connectivity was enhanced in SZ patients compared with
HCs, and all the three PLI functional connectivity was
reduced in SZ patients.

Advantages of Combination of
Functional and Effective Connectivity for
Classification
Different from brain functional connectivity that refers
to the statistical dependence between two brain regions’
electrophysiological signals and usually does not imply the
existence of causal influence of one region on another, brain
effective connectivity measures the directional information
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flow among different brain areas and can be computed by a
method based on Granger causality. Therefore, functional or
effective connectivity can only capture one different aspect
of interdependence, and their combination could provide
complementary information. Actually, some previous studies
have proved this (Dauwels et al., 2010; Blinowska et al.,
2017). For example, Dauwels et al. (2010) computed more
than 30 EEG-based measures of functional and effective
connectivity, and they found that many of those measures were
strongly correlated and seemed to provide little complementary
information about EEG synchrony. They further observed
that only Granger causality measure and some functional
connectivity measures including phase synchrony indices were
mutually uncorrelated, and the combination of Granger causality
measure and functional connectivity was used as features to
distinguish mild cognitive impairment (MCI) patients from HCs,
yielding a relatively high classification ACC of 83%. Blinowska
et al. (2017) demonstrated that the use of both effective and
functional connectivity could significantly increase classification
performance of Alzheimer’s disease (AD) individuals from
HCs as compared with when only effective or functional
connectivity was used.

The PLI functional connectivity pattern analysis showed
that SZ patients exhibited much less and much weaker long-
range connections between the frontal/temporal cortexes
and the visual cortex than did HCs (Figures 2A,B), while
PDC effective connectivity pattern analysis implied that

there were almost no long-range down-top information
flows from the parietal to frontal regions for SZ patients
compared with HCs (Figures 2C,D). Therefore, we believed
that the combination of effective and functional connectivity
could provide complementary information about the altered
brain connectivity pattern of SZ patients. However, to the
best of our knowledge, the combination of functional and
effective connectivity has not been used as features for ML-
based classification of SZ. Our further result based on SVM
classification indicated that the simultaneous application
of brain functional and effective connectivity could greatly
improve overall classification performance in the ML-based
discrimination of SZ, which was consistent with the results
of previous studies (Dauwels et al., 2010; Blinowska et al.,
2017).

Altered Theta-Band Functional and
Effective Connectivity in Schizophrenia
Patients
Our results of time-frequency analysis revealed that only theta-
band oscillatory activity of HCs was significantly stronger than
that of SZ patients after negative feedback stimuli (Figure 1).
Actually, a large number of studies have found that increased
theta activity was often observed in SZ patients during the
rest state whereas reduced theta activity in SZ patients during
various cognition tasks in recent years (Moran and Hong, 2011;

TABLE 3 | Comparison of the classification accuracy of SZ patients with other previous studies.

Number of subjects Feature set Classifier Best classification accuracy
(%)

