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Objective: Tumor suppressor genes (TSGs) play critical roles in the cell cycle checkpoints
and in modulating genomic stability. Here, we aimed to develop a TSG-based prognostic
classifier for breast cancer.

Methods:Gene expression profiles and clinical information of breast cancer were curated
from TCGA (discovery set) and Gene Expression Omnibus (GEO) repository (GSE12093
and GSE17705 datasets as testing sets). Univariate cox regression analysis and random
forest machine learning method were presented for screening characteristic TSGs. After
multivariate cox regression analyses, a TSG-based prognostic classifier was constructed.
The predictive efficacy was verified by C-index and receiver operating characteristic (ROC)
curves. Meanwhile, the predictive independency was assessed through uni- and
multivariate cox regression analyses and stratified analyses. Tumor immune infiltration
was estimated via ESTIMATE and CIBERSORT algorithms. Small molecule agents were
predicted through CMap method. Molecular subtypes were clustered based on the top
100 TSGs with the most variance.

Results: A prognostic classifier including nine TSGs was established. High-risk patients
were predictive of undesirable prognosis. C-index and ROC curves demonstrated its
excellent predictive performance in prognosis. Also, this prognostic classifier was
independent of conventional clinicopathological parameters. Low-risk patients exhibited
increased infiltration levels of immune cells like T cells CD8. Totally, 48 small molecule
compounds were predicted to potentially treat breast cancer. Five TSG-based molecular
subtypes were finally constructed, with distinct prognosis and clinicopathological features.
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Conclusion: Collectively, this study provided a TSG-based prognostic classifier with the
potential to predict clinical outcomes and immune infiltration in breast cancer and identified
potential small molecule agents against breast cancer.

Keywords: breast cancer, tumor suppressor genes, prognostic classifier, clinical outcomes, immune infiltration,
small molecule agents

INTRODUCTION

Breast cancer represents the most frequently diagnosed
malignancy among women globally, with an estimated annual
death of 41,760 cases (DeSantis et al., 2019; Siegel et al., 2020).
Despite the much progress in early detection, diagnostic and
therapeutic schemes, relapse, distant metastases, and resistance
remain common (Jabbarzadeh Kaboli et al., 2020; Lim et al.,
2020). This malignancy is not a single disease, but a
heterogeneous and diverse population (Xie et al., 2019).
Patients at similar histological stages have distinct clinical
characteristics, responses to integrated treatments as well as
prognosis. The study of the molecular complexity prompts us
to comprehensively probe ways for better identifying high-risk
patients (Li et al., 2020). Research has shown that polygenic
features may become more precise compared with traditional
methods in terms of risk stratification (Li et al., 2019). Therefore,
in-depth research is urgently required for unraveling the
mechanisms underlying as well as studying robust prognostic
classifier for breast cancer.

Tumorigenesis is a multi-step process, which can be attributed
to the gain-of-functionmutations of oncogenes as well as the loss-
of-function mutations of tumor suppressor genes (TSGs) (Chen
et al., 2020). Intuitively, inhibition of activated oncogenes is easier
than restoration of the function of inactivated TSGs (Chen et al.,
2020). Despite this, modulating dysregulated TSGs is equally
important for carcinogenesis (Gerstung et al., 2020). TSGs play
critical roles in the cell cycle checkpoints as well as in maintaining
genomic stability (Kontomanolis et al., 2020). A few potential
therapeutic schedules for TSGs or pathways controlled by these
genes have emerged in breast cancer (Choi et al., 2014; Gianni
et al., 2018; O’Leary et al., 2018). Based on the characteristic TSGs,
we developed and externally verified a prognostic classifier for
breast cancer that was capable of predicting prognosis and
immune infiltration as well as screening promising small
molecule agents by applying bioinformatics and machine
learning methods. Thus, our findings may offer novel clues
and landscape concerning the prognostic evaluation of this
malignancy.

MATERIALS AND METHODS

Data Acquisition and Preprocessing
In total, 1,217 human TSGs (Supplementary Table S1) were
downloaded from the Tumor Suppressor Gene database
(TSGene; version 2.0; http://bioinfo.mc.vanderbilt.edu/TSGene/
) (Zhao et al., 2016). Breast cancer datasets were searched from
the Cancer Genome Atlas (TCGA; https://portal.gdc.cancer.gov/)

