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Abstract Recent symbioses, particularly facultative ones, are well suited for unravelling the

evolutionary give and take between partners. Here we look at variation in natural isolates of the

social amoeba Dictyostelium discoideum and their relationships with bacterial symbionts,

Burkholderia hayleyella and Burkholderia agricolaris. Only about a third of field-collected amoebae

carry a symbiont. We cured and cross-infected amoebae hosts with different symbiont association

histories and then compared host responses to each symbiont type. Before curing, field-collected

clones did not vary significantly in overall fitness, but infected hosts produced morphologically

different multicellular structures. After curing and reinfecting, host fitness declined. However,

natural B. hayleyella hosts suffered fewer fitness costs when reinfected with B. hayleyella, indicating

that they have evolved mechanisms to tolerate their symbiont. Our work suggests that amoebae

hosts have evolved mechanisms to tolerate specific acquired symbionts; exploring host-symbiont

relationships that vary within species may provide further insights into disease dynamics.

DOI: https://doi.org/10.7554/eLife.42660.001

Introduction
Relationships are complicated because each party has evolved to maximize its own interests. Mutual-

isms arise when different parties can contribute unique abilities or resources to one another, under

conditions where exploitation is controlled (Bronstein, 2015). Mutualisms where one or both parties

are microbial fall under the general category of symbiosis. Symbioses are rife with potential conflict

(Dale and Moran, 2006; Estrela et al., 2016; Garcia and Gerardo, 2014; Moran, 2007;

Oliver et al., 2005). Despite this, symbiotic relationships are pervasive and persistent (Doug-

las, 2008; Moran et al., 1993; Wernegreen, 2017; Werner et al., 2015). The stability and ubiquity

of these interactions implies that conflict can be managed or minimized by partners over multiple

generations. However, stability does not imply stagnation. Recent studies suggest that examining

extant symbiotic associations may not reveal the underlying mutualism to parasitism continuum that

drives evolutionary change (Moran, 2007; Queller and Strassmann, 2018). Indeed, the view that

symbiotic associations fluctuate along a mutualism-to-parasitism continuum is increasingly appreci-

ated (McFall-Ngai et al., 2013).

Intracellular endosymbiosis involves a particularly intricate dance between partners. Intracellular

endosymbionts must invade, survive, and replicate within host cells and move to new hosts. To

exploit their host niche, mutualistic endosymbionts evolve specialized lifestyles that parallel those of
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intracellular pathogens (Casadevall, 2008; McCutcheon and Moran, 2011; Soto et al., 2009).

Despite initial exploitative strategies, some endosymbionts become beneficial or even obligate for

host survival, a situation common for many insect nutritional endosymbioses (Douglas, 2009). Strict

vertical transmission of endosymbionts typically promotes a more tranquil relationship as the evolu-

tionary fates of the two parties become increasingly interdependent (Ferdy and Godelle, 2005;

Hosokawa et al., 2016). Host dependency also often leads to the reduction in size of symbiont

genomes as they become more streamlined for life within their host, something true for both benefi-

cial and pathogenic endosymbionts (Dale and Moran, 2006). Horizontally acquired facultative sym-

bionts are more likely to retain active conflicts. This has been experimentally demonstrated by

manipulating the jellyfish symbiont Symbiodinium microadriaticum towards solely vertical or horizon-

tal transmission modes, leading to the evolution of more mutualistic or parasitic lineages respectively

(Sachs and Wilcox, 2006). Though horizontal transmission can favor symbionts that behave more

parasitically, selection can favor hosts that employ more severe countermeasures to limit symbiont

entry or growth (Nyholm and McFall-Ngai, 2004; Ratzka et al., 2012; Reynolds and Rolff, 2008).

Indeed, host-driven control can be extreme, as demonstrated by the ability of Paramecium bursaria

to manipulate its facultative nutritional symbiont (Chlorella sp.) in a relationship that provides no

apparent benefit for the imprisoned symbiont (Lowe et al., 2016).

Symbiotic relationships may be positive or negative under different environmental conditions

(Leung and Poulin, 2008; Pérez-Brocal et al., 2011). An interesting example of context depen-

dency occurs in the Acyrthosiphon pisum-Hamiltonella defensa symbiosis (Oliver et al., 2003;

Oliver et al., 2005). H. defensa infection confers host resistance to parasitoid attack, with resistance

being greater for hosts co-infected with Serratia symbiotica (Oliver et al., 2006). However, co-infec-

tion comes at a high fecundity cost, such that in parasitoid free environments, host fitness is reduced

compared to uninfected counterparts (Oliver et al., 2006). This interplay between reproductive

strategy, context, and evolutionary history illustrates the complexity and fluidity of symbiosis.

eLife digest A species can benefit or be hurt by other species. For example, honeybees and

flowering plants help each other to flourish, while lions and gazelles behave in ways that decrease

each other’s populations. Understanding these relationships is important for controlling pests and

diseases.

Sometimes it is easiest to study such interactions by looking at simple ones that happen on a

small scale. Amoebas are common soil organisms that have the same basic organization as human

cells. They are much larger and more complex than the bacteria that also live in the soil. How exactly

the amoebas and bacteria interact in the soil is an important question, particularly as some of the

bacteria can also live inside amoebas. Does this intimate relationship help or harm the amoeba?

Shu, Brock, Geist et al. studied the relationship between a widely studied species of social

amoeba and two species of bacteria that can live inside it. Some of the amoebas naturally contained

one of the bacteria species, and others were infected with the bacteria in experiments.

Throughout the entire life cycle of the amoebas, the bacteria lived inside them. During one part

of the life cycle, amoebas form so-called fruiting bodies, which release spores that can develop into

new amoebas. Shu et al. found that both types of bacteria alter the structure of the fruiting bodies

in ways that reduce how well the spores disperse.

One of the bacteria species, called Burkholderia hayleyella, harmed the amoebas a lot. It caused

most harm to amoebas that do not naturally host the bacteria. This indicates that the amoebas that

do host this species may have evolved to avoid its worst effects.

The amoebas have many similarities to the white blood cells that clear bacteria from the human

body. Certain bacteria can get inside white blood cells, causing diseases such as tuberculosis.

Understanding how bacteria harm amoebas might be useful for understanding such diseases, and

developing treatments for them. Though the bacteria Shu et al. studied are not toxic to humans,

they are closely related to bacteria that are harmful. It is therefore possible that some bacteria that

infect humans first evolve to infect amoebas.

DOI: https://doi.org/10.7554/eLife.42660.002
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The facultative endosymbiosis between the social amoeba Dictyostelium discoideum and Burkhol-

deria bacteria provides a promising system for revealing insights into symbiosis dynamics

(Brock et al., 2011; DiSalvo et al., 2015). D. discoideum is a soil dwelling amoeba with an interest-

ing life cycle involving unicellular and multicellular stages. During the unicellular stage, amoebae

consume bacteria by phagocytosis and divide. When prey are scarce, amoebae aggregate by tens of

thousands to form multicellular slugs that move towards heat and light, seeking out a location to

form fruiting bodies. These fruiting bodies consist of a stalk of sacrificial dead cells which support a

globular sorus containing hardy spore cells (Kessin, 2001). When spores are dispersed, they germi-

nate into vegetative amoebae and the cycle continues. Processes employed by specialized immune-

like cells (sentinel cells) during slug migration and fruiting body formation remove any remaining

bacteria, typically producing bacteria-free sori (Brock et al., 2011; Chen et al., 2007; Cosson and

Lima, 2014).

