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ABSTRACT

Genetic and epigenetic alterations are required for carcinogenesis and the mutation burden across tumor
types has been investigated. Here, we investigate epigenetic alterations with a novel measure of global
DNA methylation dysregulation, the methylation dysregulation index (MDI), across 14 cancer types in
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The Cancer Genome Atlas (TCGA) database. DNA methylation data—obtained using Illumina KEYWORDS
HumanMethylation450 BeadChip—was accessed from TCGA. We calculated the MDI in 14 tumor types Copy number alterations;
(n = 5,592 tumors), using adjacent normal tissues (n = 701) from each tumor site. Copy number alteration, DNA methylation;

and mutation burden were retrieved from cBioportal (n = 5,152). We tested the relation of subject MDI
across tumors and with age, gender, tumor stage, estimated tumor purity, and copy number alterations
for both overall MDI and genomic-context-specific MDI. We also investigated the top most dysregulated
loci shared across tumor types. There was a broad range of extent in methylation dysregulation across
tumor types (P < 2.2E-16). However, a consistent pattern of methylation dysregulation stratified by
genomic context was observed across tumor types where the highest dysregulation occurred at non-CpG
island regions. Considering other summary measures of somatic alteration, MDI was correlated with copy
number alterations but not with mutation burden. Using the top dysregulated CpG sites in common
across tumors, 4 classes of cancer types were observed, and the functional consequences of these
alterations to gene expression were confirmed. This work identified the global DNA methylation
dysregulation patterns across 14 cancer types showing a higher impact for the non-CpG island areas. The
most dysregulated loci across cancer types identified common clusters across cancer types that may have
implications for future treatment and prevention measures.

epigenetics; pan-cancer

Abbreviations: BLCA, bladder carcinoma; BRCA, breast carcinoma; COAD, colon adenocarcinoma; ESCA, esophageal
carcinoma; HNSC, head and neck squamous cell carcinoma; KIRC, renal clear cell carcinoma; KIRP, renal papillary cell
carcinoma; LUSC, lung squamous cell carcinoma; LIHC, hepatocellular carcinoma; LUAD, lung adenocarcinoma; PAAD,
pancreatic adenocarcinoma; PRAD, prostate adenocarcinoma; THCA, thyroid carcinoma; UCEC, endometrial carcinoma

Background . . .
9 as data from more tumor types is becoming available.’

Cancer is a major source of morbidity and mortality; in 2015,
15 million new cases of malignant neoplasms were expected
worldwide,' and about 10% of these incident cases were expected
in the USA.> Typically, cancers include hundreds of somatic
alterations to DNA, overcoming programs that control replica-
tion and apoptosis to allow survival and growth. There are more
than 100 recognized types of cancer, usually named after the
organ or tissue of origin and/or the cell type from which they are
derived. Through a collaborative effort and integrative genomic
profiling of somatic alterations, the Cancer Genome Atlas initia-
tive (TCGA) has characterized the molecular alteration profiles
of several cancer types with the goal of discovering new pheno-
types and possibly new therapeutic molecular targets.

Interest in taking pan-cancer approaches to investigate
molecular similarities and differences across tumors has grown

Recently, pan-cancer analyses have reported functional muta-
tions,” immunogenomic signature,” and copy number altera-
tions.*” The global landscape of somatic tumor alterations is
providing a new perspective relating the broad spectrum of
cancer types through common molecular signatures and may
offer opportunities for targeted treatments, off target therapeu-
tic applications, and potential preventative measures with
broader impact.

Epigenetic alterations are recognized to have consequences
for gene expression patterns and chromosomal stability; and
among epigenetic modifications, DNA methylation alterations
are the best characterized. In cancer, initially two general pat-
terns of DNA methylation alterations were observed: a global
loss of methylation across the genome, and increased methyla-
tion at CpG rich promoter areas known as CpG islands.® Loss
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of methylation across the genome at repetitive regions, gene
bodies, centromeric DNA, and normally imprinted areas leads
to genomic instability.” Increased methylation of promoter
CpG islands (CGI) and shore regions can result in gene repres-
sion and silencing, including tumor suppressor genes. Although
this general paradigm has been observed across different tumor
types, for several years an understanding of altered methylation
in cancer was limited by the extent of measures being per-
formed. More recently, genome-scale approaches have revealed
that distinct methylomes are present within each tissue
type,'"" and the alteration profiles of methylation differ
among tumor types as well. Diverse methylomes within tumor
type have been associated with tumor characteristics and
patient prognosis. For example, a CGI methylator phenotype
(CIMP) has been described for several cancer types,lz’13 and
has been shown to associate with a differential prognosis
dependent on the specific cancer type.

Current approaches to integrate DNA methylation analyses
across tumor types have several limitations. Previous integra-
tion attempts relied on combining older microarray platforms
(Illumina HumanMethylation27) with Illumina HumanMethy-
lation450 (450K), limiting the coverage across gene regions to
those shared between the two different generations of array
platforms, and among those restricting the analyses only to
those probes tracking to promoter CGI sites."* One recently
published approach used the information from the 450K
microarray and integrated information from normal samples
outside TCGA; however, the differentially methylated sites
were based only on tumor/normal comparisons without taking
into account subject covariates which may also affect the meth-
ylation signal."”> Importantly, incorporation of data on esti-
mated tumor purity, which can affect tumor methylation
signal, has only recently become practice.'