and Gene Expression Omnibus (GEO) repository (https://www.
ncbi.nlm.nih.gov/gds/). The inclusion criteria of samples were as
follows: 1) histologically diagnosed with malignant breast cancer;
2) available transcriptome data; and 3) available follow-up
information. Totally, RNA-seq profiles, clinicopathological
parameters, and prognostic information of 1,059 breast cancer
patients were included from TCGA cohort via TCGAbiolink
package (Colaprico et al., 2016). Meanwhile, RNA-seq data of
291 normal breast tissues were also retrieved from TCGA cohort.
Microarray expression profiling and survival information of 136
breast cancer who received adjuvant tamoxifen therapy was
curated from the GSE12093 (Zhang et al., 2009). Meanwhile,
we gathered gene expression profiles and follow-up data of
298 ER-positive breast cancer patients who uniformly
experienced tamoxifen treatment for 5 years from the
GSE17705 dataset (Symmans et al., 2010). The GSE12093 and
GSE17705 datasets were both based on the platform of GPL570
Affymetrix Human Genome U133A Array. Batch effects were
corrected utilizing ComBat function of sva package (Leek et al.,
2012). RNA-seq FPKM value was transformed to TPM format.
Microarray data were normalized utilizing Robust MultiChip
Analysis (RMA) method (Irizarry et al., 2003), followed by
quantile standardization. The expression value was then log2
converted. The probes were mapped to gene symbols in line with
the GPL570 annotation files. For making the expression level
genes comparable, the expression value of each gene was
standardized with Z-score conversion. Here, TCGA cohort was
used as a discovery set and the GSE12093 and GSE17705 datasets
were utilized as testing set.

Identification of Characteristic Tumor
Suppressor Genes
Univariate cox regression models were conducted to evaluate the
associations between TSGs and overall survival (OS) across breast
cancer patients in discovery set. TSGs with p < 0.05 were screened
as prognostic genes. These prognostic TSGs were ordered with
random survival forest package (Wang and Zhou, 2017). The
analysis was run with the number of Monte Carlo iterations of
100 and the number of steps forward of 5 [14]. Here, TSGs with
relative importance >0.4 were considered as characteristic
variables.

Development of a Prognostic Classifier
Based on Tumor Suppressor Genes
Multivariate cox regression model was conducted for establishing
a prognostic classifier based on the characteristic TSGs in the
discovery set. The risk scoring system was developed in line with
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the following formula: risk score (RS) = coefficient of TSG 1 *
expression of TSG 1 + coefficient of TSG 2 * expression of TSG
2+. . .+ coefficient of TSG n * expression of TSG n. The RS of each
patient was determined according to the scoring formula. The
patients were stratified into high- and low-risk subgroups with
the median RS as the cutoff value. The mRNA expression of the
characteristic TSGs was visualized into a heat map via pheatmap
package. Kaplan–Meier curves and log-rank test were utilized for
comparing the OS difference between subgroups via survival
package. Through survivalROC package (Lorent et al., 2014), the
area under the curve (AUC) and the best cutoff were generated by
the time-dependent receiver operating characteristic (ROC) for
verifying the performance of this prognostic classifier in
predicting OS. Furthermore, C-index was calculated for
evaluating the probability of the concordance between TSG-

based prognostic classifier-predicted and actual survival
utilizing survcomp package.

Independent Prognostic Analysis
Uni- and multivariate Cox regression analyses were conducted
whether the TSG-based prognostic classifier was independent of
clinicopathological parameters (age, T, N, M, and stage) in the
discovery set. Hazard ratio, 95% confidence interval (CI), and
p-value were determined in each parameter. The AUC values
were compared between the TSG-based prognostic classifier and
other clinicopathological parameters.

Stratified Analysis
Stratified analysis was carried out on the basis of
clinicopathological parameters covering age, T, N, M, and

FIGURE 1 | Development of a tumor suppressor gene (TSG)-based prognostic classifier for breast cancer in the Cancer Genome Atlas (TCGA) cohort. (A)
Correlation between number of classification trees and error rate. (B) The rank of characteristic TSGs according to the relative importance. (C) The determination of high-
and low-risk subgroups according to the median risk score (RS) (vertical dotted line). (D) Distribution of survival status in high- and low-risk subgroups. (E) Heat map
visualizing the mRNA expression of each characteristic TSG in high- and low-risk subgroups. (F) Kaplan–Meier curves of overall survival (OS) and log-rank test of
high- and low-risk subgroups. (G) Receiver operating characteristic (ROC) curve of the TSG-based prognostic classifier.
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stage. Kaplan–Meier curves of OS and log-rank test were
presented for assessing the predictive efficacy of the TSG-
based prognostic classifier in different subgroups.

External Validation of the Tumor
Suppressor Gene-Based Prognostic
Classifier
With the same formula, the RSs of breast cancer patients were
calculated in the GSE12093 and GSE17705 sets. Patients were
separated into high- and low-risk subgroups with the median RS.
The predictive performance of the TSG-based prognostic
classifier was verified by log-rank test and ROC curves.