However, some D. discoideum isolates harvested from the wild are infected with Burkholderia

symbionts (Brock et al., 2011). Infection persists in the lab throughout the social cycle, where intra-

cellular bacteria can be visualized within spores and sori (DiSalvo et al., 2015). Infection can be ter-

minated by treating hosts with antibiotics and induced by exposing naı̈ve hosts to Burkholderia,

thereby allowing us to easily mix and match partners and study subsequent fitness consequences

(Brock et al., 2016a; DiSalvo et al., 2015).

D. discoideum also has a meiotic sexual process, that occurs much less frequently than the asex-

ual proliferation process of binary fission that amoebae go through every few hours

(Bloomfield et al., 2010). The asexual binary fission process results in lineages that can be quite dif-

ferent, though all of the same species. Thus, a lineage that has acquired a bacterial endosymbiont

can evolve to tolerate it independent of uninfected lineages at least for the thousands of generations

that might pass before sexual recombination occurs. Comparing such lineages can illuminate how

natural selection operates in early stages of symbiosis.

The Dictyostelium-Burkholderia association is particularly compelling for studying the parasitism

to mutualism continuum in endosymbiosis because the fitness consequences of infection are context

dependent. Under standard laboratory growth conditions, Burkholderia infection is detrimental for

hosts because it decreases slug migration and spore production (Brock et al., 2016a; DiSalvo et al.,

2015). However, infection can be beneficial. Infection induces secondary carriage of edible bacteria

(Burkholderia is typically inedible), which can increase host fitness in food scarce conditions when the

carried food bacteria reseed new environments with a food source (Brock et al., 2011;

DiSalvo et al., 2015). For this reason, field-infected host amoebae are also called ‘farmers’ and unin-

fected host amoebae are called ‘non-farmers.’ Additionally, infected hosts are less harmed by ethi-

dium bromide exposure, possibly mediated by bacterial degradation of the toxin (Brock et al.,

2016a).

We have identified three Burkholderia species associated with Dictyostelium: B. agricolaris, B.

hayleyella, and B. bonniea (Brock et al., 2018). Most of our work has been conducted with the first

two species, which differentially impact host fitness. Here we probe the interaction between host

and symbiont genotypes (with regards to their association history) with infection outcomes using a

set of previously field-collected and characterized amoebae isolates and their associated Burkholde-

ria symbionts (Brock et al., 2011; DiSalvo et al., 2015). We use standard laboratory conditions in

which symbiont infection is shifted towards host detrimental outcomes. Since all three Burkholderia

species can be cultured on Petri plates with standard media, none of them are entirely dependent

on Dictyostelium for survival.

We find that B. hayleyella is most detrimental for D. discoideum hosts in general, but is most

costly to those first exposed to it in the lab. We also document symbiont localization and morpho-

logical symptoms in hosts throughout development. Although both species of bacteria can be

observed within phagocytic vacuoles, B. hayleyella infects more cells and damages fruiting body

structures. These morphological aberrations are also less severe in native-hayleyella hosts, suggest-

ing that native hosts have evolved mechanisms to withstand symbiont colonization.
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Results

Impact of B. agricola and B. hayleyella on D. discoideum spore
production
Our first goal was to clarify how infection of Dictyostelium by Burkholderia symbionts differentially

influences host fitness. We used 12 natural isolates of Dictyostelium, each from three original condi-

tions, uninfected with Burkholderia, infected with B. agricolaris, or infected with B. hayleyella

(Table 1). We refer to these three types respectively as naı̈ve hosts, native-agricolaris hosts, and

native-hayleyella hosts. The word ‘host’ always means D. discoideum, and sometimes refers to

potential hosts not actually infected with Burkholderia. Prior to each treatment, all host types were

developed on nutrient media supplemented with bacterial food (Klebsiella pneumoniae). Amoebae,

spores, cells, slugs, fruiting bodies, stalks, and sori refer only to D. discoideum.

We looked at D. discoideum spore viability and other measures under the following conditions: a)

natural field state (naı̈ve, native-agricolaris, native-hayleyella), b) those same hosts cured of Burkhol-

deria (antibiotic treated), and c) condition after curing and reinfecting (with either B. agicolaris or B.

hayleyella) (Figure 1). We quantified percent spore viability and number of spores produced (Fig-

ure 2, and Supplementary files 1 and 2). We multiplied these two measures to get a single main

measure of fitness, viable spores produced.

D.discoideum fitness does not differ by wild burkholderia infection
status
We found that infection status in the field did not affect total viable spore counts for naı̈ve, native-

agricolaris, or native-hayleyella hosts (Figure 2a and Supplementary file 1a) (linear mixed model

(LMM), DAIC = �1.57, c2 = 5.57, DF = 2, p = 0.062). Thus, field-infected native hosts do not seem to

suffer any net fitness costs from infection by this measure.

D.discoideum fitness does not decrease with antibiotic treatment
To make parallel comparisons when we newly infected D. discoideum with either of the two Burkhol-

deria species, we first had to cure all hosts and be sure that curing in itself did not decrease fitness.

We found that wild-collected hosts of our three categories did not experience lowered fitness after

being cured with antibiotics (Figure 2a and b) (viable spore production: LMM, DAIC = 1.74,

c

2 = 2.26, DF = 2, p = 0.32, Supplementary file 1b). Antibiotic treatment actually increased viable

Table 1. Dictyostelium discoideum clones used for this study.

Clones are divided into specific sets each with naive, native-ag, and native-ha field-collected counterparts. They were collected from

Virginia, North Carolina, and Texas as indicated.

Set Clone Status Burkholderia Location collected Date collected GPS coordinates

1 QS9 Naı̈ve None Virginia-Mt Lake Biological Station Oct. 15 2000 N 37˚ 21’, W 80˚ 31’

QS70 Native B. agricolaris Texas- Houston Arboretum Jul. 15 2004 N 29˚ 46’, W 95˚ 27’

QS11 Native B. hayleyella Virginia-Mt Lake Biological Station Oct. 15 2000 N 37˚ 21’, W 80˚ 31’

2 QS18 Naı̈ve None Virginia-Mt Lake Biological Station Oct. 15 2000 N 37˚ 21’, W 80˚ 31’

QS159 Native B. agricolaris Virginia-Mt Lake Biological Station May. 2008 N 37˚ 21’, W 80˚ 31’

QS23 Native B. hayleyella Virginia-Mt Lake Biological Station Sep. 25 2000 N 37˚ 21’, W 80˚ 31’

3 QS17 Naı̈ve None Virginia-Mt Lake Biological Station Oct. 15 2000 N 37˚ 21’, W 80˚ 31’

QS161 Native B. agricolaris Virginia-Mt Lake Biological Station May. 2008 N 37˚ 21’, W 80˚ 31’

QS22 Native B. hayleyella Virginia-Mt Lake Biological Station Sep. 25 2000 N 37˚ 21’, W 80˚ 31’

4 QS6 Naı̈ve None Virginia-Mt Lake Biological Station Sep. 25 2000 N 37˚ 21’, W 80˚ 31’

NC21 Native B. agricolaris North Carolina-Little Butts Gap Oct. 1988 N 35˚ 46’, W 82˚ 20’

QS21 Native B. hayleyella Virginia-Mt Lake Biological Station Oct. 15 2000 N 37˚ 21’, W 80˚ 31’

DOI: https://doi.org/10.7554/eLife.42660.003
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spore production of native-agricolaris hosts compared to uncured native-agricolaris hosts (LMM,

DAIC = �5.68, c2 = 9.68, DF = 2, p = 0.008; Figure 2a and b).