Here, we use an alternative to traditional bottom up
approaches in which individual CpG loci are evaluated in rela-
tion to a particular tumor type. In addition, we include

Table 1. General characteristics of the study population.

adjustment for potential confounders, including estimated
tumor purity. Previously, we developed and applied a top down
approach, in which the methylation dysregulation index (MDI)
describes the cumulative absolute departure from normal DNA
methylation between neoplastic and normal (disease-free) tis-

7 The MDI represents the average departure of DNA
methylation in tumor cells from normal cells across all mea-
sured loci. In addition, this approach can be adapted to specific
subsets of CpGs, such as those tracking to a specific genomic
context (e.g., promoter CpG island), to evaluate the relative
departure from normal among different genomic regions. To
comprehensively catalog the similarities and differences of
DNA methylation burden across solid tumor types, we used
the MDI to investigate DNA methylation dysregulation across
14 cancer types in TCGA.

Results

In total, 14 tumor types (including 5,592 tumor samples and
701 normal adjacent samples) were analyzed; summary statis-
tics are provided in Table 1. Across cancers, there were a simi-
lar total number of males and females, though this analysis
includes several sex specific cancers—prostate adenocarcinoma
(PRAD) and endometrial carcinomas (UCEC)—and some neo-
plasms with a marked gender predominance—breast carci-
noma (BRCA). Overall, the mean age (and standard deviation,
SD) of subjects was 61.7 (SD: 12.96) years, which was similar in
all the cancer subtypes except thyroid carcinoma (THCA),
which has a younger age at diagnosis (mean 47.8, SD: 15.77
years). Most tumors were early stage (62%). Early stage tumors
(localized) were less prominently represented in bladder carci-
noma (BLCA; 33%), because that study focused on muscle
invasive tumors. This contrasts with the relative population
incidence in the US, where the non-muscle invasive bladder
tumors (localized plus in situ) are the most common stages
diagnosed (86% of all the new cases).’ Similarly, 38% of PRAD

AJCC tumor stage®

Tumor Normal® Female Male Age Stage I/1l Stage lIl/IV
Cancer type n n n (%) n (%) Mean (SD) n (%) n (%)
BLCA 411 21 108 (26.3) 303 (73.7) 68.56 (10.60) 133 (32.5) 276 (67.5)
BRCA 779 97 770 (98.8) 9(1.2) 58.62 (13.10) 563 (72.8) 210 (27.2)
COAD 283 38 131 (46.3) 152 (53.7) 65.37 (13.20) 150 (54.5) 125 (45.5)
ESCA 185 16 27 (14.6) 158 (85.4) 62.95 (11.87) 98 (60.1) 65 (39.9)
HNSC 527 50 142 (26.9) 385 (73.1) 61.40 (11.93) 103 (22.6) 353(77.4)
KIRC 319 160 114 (35.7) 205 (64.3) 61.85(11.84) 187 (58.6) 132 (41.4)
KIRP 275 45 73 (26.5) 202 (73.5) 62.18 (12.09) 188 (74.3) 65 (25.7)
LIHC 374 50 120 (32.1) 254 (67.9) 59.83 (13.31) 261 (73.9) 92 (26.1)
LUAD 457 32 244 (53.4) 213 (46.6) 65.53 (10.16) 362 (79.4) 94 (20.6)
LUSC 369 42 96 (26.0) 273 (74.0) 68.05 (8.73) 309 (84.0) 59 (16.0)
PAAD 183 10 82 (44.8) 101 (55.2) 65.28 (10.99) 171 (94.5) 10 (5.5)
PRAD 497 50 NA 497 (100.0) 61.56 (6.79) 185 (37.8) 305 (62.2)
THCA 504 56 368 (73.0) 136 (27.0) 47.83 (15.77) 334 (66.5) 168 (33.5)
UCEC 429 34 429 (100.0) NA 64.60 (11.18) 284 (69.6) 124 (30.4)
Overall 5592 701 2704 (48.4) 2888 (51.6) 61.66 (12.96) 3328 (61.6) 2078 (38.4)
P-value <2.2E-16° <2.2E-16¢ <2.2E-16°

2General American Joint Committee on Cancer Classification,
PNormal adjacent samples
P-values based on: Fisher exact test,
9ANOVA test
NA: Not Available/Not Applicable



were early stage tumors in TCGA, which is much lower than
the relative population expected incidence in the US (approxi-
mately 80%)."® The pathologically estimated tumor cell per-
centage across samples was generally high with a median of
80% and an interquartile range (IQR) of 70 to 90%. Pancreatic
adenocarcinoma (PAAD) was the only tumor with a median
tumor cell percentage under this range (60%).