Analyses of the Expression and Prognosis
of Characteristic Tumor Suppressor Genes
The mRNA expression of each characteristic TSG in the TSG-
based prognostic classifier was compared in 1,085 breast cancer
tissues and 291 normal breast tissues in TCGA dataset with
Wilcoxon test. Kaplan–Meier curves of OS and log-rank test were

utilized for investigating the prognostic implication of the
characteristic TSGs across breast cancer patients.

Gene Set Enrichment Analysis
GSEA computational method (Subramanian et al., 2005) was
utilized for comparing the enrichment differences of gene sets
between high- and low-risk subgroups based on gene expression
profiling. Kyoto Encyclopedia of Genes and Genomes (KEGG)
gene sets were curated from the Molecular Signatures database
(https://www.gsea-msigdb.org/gsea/msigdb) (Liberzon et al.,
2015). Pathways with |normalized enrichment score (NES)|
≥2, nominal p-value <0.05, and false discovery rate (FDR) <0.
05 were significantly enriched.

Analysis of the Overall Infiltration of Immune
and Stromal Cells
Estimation of STromal and Immune cells in MAlignant Tumors
using Expression data (ESTIMATE) algorithm was employed for
inferring the overall infiltration levels of immune cells (immune
score) and stromal cells (stromal score) in breast cancer
specimens in TCGA cohort according to the mRNA
expression profiles (Yoshihara et al., 2013).

Estimation of the Composition of
Tumor-Infiltrating Immune Cells
Cell type Identification By Estimating Relative Subsets Of RNA
Transcripts (CIBERSORT) deconvolution algorithm (http://
cibersort.stanford.edu/) was applied for quantifying the
composition of 22 tumor-infiltrating immune cells in breast
cancer tissues in TCGA dataset (Newman et al., 2015). This
analysis was run on 1,000 permutations based on the normalized
gene expression profiling and the samples were screened in line with

TABLE 1 | Coefficients of nine tumor suppressor genes (TSGs) in the multivariate
Cox regression model.

TSGs Coefficient HR HR.95L HR.95H p-Value

EDA2R 0.668266 1.950851 1.544136 2.464691 2.12E−08
LRP1B −0.24773 0.780573 0.588038 1.036148 0.086484
MAP3K4 0.347939 1.416145 0.880307 2.278145 0.151458
PAX4 5.92132 372.9037 32.50129 4,278.513 1.97E−06
PKNOX1 0.504298 1.655823 0.920447 2.978716 0.092323
RBBP8 −0.44954 0.637925 0.516784 0.787463 2.87E−05
SEMA3B −0.19055 0.826503 0.707583 0.96541 0.016212
WT1 0.267554 1.306765 1.141355 1.496147 0.000107
WWOX 0.354674 1.425716 1.206859 1.684262 3.03E−05

TABLE 2 | Clinicopathological characteristics of high- and low-risk subgroups in the discovery set.

Characteristics High-risk group (n = 529) Low-risk group (n = 530) Total (n = 1,059) p-Value

Age <65 336 405 741 6.43E−06
≥65 193 125 318
Stage I 83 96 179
Stage II 293 306 599

Stage Stage III 126 113 239 1.64E−01
Stage IV 14 6 20
NA 13 9 22
T1 124 153 277
T2 317 294 611

T T3 59 71 130 0.008319
T4 27 11 38
N/A 2 1 3
M0 438 447 885

M M1 15 7 22 1.30E−01
N/A 76 76 152
N0 252 244 496
N1 160 194 354

N N2 67 52 119 1.48E−01
N3 38 35 73
N/A 12 5 17
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p-value <0.05. The LM22 feature matrix was curated as a reference
set. The results were visualized via vioplot and corrplot packages.

Prediction of Small Molecule Agents
To explore TSG-based prognostic classifier-relevant genes,
differential expression analyses were carried out between high-
and low-risk subgroups in TCGA dataset by limma package with
the cutoff of adjusted p-value <0.05 (Ritchie et al., 2015). The top
200 upregulated genes and the top 200 downregulated genes were

separately analyzed by the connectivity map (CMap; http://
portals.broadinstitute.org/cmap/) project (Lamb et al., 2006).
Connectivity scores ranging from −1 to 1 were determined for
estimating the connection between compounds and the query
signature. Negative score was indicative the query signature
might be suppressed by a specific agent. Meanwhile, positive
score was indicative that the query signature might be promoted
by a specific agent. Small molecule agents with p-value <0.05
might potentially treat breast cancer. Mode-of-action (MoA)

FIGURE 2 | The TSG-based prognostic classifier is independent of conventional clinicopathological parameters across breast cancer in TCGA dataset. (A,B) Uni-
andmultivariate Cox regressionmodels of the associations between age, T, N, M, stage, and RS and OS of breast cancer patients. (C)Comparison of the area under the
curve (AUCs) of age, T, N, M, stage, and RS. Kaplan–Meier curves and log-rank tests of high- and low-risk breast cancer patients at different subgroups according to
clinicopathological parameters, including (D,E) age ≥65 and <65; (F,G) T1-2 and T3-4; (H,I) N0 and N1-3; (J,K) M0 and M1; (L,M) stages I–II and stages III–IV.
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analyses were utilized for exploring shared mechanisms of action
among candidate agents.