D.discoideum fitness decreases with exposure to burkholderia
To test the effects of Burkholderia on all types of field-collected hosts, we grouped host types into

four sets, with each set representing a unique naı̈ve, native-agricolaris, and native-hayleyella host

(Table 1). We then infected each cured host type within the set with each Burkholderia from the

native hosts within the same set. We compared viable spore production of cured D. discoideum

hosts versus those same hosts artificially infected with B. agricolaris or B. hayleyella (Figure 2b, c

Figure 1. Illustration of host-symbiont pairs used throughout the study. D. discoideum clones were originally

harvested from the wild in three different states: uninfected (indicated as naı̈ve), or naturally infected with B.

agricolaris or B. hayleyalla (indicated as native-ag, and native-ha respectively). Clones were treated with antibiotics

to eliminate symbionts and are indicated with a ‘.c’. Clones were subsequently exposed to Burkholderia to initiate

new infections. Thus, experimental types include 1) Field harvested, 2) cured, and 3) lab infected hosts.

DOI: https://doi.org/10.7554/eLife.42660.004

Shu et al. eLife 2018;7:e42660. DOI: https://doi.org/10.7554/eLife.42660 5 of 25

Research article Evolutionary Biology Microbiology and Infectious Disease

https://doi.org/10.7554/eLife.42660.004
https://doi.org/10.7554/eLife.42660


and d). We found an overall effect on total spore viability with the addition of Burkholderia to all

antibiotic-cured hosts (LMM, DAIC = �198.81, c2 = 210.81, DF = 6, P � 0.001). Addition of either B.

agricolaris (Wald t = �10.19, DF = 96, P � 0.001) or B. hayleyella (t = �13.58, DF = 96, P � 0.001)

to any of the cured hosts decreased their fitness (Figure 2; Supplementary file 2).

We then asked whether D. discoideum hosts are adapted to the Burkholderia species they carried

in the field (using the same set strategy described above). Overall, the addition of B. hayleyella to D.

discoideum led to significantly lower viable spore production than did the addition of B. agricolaris

(Wald t = �4.48, DF = 96, P � 0.001) (Figure 2). We also tested for an interaction between native

host status and which Burkholderia species was added. There was an interaction effect on total via-

ble spore production (LMM, DAIC = �199.93, c2 = 215.92, DF = 8, P � 0.001) (Supplementary file

2e). To address specific adaptation, we performed separate tests for each Burkholderia species

added. When B. hayleyella was added to the three cured hosts, native-hayleyella hosts had higher

fitness than did either native-agricolaris or naı̈ve hosts (both P � 0.001, Figure 2d;

Supplementary file 2e). In contrast, native-agricolaris hosts did not have significantly higher fitness

with the addition of B. agricolaris than either native-hayleyella or naı̈ve hosts (both p > 0.05,

(Figure 2c; Supplementary 2e). However, there was a trend in the direction of native-agricolaris

doing best (Figure 2c). These results indicate that native-hayleyella hosts are adapted to coloniza-

tion by their field-acquired symbionts.

Figure 2. Burkholderia Infections Differentially Alter Spore Viability According to Burkholderia Species and Host

Background. Total viable spores were determined for naı̈ve and native hosts in their field harvested (a), cured (b),

B. agricolaris lab-infected (c), and B. hayleyella lab-infected state (d). Four clones were measured for each type

with three replicates for each (squares, triangles, circles, and diamonds represent set 1–4 clones respectively).

Spore viability for wild harvested B. agricolaris and B. hayleyella host clones is higher than their cured-re-infected

counterparts. Notably, spores from infected B. agricolaris and B. hayleyella native hosts (either naturally infected or

cured and re-infected with their original Burkholderia) have a higher fitness than Burkholderia infected non-native

counterparts. Bars represent significant differences (p < 0.05, and as indicated in supplemental tables).

DOI: https://doi.org/10.7554/eLife.42660.005

The following figure supplement is available for figure 2:

Figure supplement 1. Total Spore Number and Percent of Viable Spores for Burkholderia Infections in Diverse

Host Backgrounds.

DOI: https://doi.org/10.7554/eLife.42660.006
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D.discoideum morphology and burkholderia infected state
We next examined host morphology and symbiont localization at several stages of the D. discoi-

deum life cycle. Using transmission electronic and confocal microscopy, we examined one D. discoi-

deum clone for each host type outlined above and in Figure 1 (QS9 for the naı̈ve, QS70 for the

native-agricolaris, and QS11 for the native-hayleyella host). These were either in an uninfected state

or infected with one representative of B. agricolaris (Ba70 from QS70) or of B. hayleyella (Bh11 from

QS11).

Food bacteria location inside D. discoideum uninfected with
burkholderia
D.D. discoideum morphology without Burkholderia in both naı̈ve and cured native hosts, has vegeta-

tive cells that harbor no intracellular bacteria but contain many empty multilamellar bodies inside

vacuoles (Figure 3a and Figure 3–figure supplement 1). Multilamellar bodies are predominantly

composed of amoebae membranes and are thought to be a byproduct of bacterial digestion as they

are produced when amoebae are fed bacterial food (Denoncourt et al., 2016; Paquet et al., 2013).

Confocal microscopy of vegetative amoebae from this same host set grown with GFP-labeled food

bacteria (K. pneumoniae) contain little to no intracellular GFP, suggesting that they have digested

food bacteria by the time of fixation (Figure 4a).

After bacterial food has been depleted, vegetative cells aggregate to form multicellular migratory

slugs. In accordance with our observations that all bacteria were killed and digested by vegetative

cells, we found no intact bacteria in naı̈ve or cured native host slugs (Figure 5a). In addition, slug

cells were in general compacted with electron dense materials and contained no vacuoles or multi-

lamellar bodies (Figure 5a).

Ultimately, slug cells differentiate into fruiting bodies consisting of dead stalk cells that support a

sorus containing reproductive spore cells. In uninfected fruiting bodies, we did not detect bacteria in

stalk cells or spores (Figures 6a and 7a). Instead spores were packed with electron dense materials

with no food vacuoles or multi-lamellar bodies (Figure 6a). Stalk cells showed plant cell-like charac-

teristics, having a cellulosic cell wall and containing a single large vacuole (Figure 6a). Inside the

large vacuole, there were some mitochondria and other cellular materials but no bacteria

(Figure 6a). Taken together, these results suggest that the food bacterium we used, Klebsiella pneu-

moniae, was efficiently cleared during the social cycle from amoebae uninfected by Burkholderia

and the amoebae then aggregate and produce bacteria-free fruiting bodies.