References

34 SZ patients and 34 HCs Combined sensor-level P300
amplitude and source-level
current density

SVM 88.24 Shim et al., 2016

14 SZ patients and 14 HCs Nonlinear measures SVM 92.91 Jahmunah et al., 2019

45 SZ patients and 39 HCs PDC effective connectivity and
graph topological measures

Multi-domain connectome
CNN

93.06 Phang et al., 2019

16 SZ patients and 31 HCs P300 amplitude and latency SVM 92.23 Santos-Mayo et al., 2016

34 SZ patients and 10 HCs EEG entropy during visual
evocation of emotion

SVM 81.50 Chu et al., 2017

14 SZ patients and 14 HCs Features are extracted
automatically

11-layered deep CNN 98.07 Oh et al., 2019

11 SZ patients and 9 HCs ERP amplitude during scene
free-viewing

LDA 71.00 Devia et al., 2019

23 SZ patients and 25 HCs Combined SPN features of the
rest and task networks

SVM 90.48 Li et al., 2019

57 SZ patients and 24 HCs Alpha band power SVM 83.33 Bose et al., 2016

90 SZ patients and 90 HCs Delta band power ROC analysis 62.20 Kim et al., 2015

24 SZ patients and 24 HCs Amplitudes/latencies of N100
and P300 during an auditory
oddball task

KNN 72.40 Neuhaus et al., 2013

45 SZ patients and 30 HCs Combination of PDC effective
and PLI functional connectivity

SVM 95.16 Present study

SPN, spatial pattern of network; SVM, support vector machine; CNN, convolutional neural network; LDA, linear discriminant analysis; ROC, receiver operating
characteristic; KNN, K-nearest neighbor; SZ, schizophrenia; HCs, healthy controls; PDC, partial directed coherence; EEG, electroencephalography; ERP, event-related
potential; PLI, phase lag index.
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Başar and Güntekin, 2013). Therefore, we have enough reasons
to use theta-band effective and functional connectivity as features
to classify SZ patients from HCs in this study.

Our classification result based on the SVM classifier
finally selected 15 brain connectivity features (12 PDC
and three PLI connectivity features) with the highest
discriminative power (Figure 3 and Table 2). The 12 PDC
effective connectivity features were mainly located between
the frontal/temporal/central lobes and visual/parietal lobes
(Figure 3A), and the three PLI functional connectivity features
were mainly located between the frontal/temporal cortexes and
visual cortex of the right hemisphere (Figure 3B). Li et al. (2019)
used phase locking value (PLV) to study the EEG functional
connectivity of SZ patients during a P300 task and observed
that long-range functional connections including the frontal-
occipital, temporal-occipital, and frontal-parietal connectivity
were significantly reduced in SZ patients compared with HCs.
Ganella et al. (2017) used functional magnetic resonance imaging
(fMRI) technique and found that functional connectivity
strength predominantly involving fronto-temporal, fronto-
occipital, and temporo-occipital connections were reduced in
SZ patients. These previous results seemed to be consistent with
our findings that the selected three PLI functional connectivity
including frontal-occipital and temporal-occipital connections
were significantly decreased in SZ patients. However, for the
effective connectivity, we did not found any similar researches
that studied the abnormal effective connectivity pattern in SZ
patients during a cognitive task. Therefore, similar studies from
other groups were needed to evaluate the consistency of our
results of the PDC effective connectivity in the future.

Compared With Previous Studies
The comparison of the classification result in our study with
that of previous EEG studies is illustrated in Table 3. As
shown in Table 3, it was obvious that the classification accuracy
obtained in this work was better than that of other studies
except the literature (Oh et al., 2019) that obtained an excellent
classification accuracy of 98.07% by applying an 11-layered
deep CNN model to extract features automatically. A direct
comparison of the present classification results with those of
previous related studies was difficulty because different classifiers
were used in different studies. However, when compared with
the studies that also used the SVM classifier (Bose et al., 2016;
Santos-Mayo et al., 2016; Shim et al., 2016; Chu et al., 2017;
Jahmunah et al., 2019; Li et al., 2019), it was evident that our study
exhibited the highest accuracy. We believed that the excellent
classification performance in our study was mainly due to the
simultaneous use of effective and functional connectivity as
features that could reveal the abnormal brain alterations of SZ
more comprehensively.

Limitations and Future Directions
Although the classification performance in the present study
using a combination of effective and functional connectivity
is encouraging, there are still some limitations that should be
considered in the future. Firstly, the sample size of subjects
in the present study is relatively small, and therefore a large

independent dataset should be used to test our methods
and confirm the results. Secondly, all the SZ patients were
on medication, and thus, we could not control for possible
confounding effects of the drugs. Moreover, our method in
the present study is effective by using “task-state” effective and
functional connectivity as features and only applied for the
discrimination of SZ; therefore, it is necessary to test our method
on “resting-state” EEG data and on other psychiatric disorders to
prove its generalizability in the future.

CONCLUSION

In this study, a combination of brain effective and functional
connectivity was proposed for ML-based discrimination of SZ.
Results indicated that brain effective and functional connectivity
analysis could reveal the altered brain connectivity pattern of
SZ from different aspects, and the simultaneous use of PDC
effective and PLI functional connectivity features could reliably
differentiate SZ patients from HCs with a high classification
accuracy of 95.16%, a specificity of 94.44%, and a sensitivity
of 96.15%, which was better than most of the previously
reported results.
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