Consensus Clustering Analyses
Consensus clustering analyses were presented through the
ConsensusClusterPlus package across breast cancer patients in
TCGA cohort based on the mRNA expression profiling of the top
100 TSGs with the most variance (Wilkerson and Hayes, 2010).
This analysis was run with 50 iterations and resample rate of 80%.
Principal component analysis (PCA) was used for verifying this

clustering. The OS differences were compared with
Kaplan–Meier curves and log-rank test.

Statistical Analysis
All statistical tests were conducted via R software (version 3.6.1;
https://www.r-project.org) and appropriate packages.
Continuous variables were compared using Student’s t-test or
Wilcoxon test. Moreover, categorical variables were compared
through Chi-square test. The p-value indicated statistical
significance.

FIGURE 3 | External verification of the predictive performance of the TSG-based prognostic classifier in breast cancer prognosis in the GSE12093 and GSE17705
datasets. (A–C) Distribution of RS, survival status, and mRNA expression of characteristic TSGs in high- and low-risk subgroups in the GSE12093 dataset. (D–F)
Distribution of RS, survival status, and mRNA expression of characteristic TSGs in high- and low-risk subgroups in the GSE17705 dataset. Vertical dotted line
represented the cutoff value of high- and low-risk subgroups. (G,H) Kaplan–Meier curves of OS and log-rank tests of high- and low-risk subgroups in the
GSE12093 and GSE17705 datasets. (I,J) ROC curves of the TSG-based prognostic classifier in the GSE12093 and GSE17705 datasets.
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RESULTS

Development of a Tumor Suppressor
Gene-Based Prognostic Classifier for
Breast Cancer
This study gathered 1,217 TSGs from the TSGene database.
Among them, 116 TSGs displayed significant associations with
the OS of breast cancer in TCGA dataset (Supplementary Table
S2). By random forest method, 13 characteristic TSGs with relative
importance >0.4 were selected in TCGA dataset, including PLCD1,
PAX4, WWOX, SEMA3B, WT1, EDA2R, RBBP8, ADAMTS8,
BRD7,MAP3K4, PKNOX1, LRP1B, and RAD23B (Figures 1A, B).
Nine TSGs with non-zero coefficient were included for
constructing the multivariate cox regression model (Table 1).
Combining the coefficients and expression of above TSGs, the
prognostic classifier was developed in the discovery set and the RS
of each patient was calculated. According to the median RS, breast
cancer patients in the discovery set were stratified into high- and
low-risk subgroups (Figure 1C). Furthermore, we observed that
there were more patients with dead status in high-risk subgroup
comparedwith low-risk subgroup (Figure 1D). InTable 2, age and
T were significantly correlated to the TSG-based prognostic

classifier in the discovery set. Heat map showed the differences
in mRNA expression of each characteristic TSG between high- and
low-risk subgroups (Figure 1E). In Figure 1F, we found that low-
risk patients had the distinct survival advantage compared with
high-risk patients. The C-index (0.708) and ROC curves (AUC =
0.724 and cutoff = 1.373) were indicative of the well predictive
performance of this TSG-based prognostic classifier (Figure 1G).

The Tumor Suppressor Gene-Based
Prognostic Classifier is Independent of
Conventional Clinicopathological
Parameters
As shown in univariate cox regression models, age, T, N, M, stage,
and TSG-based prognostic classifier were all risk factors of breast
cancer prognosis in TCGA dataset (Figure 2A). Further
multivariate cox regression models uncovered that the TSG-
based prognostic classifier was independent of the above
clinicopathological parameters (Figure 2B). Compared with
conventional clinicopathological parameters, the TSG-based
prognostic classifier had the highest AUC value (Figure 2C),
indicating this prognostic classifier was superior to these
clinicopathological parameters in predicting prognosis. Stratified

FIGURE 4 | Expression and survival analysis of each characteristic TSG in the prognostic classifier across breast cancer in TCGA dataset. (A–I) The mRNA
expression of (A) EDA2R, (B)MAP3K4, (C)WWOX, (D) LRP1B, (E) SEMA3B, (F) PAX4, (G) PKNOX1, (H)WT1, and (I) RBBP8 in 1,085 breast cancer tissues and 291
normal breast tissues as well as Kaplan–Meier curves and log-rank tests of their high and low expression groups. *p-value <0.05.
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analysis uncovered that high RS was indicative of poorer OS than
low RS at different subgroups according to clinicopathological
parameters, including age ≥65 and <65 (Figures 2D, E), T1-2 and
T3-4 (Figures 2F, G), N0 and N1-3 (Figures 2H, I), M0 and M1
(Figures 2J, K), and stages I–II and stages III–IV (Figures 2L, M).