Burkholderia location inside D. discoideum
When D. discoideum is infected with Burkholderia, we find it in amoebae, slug cells, spores, and

stalk cells. Using confocal microscopy and RFP labeled Burkholderia strains, we were able to specifi-

cally identify high levels of Burkholderia inside host amoebae (Figure 4b,c). B. hayleyella was present

in more of the amoebae than B. agricolaris was (Figure 4b,c). The higher number of B. hayleyella

bacteria may account for the more detrimental fitness consequences it imposes (Figure 2).

The food bacterium K. pneumoniae labelled with GFP was occasionally observed in Burkholderia

infected amoebae, particularly those infected by B. agricolaris (Figures 4b and 7b). This suggests

that Burkholderia colonization may partially impede food digestion, thereby allowing co-colonization

of secondary bacteria and contributing to the proto-farming phenotype (Brock et al., 2011;

DiSalvo et al., 2015). However, confocal images demonstrate that Burkholderia are much more

abundant in amoebae than are K. pneumoniae, indicating that the majority of intact intracellular bac-

teria observed via transmission electron microscopy (TEM) are most likely Burkholderia cells (Fig-

ures 3, 5 and 6).

TEM of vegetative amoebae shows intact bacteria which we infer to be Burkholderia surrounded

by multi-lamellar bodies and located inside what appear to be food vacuoles (Figure 3b,c). Their

undamaged appearance suggests that they are resistant to phagocytic digestion. In addition to the

presence of intact intracellular bacteria, we also observe empty multi-lamellar bodies inside food

vacuoles of infected amoebae. This suggests that digestion is not completely arrested during coloni-

zation, an unsurprising finding given that hosts continue to grow and multiply. Interestingly, we did

not find multi-lamellar bodies containing intact bacteria secreted into the extracellular environment,

indicating that Burkholderia may not be expelled from host cells via multi-lamellar body excretion.
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In Burkholderia infected hosts, intact bacteria are retained in food vacuoles throughout the transi-

tion to multicellular slugs, suggesting that bacteria stay within phagosomes throughout the aggrega-

tion stage (Figure 5b,c). Through TEM, we did not detect obvious morphological defects in infected

slugs or differences between slugs infected with different Burkholderia species.

After fruiting body development, we find intracellular bacteria in both stalk and spore cells of Bur-

kholderia infected hosts (Figure 6b,c). In infected stalk cells, intact bacteria reside in single large

Figure 3. Bacterial cells are found within Burkholderia exposed vegetative amoebae. Transmission electron

micrographs of vegetative amoebae show naı̈ve and cured native amoebae with intracellular morphologies

suggestive of active bacterial digestion with no evidence of intact intracellular bacteria (a). In contrast, bacterial

cells can be found within B. agricolaris (b) and B. hayleyella (c) infected hosts. Arrows point to bacterial cells. More

bacteria are observed in the B. hayleyella infected naı̈ve host than in field harvested native-hayleyella and cured

and re-infected native-hayleyella hosts (c). Bacterial cells appear to be within vacuole-like compartments. Scale bar

(applicable to all): 2 um.

DOI: https://doi.org/10.7554/eLife.42660.007

The following figure supplement is available for figure 3:

Figure supplement 1. Multi-lamellar bodies excreted by vegetative amoebae.

DOI: https://doi.org/10.7554/eLife.42660.008
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vacuoles inside the cellulosic cell wall (Figure 6b,c). In spore cells, bacteria remain within vacuoles

(Figure 6b,c). We also observed bacterial cells outside spores but within the sorus, suggesting that

bacteria may be carried interstitially into fruiting body structures, or they may be escaping pre-spore

or spore cells within the sorus (Figure 7b,c).

We did not observe strikingly altered morphologies for B. agricolaris infected spore and stalk cells

(Figure 6b). However, the spore and stalk cells of naı̈ve hosts infected with B. hayleyella appeared

to be morphologically aberrant (Figure 6c). We found numerous broken spores and signs that bacte-

rial cells were escaping from damaged spores (Figure 6c). In addition, the whole stalk structure was

often collapsed and filled with bacteria (Figure 6c). No clear cellulosic cell wall was observed in stalk

cells, suggesting that B. hayleyella colonization inhibits the normal development of stalk cells or

results in their disruption in naı̈ve hosts and native-agricolaris hosts.

Figure 4. Burkholderia is found abundantly in colonized vegetative amoebae. Confocal imaging of fixed and stained vegetative amoebas show little to

no intracellular bacteria in uninfected clones (a). However, abundant Burkholderia (Burkholderia-RFP shown in red) is found in B. agricolaris (b) and B.

hayleyella (c) infected hosts. Occasional intracellular food bacteria (Klebsiella-GFP shown in green) is seen in B. agricolaris hosts (c). Spore coats are

stained with phalloidin shown in grey. Scale bar 10 um.

DOI: https://doi.org/10.7554/eLife.42660.009
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In line with the visualized differences between the abundance of the two species of Burkholderia

in amoebae, we find significantly more spores infected with RFP labeled B. hayleyella

(mean = 88.8%) than similarly labeled B. agricolaris (mean = 35.3%) (F2,4 = 191.33, p < 0.001)

(Figure 7d). These results indicate that the degree of fitness detriment imposed by B. hayleyella

could be a result of bacterial infection prevalence within the population. However, B. agricolaris dis-

plays a significantly higher intracellular density (mean = 10.55) within individual infected spores than

B. hayleyella (mean = 7.45) (F1,177 = 23.845, p < 0.001), while host background does not play a sig-

nificant role in Burkholderia intracellular density (F2,177 = 2.723, p = 0.068) (Figure 7e).

Figure 5. Intracellular bacteria are retained in naı̈ve migrating slugs exposed to Burkholderia and in native Burkholderia hosts. Transmission electron

micrographs of uninfected (a) show closely packed amoebae with internal structures reminiscent of previous bacterial digestion but without evidence of

intact internal bacteria. In contrast, B. agricolaris (b) and B. hayleyella (c) infected slugs retain intracellular bacteria. Bottom panels represent magnified

versions (see box) of upper panels. Scale bar (applicable to all panels in row) 2 um.

DOI: https://doi.org/10.7554/eLife.42660.010
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Figure 6. Bacterial cells are retained in spore and stalk cells from Burkholderia-exposed hosts. As visualized

through transmission electron microscopy, (a) uninfected hosts form sturdy spores and stalk cells with no

detectable bacteria. Spores and stalk cells retain intracellular bacteria in B. agricolaris (b) and B. hayleyella (c)

hosts. Naı̈ve B. agricolaris hosts appear structurally similar to uninfected cells while naı̈ve B. hayleyella hosts have

compromised spore coats and collapsed stalk structures filled with bacteria. Scale bar: 2 um.

DOI: https://doi.org/10.7554/eLife.42660.011

Shu et al. eLife 2018;7:e42660. DOI: https://doi.org/10.7554/eLife.42660 11 of 25

Research article Evolutionary Biology Microbiology and Infectious Disease

https://doi.org/10.7554/eLife.42660.011
https://doi.org/10.7554/eLife.42660


Figure 7. Burkholderia is retained in the sori of developed D. discoideum hosts and the percent of Burkholderia positive spores differs according to

Burkholderia species. Confocal images show no intra- or extracellular bacteria in uninfected spores (a) Abundant Burkholderia is seen in B. agricolaris

(b) and B. hayleyella (c) hosts, with more infected spores seen for B. hayleyella (d) but more Burkholderia-RFP cells detected per infected spore for B.

agricolaris hosts (e). Co-infection by food bacteria is occasionally observed in B. agricolaris infected spores (b). For a-c: Klebsiella-GFP shown in green,

Burkholderia-RFP shown in red, and calcofluor stain shown in grey. Top panels are image slices; bottom panels are max intensity projections of z stacks.