First, we compared the overall departure of methylation among
all tumor types using the subject methylation dysregulation index
(sMDI). The sMDI was significantly different among tumor types
(Kruskal-Wallis rank sum test P < 2.2E-16, Table 2). The median
sMDI across all tumors and all tumor types was 8.1 (the absolute
difference between tumor and adjacent normal DNA methylation
was, in average, 8.1% for all the CpGs measured) with an IQR
between 6.24 and 10.16. Several tumor types showed lower median
sMDI most markedly the group of THCA, PAAD, renal clear cell
carcinoma (KIRC), and renal papillary cell carcinoma (KIRP), in
which the median sMDI were 5.2, 6.1, 6.3, and 6.4, respectively.
On the other hand, BLCA, hepatocellular carcinoma (LIHC),
UCEC, and esophageal carcinoma (ESCA) showed the highest
sMDI (all the medians above 10). We also observed large differen-
ces in levels of MDI across tumor types when stratifying MDI by
the genomic context of CpG sites using the gcMDI (Kruskal-
Wallis rank sum test P < 2.2E-16, Table 2). Despite large differen-
ces in the magnitude of sMDI and gcMDI among tumor types, a
consistent pattern in the extent of gcMDI was observed across
tumors. For example, CpG island regions had a consistently lower
gcMDI compared with other genomic contexts. The CpG island
shore and shelf regions that flank CpG islands had higher gcMDI
levels than island regions and were consistently similar to each
other. Farthest from CpG island regions, open sea gcMDI levels
were the highest gcMDI across tumors types with only one excep-
tion (THCA, Table 2). Striking differences between genomic con-
text MDI were observed and Wilcoxon-test pairwise false
discovery rate (FDR) comparisons are provided in Supplementary
Table SI.

Extending our assessment to summary measures of genetic
somatic alterations, overall copy number alterations—represented
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by the fraction of the genome altered (FGA)—median was 17.4%,
though this had a wide IQR (4.75 to 34.3%). In addition, FGA was
positively correlated with MDI when pooling all tumor types
(Spearman correlation, p = 0.61, P < 2.2E-16). When stratifying
by tumor type, the median THCA FGA was lower than the other
tumor types (0.01%). MDI and FGA p ranged between 0.08 and
0.80 and was significant for all the tumors except UCEC. In addi-
tion, where available, the mutation count burden (MCB) was
poorly to moderately correlated with MDI; p ranged between 0.05
(BLCA) and 0.38 (PRAD) (Supplementary Table S2).

Figure 1 presents the patterns observed for DNA methyla-
tion dysregulation and compares tumor types sorted by MDI
and the fraction contributed by genomic context to the global
sMDI measure. In contrast, the summary measures of genetic
somatic alterations FGA and MCB, also presented in the figure,
showed a different order and magnitude across cancer types. In
addition, Fig. 2 shows the proportion of the sMDI that is con-
tributed by each genomic context and again shows larger
gcMDI for shores, shelves, and open sea compared with CpG
Islands. When adjusting for the number of probes measured in
each genomic context the effect was reduced on the shelves, but
remained high on the open sea and low for CpG islands. The
magnitude and order of FGA and MCB differed compared
with the MDI by cancer type. The p between sMDI and the
gcMDI was >0.95, except for the CGI gcMDI which was only
moderately correlated with the other scores (p range: 0.69-
0.85, Supplementary Table S2). This also contrasted to the poor
to moderate correlation observed with FGA (p range: 0.08-
0.68) and MCB (p range: 0.05-0.38). In contrast, as observed in
Fig. 1, the magnitude of dysregulation of both FGA and MCB
differed to that observed for the sMDI. Next, we visualized the
gcMDI for all samples using unsupervised clustering and for
each cancer type set four classes: high dysregulation, high-inter-
mediate dysregulation, low-intermediate dysregulation, and
low dysregulation (Fig. 2). The variation across patients within
each tumor type were moderate for most of the cancer types;
however, the genomic context dysregulation was concentrated
on the non-CpG island areas. When comparing clusters with

Table 2. Subject and genomic context methylation dysregulation indices, and fraction of genome altered by cancer types.