External Verification of the Predictive
Performance of the Tumor Suppressor
Gene-Based Prognostic Classifier in Breast
Cancer Prognosis
The GSE12093 and GSE17705 datasets were curated for
externally verifying the performance of the TSG-based
prognostic classifier in the prediction of breast cancer
prognosis. With the same formula, we determined the RSs of
breast cancer patients and stratified patients into high- and low-
risk subgroups both in the GSE12093 (Figures 3A–C) and

GSE17705 (Figures 3D–F) datasets. Consistent with the
results in the discovery set, patients in the high-risk subgroup
exhibited poorer OS compared with those in the low-risk
subgroup both in the GSE12093 (C-index = 0.670; Figure 3G)
and GSE17705 (C-index = 0.607; Figure 3H) datasets. ROC
curves uncovered the well predictive efficacy of the TSG-based
prognostic classifier in the prediction of breast cancer prognosis
both in the GSE12093 (AUC = 0.731 and cutoff = 1.280;
Figure 3I) and GSE17705 (AUC = 0.640 and cutoff = 1.884;
Figure 3J) datasets.

Expression and Survival Analysis of Each
Ccharacteristic Tumor Suppressor Gene in
the Prognostic Classifier
We evaluated the mRNA expression and prognostic significance
of each characteristic TSG in the prognostic classifier in breast

FIGURE 5 | Gene Set Enrichment Analysis (GSEA) identifies signaling pathways underlying the TSG-based prognostic classifier. (A) Neurotrophin signaling
pathway, (B) base excision repair, (C) apoptosis, (D) VEGF signaling pathway, (E) acute myeloid leukemia, (F) endocytosis, (G) glycerophospholipid metabolism, (H)
small cell lung cancer, (I) B-cell receptor signaling pathway, (J) MAPK signaling pathway, and (K) chemokine signaling pathway.
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cancer from TCGA dataset. We observed that EDA2R,
MAP3K4, and WWOX exhibited reduced mRNA expression
in 1,085 breast cancer tissues compared with 291 normal breast
tissues (Figures 4A–C). Meanwhile, high expression of EDA2R,
MAP3K4, and WWOX was indicative of unfavorable OS than
their low expression. Lower mRNA expression of LRP1B and
SEMA3B was detected in breast cancer than normal breast
tissues, and their downregulation was in relation to poor
clinical outcomes (Figures 4D, E). No significant difference
in PAX4 was investigated between breast cancer and normal
breast tissues, but its upregulation indicated an undesirable OS
for breast cancer patients (Figure 4F). PKNOX1, and WT1
displayed higher mRNA expression in breast cancer tissues in

comparison with normal breast tissues as well as their
upregulation was associated with poor OS (Figures 4G, H).
In Figure 4I, RBBP8 expression was upregulated in breast
cancer tissues and patients with its upregulation exhibited
the prominent survival advantage.

Signaling Pathways Underlying the Tumor
Suppressor Gene-Based Prognostic
Classifier
GSEA results uncovered that neurotrophin signaling pathway
(NES = −2.28, nominal p-value <0.0001 and FDR = 0.016), base
excision repair (NES = −2.27, nominal p-value <0.0001 and FDR =

FIGURE 6 | Association between the TSG-based prognostic classifier and tumor-infiltrating immune cells across breast cancer in TCGA dataset. (A,B)
Comparisons of the immune score and stromal score between high- and low-risk subgroups. (C) Spearman’s correlation between the infiltration levels of 22
immune cells in breast cancer specimens. Red, positive correlation; blue, negative correlation. (D) Comparisons of the infiltration levels of 22 immune cells between
high- and low-risk subgroups. (E) Spearman’s correlation between the mRNA expression of characteristic TSGs in the prognostic classifier and the infiltration
levels of 22 immune cells across breast cancer specimens. Red, positive correlation; blue, negative correlation. Ns: not significant; *p-value <0.05; **p-value <0.01
and ***p-value <0.001.
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0.008), apoptosis (NES = −2.22, nominal p-value <0.0001 and FDR
= 0.007), VEGF signaling pathway (NES = −2.13, nominal p-value
<0.0001 and FDR = 0.015), acute myeloid leukemia (NES = −2.08,
nominal p-value <0.0001 and FDR = 0.018), endocytosis (NES =
−2.06, nominal p-value <0.0001 and FDR = 0.019),
glycerophospholipid metabolism (NES = −2.04, nominal p-value
<0.0001 and FDR = 0.021), small cell lung cancer (NES = −2.03,

nominal p-value <0.0001 and FDR = 0.019), B cell receptor
signaling pathway (NES = −2.01, nominal p-value = 0.006 and
FDR = 0.021), MAPK signaling pathway (NES = −2.01, nominal
p-value = 0.006 and FDR = 0.020), and chemokine signaling
pathway (NES = −2.00, nominal p-value <0.0001 and FDR =
0.019) were significantly activated in low-risk group compared
with high-risk group in TCGA dataset (Figures 5A–K).