Scale bar: 10 um.

DOI: https://doi.org/10.7554/eLife.42660.012
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Burkholderia impact on fruiting body morphology
Since Burkholderia are found inside D. discoideum, it is no surprise they impact the morphology of

fruiting bodies. In their field-collected state, the three clones carrying no Burkholderia, or B. agrico-

laris or B. hayleyella differed in both stalk height and stalk volume (F2,27 = 42.6, P � 0.001, F2,27 =

50.8, P � 0.001, Figure 8b, Supplementary file 3a). The main pattern is that both height and vol-

ume were significantly lower in native-hayleyella hosts (Figure 8; Supplementary file 3a).

Native-agricolaris fruiting bodies were generally similar to the naı̈ve host but taller than the

native-hayleyella host (p < 0.001). In the native-agricolaris host, the spore masses often slid down

their stalks or the fruiting bodies fell over, though the stalks were not significantly taller than in the

Figure 8. Fruiting body morphology is differentially altered by Burkholderia colonization. Macro photographs of fruiting bodies (a) show slightly

different morphologies according to Burkholderia infection status. Sori measurements demonstrate that field collected native-hayleyella hosts produce

shorter stalks and less voluminous sori (b). Cured hosts produce similar fruiting body measurements across host background (c). Cured hosts

subsequently infected with B. agricolaris produce slightly taller stalks, which is most noticeable in cured and re-infected native-agricolaris hosts (d).

Cured hosts subsequently infected with B. hayleyella all produce significantly shorter stalks with overall smaller fruiting body dimensions (e).

DOI: https://doi.org/10.7554/eLife.42660.013
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naı̈ve host. If the spores fall off their stalks, they will not have the advantage of facilitated transport

by a vector that they would have at the top of the stalk (Smith et al., 2014).

There was also an overall difference in sorus diameter and sorus volume among the three hosts in

their field state (Figure 8; F2,236 = 25.4, P � 0.001, F2,236 = 22.9, P � 0.001, Supplementary file

4a). Compared to the naı̈ve hosts, both the native-agricolaris and native-hayleyella hosts had smaller

sorus sizes (both p < 0.001) but were not different from each other.

Curing with antibiotics caused no significant change in any stalk or spore measurements

(Figure 8a,b,c; Supplementary file 3b, Supplementary file 4b). However, when Burkholderia bacte-

ria were added to the cured hosts, we saw species-specific effects on morphology (Figure 8;

Supplementary file 3c-d, Supplementary file 4c-d). Overall, the addition of B. agricolaris changed

stalk height (F1,58 = 54.9, P � 0.001) significantly increasing it in two of the hosts

(Supplementary file 3c). Stalk volume was not affected. Addition of B. agricolaris also significantly

changed both sorus diameter and sorus volume (F2,240 = 25.4, P � 0.001, F2,240 = 21.2, P � 0.001).

Native-hayleyella hosts had larger sori when infected with B. agricolaris (Figure 8;

Supplementary file 4c).

The addition of B. hayleyella decreased both stalk height (Figure 8; F1,58 = 366.4, P � 0.001) and

stalk volume (F1,58 = 120.2, P � 0.001, Supplementary file 3d) significantly in all three host types.

Addition of B. hayleyella also affected sorus diameter (F2,240 = 10.1, P � 0.001) and volume (F2,240 =

11.3, P � 0.001) with a significant specific effect of smaller sori in the naı̈ve host (Figure 8;

Supplementary file 4d).

There were interaction effects between the amoebae hosts’ native infection status and the spe-

cies of Burkholderia added for all traits: stalk height (F4,81 = 4.9, p = 0.0015), stalk volume (F4,81 =

7.4, P � 0.001; Figure 8; Supplementary file 3e), sorus diameter (F4,719 = 5.3, p = 0.0004) and

sorus volume (F4,719 = 4.5, p = 0.0014; Figure 8; Supplementary file 4e). However, these interac-

tions were matters of degree of change and did not involve sign changes: for all four measurements,

fruiting bodies with B. agricolaris were taller than those with B. hayleyella (Figure 8;

Supplementary file 3e, Supplementary file 4e).

Discussion
Here, we characterized D. discoideum infection by two symbiotic Burkholderia species, B. hayleyella

and B. agricolaris (Brock et al., 2018). We looked at their impact on D. discoideum by comparing

wild type, cured, and re-infected hosts. We assessed fitness measured as production of viable

spores, and also evaluated morphological changes in amoebae, slugs, and fruiting bodies with

numerical and microscopic data. We found that both Burkholderia species are a burden to D. discoi-

deum under our experimental conditions. However, wild collected hosts did not differ in viable spore

production according to whether or not they carried either species of Burkholderia. Even so, D. dis-

coideum with their field-collected state of infection did differ in fruiting body dimensions, with unin-

fected hosts generally having taller, larger stalks, and larger sori. What explains the differences from

experimental infection is unclear. Infection in the wild may be at a lower level than we used experi-

mentally or may have initiated at a lower level that slowly amplified over time, allowing host acclima-

tion to the metabolic costs of infection.

Once D. discoideum hosts are cured with antibiotics, so all comparisons can start from the same

baseline, we found that there were few within treatment differences according to host type. The

only exception to this is that native-hayleyella hosts produced more viable spores than did naı̈ve or

native-agricolaris hosts. This fitness difference is an indication of co-adaptation.

When we map naı̈ve, native-agricolaris, and native-hayleyella host types from Haselkorn et al.

(2018) on a previously generated phylogeny, we see no phylogenetic differentiation whatsoever

between host types (Douglas et al., 2011). It is most likely that diverse amoebae isolates get

infected with Burkholderia in nature, and then adaptations that provide these hosts with increased

resilience are selected for over time. Perhaps the general lack of difference among host types with

infection is due to sex, which not only recombines genes, but also exposes new clones horizontally

to endosymbionts like Burkholderia. Dictyostelium recombination rates are high in natural popula-

tions (Flowers et al., 2010). The differences reported here among clones of D. discoideum indicate

that specific co-adaptation in clones infected with B. hayleyella can occur during the long periods

between sexual reproduction. Thus, reproduction by binary fission and vertical transmission of B.
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hayleyella is likely to occur much more often than sexual reproduction which could result in horizon-

tal transmission.

Our previous work demonstrated that Burkholderia infections have contextually dependent costs

and benefits for their hosts. In food abundant conditions (which we used here) Burkholderia infec-

tions are generally detrimental to host fitness (Brock et al., 2011). However, when dispersed to

food scarce conditions, Burkholderia infected hosts are able to transport food bacteria with them

which restocks their food source and results in higher host fitness (‘farming’). These fitness outcomes

may result from the ongoing dynamics underlying long-term symbiosis.

A compelling question is what mediates this tolerance to B. hayleyella infection in its native host?