gcMDI
sMDI CpG Island Shores Shelves Open Sea Fraction of genome altered

Cancer type n median (IQR) median (IQR) median (IQR) median (IQR) median (IQR) median (IQR)
BLCA 411 10.7 (8.5, 13.4) 7 (5.6, 8.4) 11.1 (8.6, 13.6) 11.7 (9, 15.4) 13.6 (10.3,17.2) 28.2(13.9,45.2)
LIHC 374 10.6 (8.4, 13.4) 7 (5.6,8.1) 10.6 (8.6, 12.8) 11.3(8.4,15.4) 13.2(9.9, 17.9) 25.2(15.9,37.8)
UCEC 429 10.4 (9.2, 11.9) 7.2 (6.2, 8.5) 11.3(10.1,12.8) 10.6 (9, 12.3) 12.5(10.7, 14.6) 8.1(0.2,34.9)
ESCA 185 10.1 (8.8, 11.8) 7.2 (5.6, 9.6) 10 2(8.9,11.9) 10 6(9,12.5) 11.9 (10.2, 14) 35.8 (22.6, 50.1)
COAD 283 9(7.4,10.4) 7.2(5.8,9.1) .9 (7.6, 10.5) .7(7,10.2) 10 (8.1, 11.7) 20.7 (9, 32.6)
LUSC 369 8.6 (7.3,10.1) 5.7 (4.9,6.8) .1(7.6,10.9) .1(7.6,11.3) 10.4 (8.7, 12.6) 38.9(3.8,52.5)
HNSC 527 8.5(7.2,10.1) 6.3(5.4,7.4) 8(7.4,10.4) 8(7.2,11.2) 9.7 (8.2,123) 22.9(125,33.4)
BRCA 779 8.5(7,10.2) 6.1(4.9,7.8) 9 (7.6, 10.6) 4 (6.9,10.4) 9.8 (8,123) 22.8(11.2,41.3)
LUAD 457 7.5(6.1,8.9) 5.7(4.6,7) 8(6.5,9.5) 2(5.8,88) 8.4 (6.8,10.3) 22(9.2,38.7)
PRAD 497 7.5(5.5,8.9) 5.6 (4.4,6.8) 8 (6,9.6) .1(5.3,8.6) 8.5(6.2,10.4) 6.4 (1.8,12.2)
KIRP 275 6.4 (5.7,7.7) 3.7 (34,4.7) 4 (6.5, 8.8) .7 (6.1,7.8) 8(7.1,9.2) 14.9 (8.3, 22.8)
KIRC 319 6.3(5.7,7.1) 3.8(3.3,4.6) 9(6.2,7.8) 8(6.2,7.8) 7.7 (7.1,8.8) 12.1 (6.3, 20)
PAAD 183 6.1(5.1,7.8) 49(3.8,6.2) .5(5.4,823) 3(5.3,7.8) 7.1(6,8.8) 9.4 (0.2,22.8)
THCA 504 5.2(4.8,5.7) 3(2.8,34) 3(5.7,6.9) 5(5,6.1) 6.2 (5.7,6.9) 0.01 (0.003, 1.1)
Overall 5592 8.1(6.2,10.2) 5.8(4.3,7.4) 8 6 (6.8,10.7) 8 1(6.4,10.7) 9.4 (7.4,123) 17.4 (4.8,34.3)
P-value® <2.2E-16 <2.2E-16 <2.2E-16 <2.2E-16 <2.2E-16 <2.2E-16

?Kruskal-Wallis rank sum test
Acronyms: Interquartile Range (IQR)
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Figure 1. Comparison of subject DNA methylation dysregulation index, fraction of genome altered, mutation count burden, and proportion of methylation dysregulation
by genomic context by cancer type. Each dot corresponds to the sample specific methylation dysregulation index-MDI, fraction of genome altered, or mutation count bur-
den. Tumor types are ordered by their median frequency of each alteration. Overall the median MDI was similar between the compared tumors. Individual MDI were dis-
aggregated according to the unweighted proportion contributed by each genomic context. Thyroid cancers showed the lowest alterations in all the 3 measures, while
bladder was consistently highly altered in all 3 measurements. For this specific data set there were only reported 4 mutations in colon adenocarcinoma, and there was

not information available for esophageal carcinoma.

the magnitude of FGA and MCB we did not observe consistent
clustering (Supplementary Table S3).

We next tested the association of sMDI with patient and
tumor characteristics in each tumor type by fitting linear models
for MDI with age, sex, cancer stage, estimated tumor purity, and
FGA. In adjusted models age was related with increased sMDI in
BRCA, LIHC, and THCA (P-values: 5.9E-10, 3.6E-06, and 6.4E-
03, respectively, Table 3). Males had increased sMDI in lung ade-
nocarcinoma (LUAD) and PAAD (P-values: 4.21E-04, 9.84E-03
respectively, Table 3). A consistent linear trend was observed
with increased cancer stage in both KIRC and KIRP (P-values:
4.48E-06 and 7.14E-09). The coefficients for the relation of
sMDI with estimated tumor purity were positive for all tumor
types (Table 3). Similarly, the fraction of genome altered
increased with most of the MDI scores, but the UCEC associa-
tion was inconsistent. We extended our analysis of patient and
tumor characteristics by fitting linear models for each tumor
type with gcMDI values and these results are shown in Supple-
mental Table 3. Briefly, similar with sMDI results males had con-
sistently increased gcMDI in LUAD for each genomic context
except CpG islands (Supplementary Table S4). Due to the recent

reclassification of some THCA tumors as benign tumors,” as a
sensitivity analysis, we excluded those THCA cases classified as
follicular, without capsule involvement and/or extracapsular
involvement (n = 75). The results of this sensitivity analysis
were similar to those without the exclusion, thus we report the
results using the complete set of cases. As a second sensitivity
analysis, we replaced the histological tumor percentage for a
DNA methylation estimate of cell purity.”® Both measurements
were positively correlated (Pearson r = 0.27), being the estima-
tion consistently lower than the reported percentage of histology.
However, the estimates of cell purity for LUAD differed with
those reported in the slide reading (Supplementary Figure S1),
and the results of the models were severely deflated (R* < 5%).
Therefore, our approach to adjust for tumor purity used esti-
mates from histopathological review.