TABLE 3 | Prediction of potential small molecule agents based on the TSG-based prognostic classifier by connectivity map (CMap).

Cmap name
(cell line)

Mean N Enrichment p-Value Specificity Percent non-null

Raloxifene (MCF7) 0.766 3 0.971 0.00004 0 100
Thapsigargin (MCF7) 0.711 2 0.979 0.00076 0.0915 100
Wortmannin (HL60) 0.504 4 0.842 0.00101 0.0065 75
Oxolinic acid (PC3) 0.696 2 0.972 0.00123 0 100
Securinine (MCF7) −0.748 2 −0.971 0.00167 0.0133 100
PHA-00767505E (PC3) −0.695 2 −0.971 0.00169 0 100
Chlorphenamine (MCF7) 0.628 2 0.964 0.00217 0 100
Iobenguane (MCF7) 0.653 2 0.959 0.00286 0 100
Disopyramide (MCF7) −0.644 2 −0.959 0.00372 0.0319 100
Naltrexone (PC3) 0.635 2 0.95 0.00467 0.0071 100
Josamycin (PC3) 0.591 2 0.949 0.00477 0 100
0198306-0000 (MCF7) 0.631 2 0.946 0.00545 0.0063 100
Rifabutin (MCF7) 0.619 2 0.946 0.00555 0.0266 100
16-Phenyltetranorprostaglandin E2 (MCF7) 0.574 2 0.946 0.00557 0.0071 100
Pirenzepine (PC3) −0.597 2 −0.945 0.00658 0.021 100
Prestwick-1103 (MCF7) −0.589 2 −0.94 0.00759 0.0217 100
Pirinixic acid (PC3) 0.542 2 0.934 0.00833 0.0274 100
Atropine oxide (MCF7) 0.534 2 0.931 0.00909 0.0121 100
Helveticoside (PC3) −0.605 2 −0.933 0.00919 0.1039 100
Ondansetron (MCF7) −0.597 2 −0.932 0.0095 0.0286 100
Vinburnine (MCF7) −0.611 2 −0.931 0.00996 0.0301 100
Withaferin A (MCF7) 0.476 2 0.925 0.01099 0.1217 100
Paclitaxel (PC3) 0.5 2 0.924 0.01117 0 100
Ornidazole (MCF7) −0.514 2 −0.926 0.01131 0.0168 100
Benzamil (MCF7) −0.301 3 −0.814 0.01284 0.0072 66
Tinidazole (PC3) 0.461 2 0.915 0.01429 0.016 100
Nicardipine (MCF7 0.463 2 0.915 0.01433 0.0127 100
Decamethonium bromide (MCF7) −0.22 2 −0.915 0.01459 0 50
Naftidrofuryl (MCF7) −0.334 2 −0.897 0.02086 0.0333 50
Iloprost (MCF7) −0.295 2 −0.897 0.02107 0.0248 50
0317956-0000 (PC3) 0.414 4 0.683 0.02166 0.0078 75
Sulfamonomethoxine (MCF7) −0.31 2 −0.889 0.02443 0.057 50
Halofantrine (MCF7) −0.202 2 −0.888 0.02491 0.021 50
Carcinine (MCF7) 0.308 2 0.889 0.02565 0 50
Celecoxib (MCF7) 0.374 4 0.665 0.02851 0.0106 75
Moroxydine (MCF7) −0.323 2 −0.875 0.03135 0.0839 50
Ergocalciferol (MCF7) −0.379 2 −0.874 0.03155 0.0073 50
5248896 (MCF7) 0.364 2 0.864 0.03744 0.05 50
15-Delta prostaglandin J2 (MCF7) 0.27 8 0.469 0.03749 0.521 50
Cyproheptadine (MCF7) 0.355 2 0.864 0.0376 0.0255 50
Stachydrine (MCF7) −0.309 2 −0.856 0.04151 0.0733 50
Spiradoline (MCF7) −0.302 2 −0.854 0.04241 0.0694 50
Amantadine (MCF7) −0.301 2 −0.854 0.04255 0.102 50
Trimethadione (MCF7) −0.244 2 −0.853 0.04288 0.025 50
Imipenem (MCF7) 0.286 2 0.853 0.0434 0.0143 50
Metformin (MCF7) 0.314 7 0.489 0.04537 0.0827 57
Salsolinol (MCF7) 0.281 2 0.846 0.04783 0.0357 50
Bupivacaine (MCF7) −0.362 2 −0.843 0.04927 0.0136 50
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Association Between the Tumor
Suppressor Gene-Based Prognostic
Classifier and Tumor-Infiltrating Immune
Cells
Through ESTIMATE computational method, the overall
infiltration levels of immune cells and stromal cells were
inferred in breast cancer tissues in TCGA dataset. We
observed that low-risk samples exhibited increased immune
score compared with high-risk samples (Figure 6A), but no
significant difference in stromal score was investigated
between high- and low-risk specimens (Figure 6B). The
infiltration levels of 22 immune cells were estimated in breast
cancer tissues via CIBERSORT deconvolution algorithm.
Spearman’s correlation analysis uncovered the crosstalk
between tumor-infiltrating immune cells across breast cancer
(Figure 6C). Furthermore, we found that the infiltrating levels
of B-cells naïve, T-cells CD8, T-cells follicular helper, and
dendritic cells resting were higher in low-risk subgroup
compared with high-risk subgroup (Figure 6D). Meanwhile,
macrophage M0, and macrophage M2 displayed increased