It is possible that native hosts better inhibit infection events or better control intracellular replication

of symbiont cells. The percent of spore cells infected in the population post symbiont exposure are

not significantly different between a native-hayleyella host and naı̈ve hosts, which does not support

the idea that infection events are inhibited by hosts conditioned to that species. Further, we did not

see a significantly different intracellular density of B. hayleyella-RFP across hosts from confocal

micrographs, suggesting that intact spores from different hosts can accommodate similar numbers

of bacterial cells. However, our TEM analysis qualitatively points to the idea that after infection, intra-

cellular replication rates may differ between naı̈ve and native-hayleyella hosts. TEM images of native

and naı̈ve B. hayleyella hosts consistently suggest a higher load of intracellular bacterial cells at each

stage. For instance, naı̈ve B. hayleyella hosts produce paltry stalks that appear to be overwhelmed

by bacterial cells and infected spore cells that look on the verge of deteriorating. Neither of these

extreme states were observed in the native host. This could be mediated by host countermeasures

that control intracellular symbiont growth or disarm potential toxic symbiont byproducts.

Compared to B. hayleyella, B. agricolaris infections result in more modest (and statistically insig-

nificant) drops in D. discoideum viable spore production for naı̈ve and cured re-infected native-agri-

colaris hosts. B. agricolaris appears to be less invasive to the host population as it is found in only

about a quarter of spore population after exposure. Despite this, it is maintained in infected popula-

tions throughout the social stage and over multiple social cycles (DiSalvo et al., 2015). However, B.

agricolaris establishes a higher intracellular density within infected spores than B. hayleyella. These

observations may be explained by reduced intracellular entrance efficiency coupled with higher

intracellular replication rates. Alternatively, B. agricolaris could be more efficiently cleared by host

mechanisms and requires a higher multiplicity of infection to overcome clearance, something that

might help explain its more modest detrimental effect on host populations.

Earlier studies have identified other differences between naı̈ve D. discoideum and those carrying

B. hayleyella (Brock et al., 2013; Brock et al., 2016b; Stallforth et al., 2013). D. discoideum hosts

carrying B. hayleyella harmed symbiont-free D. discoideum clones, causing them to lose in social

competition (Brock et al., 2013). In another study we compared cured and uncured clones of B. hay-

leyella and found that slugs from uncured clones move less far across a Petri plate, a cost of infection

(Bates et al., 2015). Interestingly, in the current study we detected no visible differences between

cured and uncured slug cells. The recent discovery of sentinel cells as innate immune cells

(Chen et al., 2007) made us wonder about how they fare with Burkholderia infected hosts. We

found that D. discoideum hosts with Burkholderia do not produce as many sentinel cells but even so

seem as resistant to toxins as uninfected lines with normal levels of sentinel cells (Brock et al., 2013;

Brock et al., 2016b; Stallforth et al., 2013).

Another interesting recent result on the interaction between D. discoideum and bacteria involves

the role of the lectin discoidin 1 (Dinh et al., 2018). Clones infected with Burkholderia produced

much greater quantities of lectins early in the social stage compared to uninfected clones. These lec-

tins coated the food bacterium K. pneumoniae allowing it to avoid digestion. This is undoubtedly

just a beginning, though a fascinating one, in our understanding of how Burkholderia take over D.

discoideum cellular machinery to change relationships with bacteria.

D.D. discoideum is already a popular system for examining the molecular mechanisms of bacterial

pathogenesis for a variety of important pathogens (Cosson and Soldati, 2008). However, this work

demonstrates several properties of this interaction that are distinct from other Dictyostelium-bacte-

rial associations, possibly owing to its natural prevalence. For instance, Bordetella bronchiseptica can

intracellularly infect vegetative D. discoideum amoebae and persist in sorus contents. However, in

contrast to Burkholderia, B. bronchiseptica is localized extracellularly in sori rather than inside spore

cells (Taylor-Mulneix et al., 2017). Infections of D. discoideum with other intracellular pathogens
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such as Legionella pneumophila often produce secreted multilamellar bodies which harbor the bac-

terial pathogen (Denoncourt et al., 2014; Paquet and Charette, 2016), while in this study we found

no evidence of Burkholderia excreted in multilamellar bodies. In addition, many bacteria resistant to

amoebae are found packaged in multilamellar bodies, a process speculated to enhance their resis-

tance to environmental stress (Denoncourt et al., 2014). Thus, Burkholderia symbionts are most

likely employing alternative tactics to not only evade digestion, but to also evade expulsion.

Burkholderia is important in another model symbiosis system, that with the bean bug, Riptortus

pedestris (Takeshita and Kikuchi, 2017). These bugs acquire Burkholderia insecticola horizontally.

They reside in the bean bug gut where they are presumably active in nutrition. They are a good

model because it is a facultative symbiosis and both partners can be cultured independently.

We are in a new age of symbiosis studies where we can apply Koch’s principles of curing, re-

infecting, and looking for evidence of disease. We can use genomics, experimental evolution and

many other methods to ever more systems. The D. discoideum-Burkholderia system holds unique

potential for studying eukaryote-bacterial associations. Given its natural occurrence, we can perform

long-term ecological surveys, easily isolate new host-symbiont pairs, investigate naturally derived vs

newly induced associations using a variety of partner pairing, and we can do experiments in evolu-

tion allowing each partner to evolve together or separately. In time, B. hayleyella and B. agricolaris

in D. discoideum may be added to the classic symbioses of squid-vibrio, aphid-Buchnera, tsetse fly-

Wiggelsworthia, legume-Rhizobia and more (Bennett and Moran, 2015; Bing et al., 2017;

Koehler et al., 2018; Werner et al., 2015).

Materials and methods

Key resources table

Reagent type
(species)
or resource Designation

Source
or reference Identifiers

Additional
information

Strain, strain
background
(Dictyostelium
discoideum)

QS6 Douglas
et al., 2011, Brock
et al., 2011

Virginia-Mt
Lake Biological
Station

Strain, strain
background (D.discoideum)

QS9 Douglas
et al., 2011, Brock
et al., 2011

Virginia-Mt Lake
Biological Station

Strain, strain
background (D.
discoideum)

QS17 Douglas
et al., 2011, Brock
et al., 2011

Virginia-Mt
Lake Biological
Station

Strain, strain
background (D.
discoideum)

QS18 Douglas
et al., 2011, Brock
et al., 2011

Virginia-Mt
Lake Biological
Station

Strain, strain
background (D.
discoideum)

QS11 Douglas et al., 2011, Brock et al., 2011 Virginia-Mt
Lake Biological
Station

Strain, strain
background (D.
discoideum)

QS21 Douglas et al., 2011, Brock et al., 2011 Virginia-Mt
Lake Biological
Station

Strain, strain
background (D.
discoideum)

QS22 Douglas et al., 2011, Brock et al., 2011 Virginia-Mt
Lake Biological
Station

Strain, strain
background (D.
discoideum)

QS23 Douglas et al., 2011, Brock et al., 2011 Virginia-Mt
Lake Biological
Station

Strain, strain
background (D.
discoideum)

QS70 Douglas et al., 2011 Texas- Houston
Arboretum

Strain, strain
background (D.
discoideum)

QS159 Brock et al., 2011 Virginia-Mt
Lake Biological
Station

Continued on next page
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Continued

Reagent type
(species)
or resource Designation

Source
or reference Identifiers

Additional
information

Strain, strain
background (D.
discoideum)