We next sought to identify the specific CpG loci with the larg-
est DNA methylation alteration level in cancers. In each tumor
type we derived the mean departure of DNA methylation for all
subjects in each tumor (tMDI); 14 probe lists including 399,294
loci were analyzed separately for each cancer type and the result-
ing tMDI lists were ranked individually from the highest to the
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Figure 2. MDI clustering by cancer and genomic context.

lowest most deregulated CpGs. Probes with missing information
due to filtering during quality control were kept as NAs in the
lists. We used a moderate-deviation algorithm and identified 346
probes as commonly dysregulated among the different tumor
types (Supplementary Table S5). A subset of 275 probes without
missing values was analyzed for all tumor types using two cluster-
ing approaches: an unsupervised hierarchical clustering on
Euclidean distance and a semi-supervised recursively partitioned
mixture model (RPMM) (Fig. 3).4 Unsupervised clustering
showed two major branches separating the less dysregulated
tumors (THCA, KIRP, and KIRC) from the others cancer types.
Using RPMM to cluster tumor types based on the 275 CpG loci
commonly dysregulated across tumors resulted in four methyla-
tion classes (Fig. 3B). The methylation class 1 included four tumor
types: bladder, lung cancers, esophageal, and head and neck.
Endometrial cancer was exclusive to RPMM class 2; class 3
included cancers included prostate, breast, colorectal and liver.
Finally, RPMM methylation class 4 grouped the remainder
tumors: pancreatic, thyroid, renal clear cell, and renal papillary
cancers. A bias corrected enrichment analysis of the 346 probes
displayed a significant enrichment of several pathways using the
curated GSEA gene sets (Supplementary Table $6). In the curated
GSEA gene set 2, 14 pathways were significantly enriched to CpG
promoters and histone trimethylation (H3K27me3) in several tis-
sues, Polycomb-group proteins, and related to esophageal, blad-
der, thyroid, and hepatocellular carcinomas (FDR<0.05). When
looking for specific oncogenic signatures (Supplementary Table
S6), 11 pathways were enriched to genes related to KRAS, SUZ12,
WNT1, and EED (FDR<0.05). As a sensitivity analysis, we calcu-
lated the standard deviation of the B-values of the adjacent nor-
mal samples (SDN), and the CpG density of the probes used for

the tMDI calculation. Using all the cancer types we observed a
positive correlation between the tMDI and the SDN (Pearson r =
0.72), and a negative correlation with the CpG density (Pearson r
= —0.25). The observed distributions of the tMDI and SDN per
cancer type are available as the Supplementary Figure S2, and the
heatmaps showing the top tMDI compared with SDN and CpG
density as Supplementary Figure S3.

To illuminate potential common pathways derived from
the tMDI loci, 34 CpGs were selected from among the 346
probes top loci using the Cross Entropy Monte Carlo (CEMC)
algorithm (Supplementary Table S5). These 34 CpG sites
tracked to genes related to different cell developmental and
proliferation pathways including several Homeobox related
genes (OTX2-AS1, HOXDY, OTX1, SIX6, PRRXI, LHX5-ASI,
TLX1 and IRX4) in BLCA, BRCA, colon adenocarcinoma
(COAD), ESCA, head and neck (HNSC), LUAD, lung squa-
mous cell carcinomas (LUSC), PAAD, PRAD, and UCEC.
The group of THCA, KIRC, and KIRP showed dysregulation
of loci associated to inflammation (ANXA1I), growth hormone
regulation (GABRR2), and metabolic genes (AHR). Several
CpG sites were related to long noncoding RNA or antisense
genes (OTX2-AS1, LINC00466, TFAP2A-AS1, LHX5-ASI,
LOC100507443, LIN28B-AS1, PAUPAR, DKFZp686K1684),
transcription and regulatory factors (TFAP2B, USP44), and
genes encoding tumor suppressor proteins (TRIM15, CASZI).
In addition, several commonly altered CpG sites were located
in enhancer elements (cgl10903903, cgl7754510, cg22797031,
cgl3539545, cg08443563) and a few were spatially near to the
histone related cluster of chromosome 6 (cgl0903903-
HIST1H2BL, and cg01518607-PRSS16). Lastly, we investigated
the functional implication of DNA methylation at the 34
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Figure 3. Unsupervised clustering of tumors using the top most commonly dysregulated probes (n = 275). Using 275/384 most dysregulated loci several patterns were
explored using 2 clustering approaches among cancer types. On the left an unsupervised hierarchical Euclidean distance. On the right, the 4 groups derived from a semi-

supervised recursively partitioned mixture model (RPMM) classification.

CpGs identified by the CEMC algorithm by testing the associ-
ation of methylation with gene expression. The p-values of
the samples were adjusted for the subject specific covariates,
and their linear relationship was tested against the gene
expression of the associated gene, or the nearest gene available
or sense gene if the CpG probe was tracked to the antisense
gene. For those probes associated with the promoter genomic
context [CpG located 200 bp upstream of the transcriptional
start site (TSS200), CpG located in 1500 bp upstream of the
transcriptional start site, or CpG located in 5’untranslated
regions (UTR)] we observed a consistent reduction in gene
expression related with increased DNA methylation. In con-
trast, for CpG probes in intragenic regions (gene body, first
exon or 3’UTR), increased DNA methylation was related with
increased gene expression, though in a few cases gene expres-
sion was reduced. A less consistent pattern of methylation
related with gene expression was observed for intergenic
regions as the tested transcripts corresponded to genes not
tracking to the probe. The association here could be related to
other regulatory elements as enhancers (present in 11 of those
probes), which may differ by tissue/cell of origin. Cancer spe-
cific results are summarized in Table 4 and detailed results are
provided in Supplementary Table S7.