infiltration levels in high-risk subgroup than low-risk
subgroup. We also investigated the significant correlation
between characteristic TSGs in the prognostic classifier and
22 tumor-infiltrating immune cells across breast cancer
(Figure 6E).

Screening Small Molecule Agents That
Potentially Treat Breast Cancer Based on
the Tumor Suppressor Genes-Based
Prognostic Classifier
With adjusted p-value <0.05, we screened the top 200
upregulated genes and the top 200 downregulated genes
between high- and low-risk subgroups (Supplementary
Table S3). Through CMap database, we screened 48 small
molecule compounds with a p-value <0.05 that might
potentially treat breast cancer based on the TSG-based
prognostic classifier (Table 3). The shared mechanisms
among small molecule compounds were evaluated through
MoA. In Figure 7, we observed ondansetron and pizotifen
shared serotonin receptor antagonist.

FIGURE 7 | The shared mechanisms among potential small molecule agents by Mode-of-action (MoA).
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Establishment of Five Tumor Suppressor
Gene-Based Subtypes With Different
Clinical Outcomes
Based on the mRNA expression profiling of the top 100TSGs with
the most variance, breast cancer patients in TCGA dataset were
clustered into five clusters, named as clusters 1–5 (Figures
8A–D). PCA results confirmed the prominent difference
among the five clusters (Figure 8E). Survival analysis
uncovered the significant survival difference among the five
clusters (Figure 8F). Among them, cluster 1 displayed the
poorest clinical outcomes. Figure 8G depicts the heterogeneity
in clinical phenotypes including age, T, N, M, stage, and known
breast cancer subtypes among the five clusters. Considering the
known breast cancer subtypes, we compared the five TSG-based
subtypes with known breast cancer subtypes (Basal, Her2, LumA,

and LumB). Our results showed that specific TSG-based subtypes
had a high coincidence rate with known subtypes (Figure 8H).
Especially, TSG-based subtype 5 was highly coincident with Basal
subtype, and TSG-based subtype 2 displayed a high coincidence
with Her2 subtype, indicating that TSG-basedmolecular subtypes
had certain accuracy and stability, and patients with TSG-based
subtypes 2 and 5 could separately receive similar treatment as
patients of Basal subtype and Her2 subtype.

DISCUSSION

Development of early detection, diagnostic and therapeutic
strategies has led to a continuous decline in the mortality of
breast cancer patients, metastatic patients usually display an
undesirable prognosis even though with multimodal treatments

FIGURE 8 | Establishment of five TSG-based subtypes with different clinical outcomes across breast cancer in TCGA dataset. (A) Consensus matrix when k = 5.
(B) Consensus CDF diagram for the consensus distribution when k = 2–9. (C) Delta area under CDF curves when k = 2–9. (D) Item tracking plot for the consensus
clustering of items corresponding to each k. (E) Principal component analysis (PCA) plots for the difference among five clusters based on themRNA expression of the top
100 TSGs with the most variance. (F) Kaplan–Meier curves and log-rank test of five clusters. (G) Heat map visualizing the clinical phenotypes in five clusters. (H)
Comparison of five TSG-based subtypes and known breast cancer subtypes.
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(Liang et al., 2020). The thought-provoking research has
highlighted the importance of applying innovative methods
for identifying high-risk patients and improving the
management of the patient (Zhang D et al., 2020). With the
development of personalized medicine, gene expression
profiling plays important roles in offering guidance for
personalized therapy optimization. In our research, we
developed a TSG-based prognostic classifier for breast cancer.
Following verification, this prognostic classifier may robustly
predict the clinical outcomes of the patients.