QS161 Brock et al., 2011 Virginia-Mt
Lake Biological
Station

Strain, strain
background (D.
discoideum)

NC21 Francis and
Eisenberg, 1993

NC-Little Butts
Gap

Strain, strain
background
(Burkholderia
hayleyella)

BhQS11 Haselkorn et al., 2018 isolated from
QS11

Strain, strain
background (B.
hayleyella)

BhQS21 Haselkorn et al., 2018 isolated from
QS21

Strain, strain
background (B.
hayleyella)

BhQS22 Haselkorn et al., 2018 isolated from
QS22

Strain, strain
background (B.
hayleyella)

BhQS23 Haselkorn et al., 2018 isolated from
QS23

Strain, strain
background
(Burkholderia
agricolaris)

BaQS70 Haselkorn et al., 2018 isolated from
QS70

Strain, strain
background
(B. agricolaris)

BaQS159 Haselkorn et al., 2018 isolated from
QS159

Strain, strain
background
(B. agricolaris)

BaQS161 Haselkorn et al., 2018 isolated from
QS161

Strain, strain
background
(B. agricolaris)

BaNC21 Haselkorn et al., 2018 isolated from
NC21

Strain, strain
background
(B. agricolaris)

BaQS70-
RFP.1

DiSalvo et al., 2015 modified from
BaQS70

Strain, strain
background
(B. hayleyella)

BhQS11-RFP.2 This paper modified from
BaQS11

Strain, strain
background
(Klebsiella
pneumoniae)

KpQS Dictybase (http://dicty
base.org/)

Strain, strain
background
(K. pneumoniae)

KpQS-GFP.1 This paper

Recombinant
DNA reagent

pmini-Tn7-
KS-GFP

Teal et al., 2006

Recombinant
DNA reagent

pmini-Tn7-
gat-P1-RFP

Su et al., 2014

D. discoideum strains and culture conditions
We collected D. discoideum isolates from the field that were uninfected, or infected with either B.

agricolaris, or B. hayleyella. Table 1 describes host clone sets, location collected, and infection sta-

tus. We used host sets 1–4 for the spore fitness assays and set one for all other experiments. We

used Klebsiella pneumoniae obtained from the Dicty Stock Center (http://dictybase.org/StockCen-

ter/StockCenter.html) as our food bacterium for D. discoideum. We grew all D. discoideum from
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spores on SM/5 agar plates (2 g glucose, 2 g BactoPeptone (Oxoid), 2 g yeast extract (Oxoid), 0.2 g

MgCl2, 1.9 g KH2PO4, 1 g K2HPO4 and 15.5 g agar per liter) supplemented with K. pneumoniae at

room temperature (21˚C).

Symbiotic bacterial strains
We used D. discoideum-associated Burkholderia previously isolated and sequenced to verify closest

16S identity (Brock et al., 2011; DiSalvo et al., 2015). B. agricolaris and B. hayleyella strains were

isolated from QS70, QS159, QS161, and NC21, and QS11, QS23, QS22, and QS21 D. discoideum

hosts respectively. According to multi-locus sequence typing all B. hayleyella strains belong to the

same haplotype, B. agricolaris from QS70 and QS161 are the same haplotype and B. agricolaris

from NC21 and QS159 are unique haplotypes (Haselkorn et al., 2018).

Removal of symbiont from native D. discoideum hosts
We generated symbiont-free native host clones by tetracycline, or by ampicillin-streptomycin, treat-

ment as previously described (Brock et al., 2011; DiSalvo et al., 2015). We confirmed loss of infec-

tion status using the spot test assay and PCR analysis of Burkholderia, and K. pneumoniae in D.

discoideum sori as previously described.

Lab infections
We collected stationary phase bacteria in starvation buffer (2.2 g KH2PO4 monobasic and 0.7 g

K2HPO4 dibasic/liter) from bacteria grown on SM/5 plates. We determined the bacterial absorbance

(OD600) using a BioPhotometer (Eppendorf, NY) and set all suspensions to optical density (OD600

1.5). For experiments using lab-infected lines, we mixed the specified Burkholderia species at 5%

and K. pneumoniae at 95% vol and plated D. discoideum spores (as indicated) with 200 ml of the

bacterial mixture on SM/5 plates.

Spot test assay
We verified infection status by spot test assay as previously described (Brock et al., 2011). Briefly,

we transferred sorus contents from individual D. discoideum fruiting bodies to SM/5 agar plates

using a 10 ml filter pipet tip. We incubated at 21˚C for one week and checked for bacterial growth as

an indication of infection.

Fitness assay
We analyzed spore production and viability as a proxy for amoeba fitness using four sets of D. dis-

coideum clones (Table 1). We tested three conditions: uninfected (naı̈ve, cured naı̈ve, cured native-

agricolaris, and cured native-hayleyella), B. agricolaris infected (native-agricolaris, and naı̈ve, native-

agricolaris, and native-hayleyella first cured then infected with B. agricolaris) and B. hayleyella

infected (native-hayleyella, and naı̈ve, native-agricolaris, and native-hayleyella first cured then

infected with B. hayleyella) across three temporal replicates.

To set up each assay, we plated 2 � 105 spores of each clone in each condition (with lab infected

lines being plated on Burkholderia-Klebsiella mixtures as described) onto SM/5 agar plates in dupli-

cate. All clones formed fruiting bodies by 3 days, so we performed data collection five days after

fruiting. We used the first plate to ascertain total spore production as previously described

(Brock et al., 2011). Briefly, spores were collected by washing plates with starvation buffer supple-

mented with 0.01% NP-40 alternative (Calbiochem). We counted spore dilutions on a hemocytome-

ter using a light microscope and determined total spores according to total volume collected and

dilution factor. To determine the proportion of viable spores we collected spores into starvation

buffer only and determined spore density as above. We diluted suspensions to 104 and spread 100

spores over ten 100 � 15 mm2 SM/5 agar plates supplemented with 200 ml K. pneumoniae in starva-

tion buffer (OD600 1.5). After 2 days the percentage of viable spores was determined by counting

plaques formed on bacterial lawns.

Transmission electron microscopy
We prepared amoebae by plating 2 � 105 spores (with Klebsiella for uninfected or native-infected

and for the indicated Burkholderia mixture for lab-infected). We harvested log-phase vegetative cells
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approximately 36 hr after plating and fruiting bodies 4 days after plating. To prepare migrating

slugs, we mixed 200 mL of centrifuge-concentrated K. pneumoniae (absorbance, OD600 75) with 5 �
106 spores and plated the mixture in a straight line across a starving agar plate, which was then

wrapped in aluminum foil with a small hole opposite the spore line. We incubated plates under a

direct light and allowed slugs to migrate for about 80 hr before processing. We processed all stages

by first adding fix solution (2% paraformaldehyde/2.5% glutaraldehyde (Polysciences Inc., Warring-

ton, PA) in 100 mM cacodylate buffer, pH 7.2), followed by low melting agarose, over the plates to

keep structures intact.