Discussion

Quantifying the extent of DNA methylation alterations allows
the comparison of different data sets from a broader perspec-
tive. Our analysis revealed different levels of methylation dysre-
gulation in different cancer types; however, a similar pattern of
methylation dysregulation in the different genomic contexts
was observed. Globally, the amount of dysregulation was lower
in CpG island regions compared with other genomic regions,
such as CpG island shores and shelves, and those in less CpG
dense regions across tumor types. A group of four tumor types
(thyroid, kidney papillary and clear cell carcinomas, and pan-
creatic adenocarcinoma), all from organs with primary or sec-
ondary endocrine function, showed a lower level dysregulation
at the subject level than the other cancer types. This finding
was further supported when analyzing the specific loci dysregu-
lation, in which these cancer types cluster together; three of the
four showed a pattern of loci dysregulation associated to spe-
cific metabolic genes, proto-oncogenes and oncogenes. The
most dysregulated areas for these tumors were located on open
sea, shores, and shelves areas. In contrast, age was consistently
associated with MDI in breast cancer and hepatocellular carci-
noma globally and across the different genomic contexts. Age
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was also associated to dysregulation in the CpG islands for
colon, prostate, and thyroid cancers. Again, BRCA, PRAD,
COAD, and LIHC top loci (mainly CpG island probes) clus-
tered together. Among those tumors clustered in class 1 of
RPMM (BLCA, ESCA, HNSC, LUAD and LUSC) the subject
specific covariates did not provide common patterns, but the
loci specific analyses showed a common cluster related to dys-
regulation of both CpG islands and open sea areas. Endometrial
cancer was the only tumor not associated with the fraction of
genome altered, while at the loci level showed a pattern similar
to the tumors of class 1.

An alternative index of altered DNA methylation from Yang
et al used a DNA methylation “instability” index to quantify
aberrant DNA methylation in cancer.”” This approach summa-
rized two different z-scores using the probes according to those
located on the CGI promoters (hyperZ score) and the other
using the probes on the open sea (hypoZ score). However, this
index does not take into account shore regions, areas where we
also observe high levels of dysregulation. In particular, shore
dysregulation have been previously associated with increased
variability in gene expression in cancer more than CGL> In
our approach, we investigated both the overall methylation dys-
regulation level across tumors and performed a stratified analy-
sis of DNA methylation dysregulation by genomic context
which revealed striking differences between genomic context.

Our results are consistent with previous reports of several
DNA methylation phenotypes for the different cancer types.
Specific reported mutations associated with differential methyl-
ation (CIMP phenotypes) differ by cancer subtype, which pre-
cludes an integrative analysis of specific mutation signatures for
all the samples.'">**** In addition, depending of the cancer
type, DNA methylation is related to cancer stage,” lifestyle/
environmental  factors,”’ germline/somatic ~ muta-
tions,'>*>*”! microsatellite instability (MSI phenotypes),***
miRNA risk phenotypes,*® synchronic copy number alterations
changes,”® and has partial overlapping with other molecular sig-
natures (e.g., tumor hormone receptor status).’> The use of the
estimated cell purity was previously related to altered transcrip-
tomic signals,'® although this could be also true for the DNA
methylation signal these estimates have not been used in previ-
ous pan-cancer analyses. We observed an improvement using
the estimated cell purity (based on the slide readings) in several
of our models. We explored using inference-based purity esti-
mations with DNA methylation data though observed some
inconsistent results compared with histopathologic slide read-
ings. We therefore used histopathologic estimates in our mod-
els, though in cases where such data are not available,
inference-based approaches are expected to have utility.

Our work adds the integration of an agnostic approach to
evaluate the non-CGI methylation status using information
derived from the Illumina 450K platform. In the previous inte-
grative reports, only a few integrated non-CGI information,”>*°
and several used the older 27K platform or integrated only the
common probes between 27K and 450K platforms.***> More-
over, as most of the previous integrative analyses were focused
on specific pathways some of them only relied on promoter
DNA methylation. One limitation for the generalizability of
our findings is the lack of some common epidemiological infor-
mation between the data sets (ie., smoking status), this

precludes an integrative analysis of some exposures as they can-
not be adjusted for in all the data sets. On the other hand, the
absence of these tumor specific covariates is a caveat that could
produce some uncontrolled confounding in the common
models.

The use of a summary dysregulation index by loci has not
been previously reported. The ranked algorithm selected the
common probes across several cancers, this approach was
intended initially to perform gene expression meta-analyses in
which technical variability might preclude direct comparisons
or pooled analyses.”* The main disadvantage of this approach
is that the cut-offs for the selection process rely on the user. For
smaller databases the use of graphic approaches to select an
appropriate delta is advised, but in longer lists, as those derived
from microarrays, this process is burdensome and not
completely reproducible. On the other hand, a mathematical
limitation is given by the distance selected, and the number of
lists that are compared which is computationally intensive.
However, using a different range of deltas the top list of the
CEMC list was quite robust, the delta only affected the inclu-
sion of some additional probes under the cut-off. Biologically,
the genes associated on the CEMC list are consistent with com-
mon pathways among the cancer types, and some areas have
also been previously reported in relation to DNA methylation
changes. When using the complete list for the GSEA enrich-
ment analysis, the pathways were associated with multiple can-
cer pathways including epigenetic histones modifications,
Polycomb repression complexes. The finding of a consistent
association between methylation levels and gene expression for
those CpGs located on the gene coding areas is also encourag-
ing for future analyses. The dysregulation of enhancer related
areas in non-coding areas of the genome, and the cis and trans
regulation of distant genes for those CpGs located on the open
sea should be explored further in the future and goes beyond
the scope of this paper.