Herein, we observed abnormal expression and dysfunction of
each characteristic TSG in the TSG-based prognostic classifier.
EDA2R, a tumor necrosis factor receptor, is downregulated in
breast cancer through promoter methylation, which binds to
ectodysplasin-A2 and induces cell deaths (Punj et al., 2010). As a
tumor suppressor, EDA2R prevents malignant transformation
and cancer progression (Tanikawa et al., 2009). LRP1B mutation
contribute to favorable response to immunotherapy across pan-
cancer (Brown et al., 2021). MAP3K4 maintains epithelial-
mesenchymal transition in trophoblast stem cells, which
potentially contributes to breast cancer (Abell et al., 2011).
MAP3K4 can be predictive of preoperative radiotherapeutic
responses for locally advanced breast cancer (Tanic et al.,
2018). PAX4, a transcriptional modulator, modulates
metastasis of epithelial cancers (Zhang et al., 2015). PKNOX1
is involved in modulating breast adenocarcinoma progression
(Fernandez et al., 2008). RBBP8 predisposes to early-onset breast
cancer progression (Zarrizi et al., 2020). SEMA3B, a secreted
axonal guidance molecule, suppresses breast cancer development
and metastasis (Shahi et al., 2017). WT1 plays an oncogenic role
in breast cancer pathogenesis (Zhang Y et al., 2020). Evidence
suggests the inhibitory role of WWOX tumor suppressor gene in
breast cancer (Pospiech et al., 2018). We further investigated
signaling pathways underlying the TSG-based prognostic
classifier. Carcinogenic pathways and immune-related
pathways including neurotrophin signaling pathway, base
excision repair, apoptosis, VEGF signaling pathway, acute
myeloid leukemia, endocytosis, glycerophospholipid
metabolism, small cell lung cancer, B-cell receptor signaling
pathway, MAPK signaling pathway, and chemokine signaling
pathway were prominently activated in the low-risk group,
indicative of the critical biological implication of the TSG-
based prognostic classifier.

Immunotherapeutic strategies have been included in the
standard of care for a variety of human cancers. The evidence
emphasizes the importance of tumor-infiltrating immune cells
in the host anti-cancer immune responses in the natural course
of breast cancer (Zhang and Plitas, 2021). Our results that
B cells naïve, T cells CD8, T cells follicular helper, and
dendritic cells resting displayed higher infiltration levels in
low-risk subgroup than high-risk subgroup. Meanwhile,
macrophage M0, and macrophage M2 had increased
infiltration levels in high-risk subgroup than low-risk
subgroup. This indicated that the prognostic classifier can

be utilized for prediction of tumor immune infiltration.
Moreover, we screened 48 small molecule agents that may
potentially treat breast cancer based on the TSG-based
prognostic classifier. Especially, ondansetron and pizotifen
shared serotonin receptor antagonist. For instance,
ondansetron may alleviate chemotherapy-induced nausea
and vomiting in breast cancer (Yeo et al., 2020).
Furthermore, evidence suggests that pizotifen suppresses
proliferative and migratory capacities of gastric cancer as
well as colon cancer (Piao and Shang, 2019; Jiang et al.,
2020). The anti-breast cancer effect of pizotifen will be
verified in more experiments.

Except for developing a clinical indicator regarding TSGs, we
constructed clinically relevant classification of breast cancer
based on the top 100 TSGs with the most variance. In general,
patients who have similar clinicopathological features exhibit
much heterogeneity in prognosis. Here, five TSG-based
subtypes were clustered, with different prognosis and
clinicopathological features. Thus, comprehensive indicators
from single TSGs may prominently ameliorate survival
outcomes. Nevertheless, there are several limitations in our
study. First, this was a retrospective study according to
appropriate mRNA expression profiles and prognostic data of
breast cancer patients. The predictive performance of the TSG-
based prognostic classifier should be verified in a prospective
cohort. Second, the mechanisms underlying prognosis-relevant
TSGs regulate breast cancer pathogenesis requires further
experimental verification for improvement of the present
therapeutic practice of breast cancer.

CONCLUSION

Collectively, a novel prognostic classifier on the basis of TSG
expression profiling was established for breast cancer and
externally verified in the two cohorts. The prognostic classifier
possessed the potential to predict breast cancer prognosis as well
as tumor immune infiltration. Moreover, we screened promising
small molecule agents against breast cancer. The predictive
performance of the prognostic classifier will be verified in
prospective cohorts in our future research.
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