We fixed samples for 1–3 hr at room temperature then washed with cacodylate buffer and post-

fixed in 1% osmium tetroxide (Polysciences Inc.) for 1 hr. We then rinsed samples extensively in

dH2O prior to en bloc staining with 1% aqueous uranyl acetate (Ted Pella Inc., Redding, CA) for 1

hr. Following several rinses in dH2O, we dehydrated samples in a graded series of ethanol and

embedded them in Eponate 12 resin (Ted Pella Inc.). Sections of 95 nm were cut with a Leica Ultra-

cut UCT ultramicrotome (Leica Microsystems Inc., Bannockburn, IL), stained with uranyl acetate and

lead citrate, and viewed on a JEOL 1200 EX transmission electron microscope (JEOL USA Inc., Pea-

body, MA) equipped with an AMT eight megapixel digital camera (Advanced Microscopy Techni-

ques, Woburn, MA).

Confocal microscopy
We constructed RFP labeled versions of B. agricolaris (from QS70) and B. hayleyella (from QS11) by

performing triparental mating procedures with the E. coli helper strain E1354 (pTNS3-asdEc) and the

E coli donor strain E2072 with pmini-Tn7-gat-P1-RFP and confirmed glyphosate resistant RFP posi-

tive Burkholderia conjugants using Burkholderia specific PCR as previously described (DiSalvo et al.,

2015; Norris et al., 2009; Su et al., 2014). We constructed a GFP labeled version of K. pneumoniae

using a triparental mating strategy with the donor E. coli donor strain WM3064 containing pmini-

Tn7-KS-GFP and the E. coli helper strain E1354 helper pUXBF13 as previously described

(Kikuchi and Fukatsu, 2014; Teal et al., 2006). We confirmed kanamycin resistant GFP positive

recipient cells by 16S rRNA gene sequencing.

Using Burkholderia-RFP and Klebsiella-GFP we infected set one hosts (using cured native hosts)

as previously described. Control samples were plated with K. pneumoniae-GFP only. We harvested

log-phase amoebae approximately 36 hr after plating by flooding plates with 5 ml SorMC and wash-

ing 3x in PBS to remove residual bacteria. We set amoebae to 1 � 106 cells/ml and placed 200 ml

onto #1.5 glass coverslips for 15 min to allow them to adhere before fixing in 4% formaldehyde for

10 min. We then washed with PBS, permeabilized with 0.5% triton-X, and stained with Alexa Fluor

680 phalloidin (lifetechnologies) for 30 min before mounting in Prolong Diamond antifade mountant

(lifetechnologies). We prepared spores four days after plating by collecting sori into starving buffer

with 1% calcofluor white and spreading the solution on a glass bottom culture dish under a 2% aga-

rose overlay.

We collected images using a Nikon A1Si Laser Scanning confocal microscope with a CFI Plan Apo

VC Oil 1.4 NA 100X objective and Nikon Elements software or an Olympus Fluoview FV1000 confo-

cal microscope using Plan Apo Oil 1.4NA 60X objective and Olympus software. Z-sections were

taken every 0.5 microns with an average of 2 at 1024 � 1024 resolution pixels or 600 � 600 pixels.

We excited RFP using the 561 laser, GFP with the 488 laser, Calcoflour-white with the 408 laser, and

Alexa Fluor 680 Phalloidin with the 640 laser. We created composite images in FIJI.

Infectivity quantification
We quantified bacterial density within individual spores by counting the number of visible Burkholde-

ria-RFP cells within infected spores from confocal micrographs. We counted 15 infected spores for

each condition from two individual replicates (30 spores total). We quantified the population of Bur-

kholderia-RFP infected spores for the set one clones using the BD accuri C6 flow cytometer. We

plated spores in duplicate as described in the confocal microscopy section. Four days after plating,

we resuspended three sori from each plate into 500 ml of starving buffer with 0.01% NP-40 alterna-

tive. We ran 100 ml of each vortexed sample through the flow cytometer. We used non-fluorescent

controls to establish an accurate gating between fluorescent and non-fluorescent boundaries. We

measured and averaged duplicates for a total of 6 temporal replicates.
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Morphometrics
We quantified fruiting body size and shape for each clone in each condition using set one clones.

We plated the clones as described under fitness assays. Five days after fruiting, we carefully cut and

removed a thin strip of agar approximately 5 mm wide from the central area of an experimental

plate and laid it on its side in a Petri plate. We placed dampened Kimwipes around the agar slice to

prevent desiccation. We used a Leica EC3 scope with the LASD core package LAS V4.1) to collect

data. Fruiting body images were taken randomly along with graticule images for calibration. We

took six measurements of each fruiting body: sorus width, sorus length, stalk height and the width of

the stalk at its base, midpoint and at the top just below the sorus (Buttery et al., 2009). Stalk height

was measured from the base of stalk to the tip of the sorus. We calculated sorus volume applying

the formula for the volume of a sphere using diameter, V = 1/6 p d3. We calculated stalk volume

using the formula of a cylinder, V= p r2 h, where height (h) is the stalk height and radius (r) is half the

mean of the three stalk width measurements. We measured about 80 sori and 20 stalks for each

clone for each condition.

Statistical analyses
All analyses were done in R. For fitness assays, we tested the effect of antibiotic treatment using ran-

dom-slope linear mixed models (LMM) on those D. discoideum hosts not reinfected with Burkholde-

ria. Our models included either spore numbers or proportion of viability as the response variable,

host as random effect, and antibiotic treatment as a fixed effect. We similarly tested the effects of

Burkholderia infection in the field and in the lab using random-slope LMMs on data from hosts cured

with antibiotics. Our models included spore numbers or proportion viability as response variable,

host as random effect, lab or field-infection status and Burkholderia type as fixed effects, as well as

an interaction between field-infection status and Burkholderia infection. For all LMMs, we fitted

models and assessed model fit with likelihood ratio tests executed with the lme4 package

(Bates et al., 2015) in the R environment (v. 3.3.3, R Core Team 2017). We tested the significance of

fixed effects with Wald tests using the t distribution, which we executed with the packager lmerTest

(Kuznetsova et al., 2017). These tests use (Satterthwaite, 1946) approximation for denominator

degrees of freedom to calculate p-values. Finally, for all post hoc multiple comparisons, we per-

formed pairwise contrasts of least-square means with a multivariate t distribution adjustment as

implemented with the package lsmeans (Lenth, 2016).

For morphometric analyses, we also tested the effect of antibiotic treatment on those hosts not

re-infected with Burkholderia. We used a 2-way analysis of variance (ANOVA) with one of our four

morphological measurements as the response variable and both Burkholderia colonization and anti-

biotic treatment as fixed effects. Similarly, we tested the effects of Burkholderia colonization from

the field and Burkholderia infection in the lab on the amoeba hosts with 2-way ANOVAs on amoebae

cured with antibiotics. Again, one of the four morphological measurements was the response vari-

able with field-colonization status, Burkholderia infection, and an interaction between them as fixed

effects. For all ANOVAs, when appropriate, we performed post hoc Tukey HSD tests for multiple

comparisons. Sorus width data were square-root transformed as
ffiffiffiffiffiffiffiffiffiffiffi

xþ 2
p

and sorus volume data were

loge-transformed to meet test assumptions of normally distributed residuals.

We analyzed Burkholderia-RFP infectivity (population prevalence and intracellular density) with 2-

way ANOVAs, followed by a Tukey HSD for multiple comparisons. We treated Burkholderia species

and D. discoideum identity as fixed effects. All source data is available at https://doi.org/10.7936/

wgnk-2c37.
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