The use of a summary index instead of the original
B-values has several strengths and limitations. The use of
summary indices reduces the number of tested comparisons
and outperforms the delta 8 in terms of global information
provided on the genomic context. The MDI follow a Berk-
son error modeling® in which the cumulative deviation
from the mean in a genomic context increases the sample
power to find differences in terms of the genomic context.
Furthermore, if a few outliers were present in the samples,
the median constrains the differences and the MDI might
attenuate the effect of these outliers. This is an advantage
and increases the comparability for a pan-cancer approach.
Nevertheless, with the use of summary measures the granu-
larity of the data (locus specific methylation by subject) is
lost and therefore the results lose precision. When the aim
is to obtain specific CpG site changes using the S-values or
M-values might provide better answers, but, as a trade-off,
the use of individual CpG increases the probability of esti-
mates biased to the null (classical measurement error).

Conclusions

This work contributes to the understanding of the impact of
epigenetic alterations from a pan-cancer perspective. The



pattern of DNA methylation dysregulation showed a higher
impact of CpG-poor areas of the genome across tumor types.
In addition, the most dysregulated loci across cancer types
identified common clusters across cancer types that may have
implications for future treatment and prevention measures.
The full extent of functional implications of the integrative
pan-cancer somatic alteration portraits presented here will
require additional investigation.

Methods
Cancer data sets

Fourteen cancers: bladder (BLCA), breast (BRCA), renal clear
cell (KIRC), renal papillary cell (KIRP), esophageal (ESCA),
thyroid (THCA) and endometrial carcinomas (UCEC); colon
(COAD), lung (LUAD), pancreatic (PAAD), and prostate
(PRAD) adenocarcinomas; head and neck (HNSC) and lung
(LUSC) squamous cell carcinomas; and hepatocellular carcino-
mas (LIHC), were downloaded from The Cancer Genome Atlas
(TCGA) public database and are available from the TCGA leg-
acy repository (https://gdac.broadinstitute.org/). Only those
tumor types in which there were samples representing the pri-
mary tumor and at least 10 normal adjacent samples were
included. For cases where several samples from the same tumor
were processed and included on the database, only the first
listed was included in subsequent statistical analyses.

Clinical, histological, and additional molecular
information

For every case, we obtained the clinical information from
TCGA [age, gender, and pathological stage according the latest
available American Joint Committee on Cancer (AJCC) classifi-
cation]. Tumor stage was recoded as early (stages I and II) and
late (stages III and IV). For comparability, we excluded the can-
cer specific sub-classification. Although copy number altera-
tions do not bias DNA methylation signals,*® biologically they
are drivers of other cancer alterations which may alter DNA
methylation levels, and were therefore included in our models.
Information on the fraction of the genome with copy number
alterations (FGA) and mutation count burden (MCB) were
retrieved from cBioportal.’””*® FGA was measured using Affy-
metrix SNP arrays and corresponds to the fraction of the
genome affected by copy number alterations, which is equiva-
lent to the number of bases in segments with mean log, greater
than 0.2 or smaller than —0.2 divided by the number of bases
in all segments profiled by the array. MCB, defined as the total
number of non-synonymous substitutions in exome sequencing
was excluded from multivariate analyses because not all the
data sets included this information for the DNA methylation
samples (COAD, ESCA). As the sample purity may alter the
DNA methylation landscape'® we retrieved the estimated
tumor cell percentage from the histologic database in TCGA.
Given that some of the slide samples were read per duplicate
(bottom and top), the mean reported percentage of tumor cells
was used for the analyses. As a sensitivity analysis, we com-
pared our results using a DNA methylation estimate of cell
purity (InfiniumPurify) instead of the slide reported
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percentage.zo Finally, for some selected loci, we retrieved level 3
data for gene expression from cBioportal to be analyzed with
loci specific methylation changes. In total, clinical data from
5592 tumors and 701 adjacent normal tissues were considered
in our analyses.

Preprocessing and quality control of DNA methylation
data sets

The Level 1 intensity data files (i.e., .idat) derived from the
Infinium HumanMethylation450 BeadChip (Illumina, Inc.,
San Diego, CA) were imported and preprocessed using the
RnBeads package in R.*> DNA methylation B-values were
estimated based on the measured intensities of the 2-paired
channels (i.e., red and green) and computed as the ratio of
the methylated probe intensity, divided by the sum of the
unmethylated plus the methylated intensities signals plus an
offset (usually 100).*° B-values range between 0 and 1, and
can be interpreted as the proportion of methylated alleles at
a specific CpG site. B-values were background corrected
using methylumi-noob*' and normalized with a functional
normalization procedure*” to increase comparability across
data sets and to reduce potential batch effects. Probes
marked as Non-CpG, CpG loci on the X and Y chromo-
somes, and those previously documented as polymorphic or
cross-reactive, were excluded from subsequent analyses.*’
The Greedycut hierarchical algorithm was applied to
exclude unreliable probes and samples.’>** Briefly, the
Greedycut is an iterative algorithm that filters out probes or
samples with the highest fraction of unreliable measure-
ments removing/entering one sample/probe per iteration (P
detection >0.05). After every iteration, the matrices with
and without the unreliable probes or samples were com-
pared using the expression sensitivity +1 - false positive
rate. Those further away from the diagonal (highest area
under the curve) were retained.

Genome-wide DNA methylation dysregulation index

To evaluate dysregulation of tumor DNA methylation com-
pared with normal tissue we calculated the methylation dysre-
gulation index (MDI) as described in O’Sullivan et al.'” Briefly,
the MDI measure represents the cumulative departure from
normal DNA methylation in a CpG locus-specific manner cal-
culated by summing the absolute difference in DNA methyla-
tion B-values at each CpG between each tumor sample and the
median B-value for each CpG across all normal-adjacent sam-
ples specific to each tumor tissue type. MDI was calculated by
subject, and was summed across all the CpGs interrogated in a
subject and then divided by the total number of CpGs (subject-
specific MDI, sMDI). To better reflect scale MDI was multi-
plied by 100. The MDI represents the average change in S-value
per CpG in the tumor sample compared with adjacent-normal
tissue. Therefore, a MDI value close to 0 suggests a similar
methylation profile to its component normal while increasing
levels of MDI indicates that the DNA methylome has been
deregulated to a greater extent. To assess context-specific rela-
tionships between methylation dysregulation across different
cancer types, we calculated specific methylation dysregulation
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indices for each genomic context (gcMDI) in the subject (ie.,
CGL, CGI shores, CGI shelves, and open sea). Lastly, to sum-
marize the average locus specific DNA methylation change
across all the subjects with the same tumor type we calculated a
tumor specific MDI, tMDI. The tMDI represents the average
departure from normal of a specific CpG site within a tumor
type. The tMDI was calculated for each tumor type and then
ranked, to determine if there were specific CpGs that were com-
monly altered across cancer types.

Statistical analysis

Descriptive statistics (mean t-test, Mann-Whitney, x% and
Fisher tests) were used to summarize the subject level informa-
tion. FGA was analyzed as a proportion and modeled per 10%
increase in multivariable models. MCB was Log;, transformed
for exploratory analyses. Spearman rank test was used to evalu-
ate correlations between continuous covariates. Clustering
analyses of the different relationships between the sMDI,
gcMDI and the top loci of the tMDI were performed using
unsupervised hierarchical clustering (Euclidean distance and
complete linkage) by each cancer type. In addition, for the
tMDI a semi-supervised recursively partitioned mixture model
(RPMM),*" a hierarchical model-based clustering methodology
that assumes an underlying mixture of S-distributions was
used to confirm the results of the unsupervised clustering. Lin-
ear regression models were used to model the relationship
between sMDI and gcMD], and the clinical data of each subject
stratified by each tumor type. Multivariable linear regression
models were adjusted for age, gender (except UCEC and
PRAD), cancer stage, FGA, and tumor cell percentage.

The CpG/methylation probes per tumors were ranked
according to their tMDI value. During the Greedycut prepro-
cessing different probes were excluded due to quality issues in
different cancers, those missing probes were kept as missing on
the common list. Posteriorly, the cancer ranked lists were
merged and a global rank was calculated using the TopKLists R
package. The k top ranked CpG sites (those in which the slope
was less steep) were analyzed using the moderate-deviation-
based inference for random degeneration in paired rank lists,
and from them a subset of highly concordant probes were
derived from the Cross Entropy Monte Carlo (CEMC) algo-
rithm.>*** For the ranking, a maximal distance on the ranking
(delta) of 50, a pilot subset of 1000, a threshold of 21% (at least
present in 3 lists within the delta) were used to determine the
top k sites to be evaluated. The gene symbols associated with
the probes of the tMDI were annotated using the most recent
Mumina files; the annotated genes were updated using
mygene.*® Those probes of the open sea were annotated to the
nearest gene. For the CEMC highly concordant probes
obtained using the tMDI we explored the relationship between
DNA methylation and gene expression: the residuals of the
Log, transcripts of the gene expressed and the residuals of the
B-values were obtained from multivariable linear regression
adjusted for the covariates described above for the sMDI mod-
els. Finally, the complete top ranked list was enriched using the
collections 2 (curated database) and 6 (oncogenic signatures) of
GSEA  (http://software.broadinstitute.org/gsea/msigdb/collec
tion_details.jsp) applying a test adapted for the 450K

microarray based on Wallenius’ noncentral hypergeometric
distribution included on missMethyl.*’ Statistical significance
was considered as P-values < 0.05, or its equivalent after Bon-
ferroni correction for multiple comparisons (e.g., < 0.01 for the
multivariable linear models), or FDR<0.05 (Benjamini-Hoch-
berg) for the enrichment analyses.

Ethics approval and consent to participate

The current analyses were based on public information from
The Cancer Genome Atlas. The prospective participants pro-
vided an informed consent about the purpose of the project,
samples, and medical information collected and coding to pre-
serve the anonymity of the participants on the public databases.
They received information regarding the potential benefits and
risks for their participation plus specific information according
to the IRB of the participating centers. The TCGA project is
framed on the genetic information nondiscrimination act
(GINA), and all the databases that could contain sensible per-
sonal information are protected from general access.
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