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Elevated S‑adenosylhomocysteine 
induces adipocyte dysfunction 
to promote alcohol‑associated liver 
steatosis
Madan Kumar Arumugam1,2, Srinivas Chava1,2, Karuna Rasineni1,2, Matthew C. Paal1,2, 
Terrence M. Donohue Jr.1,2,3, Natalia A. Osna1,2 & Kusum K. Kharbanda1,2,3*

It has been previously shown that chronic ethanol administration‑induced increase in adipose tissue 
lipolysis and reduction in the secretion of protective adipokines collectively contribute to alcohol‑
associated liver disease (ALD) pathogenesis. Further studies have revealed that increased adipose 
S‑adenosylhomocysteine (SAH) levels generate methylation defects that promote lipolysis. Here, we 
hypothesized that increased intracellular SAH alone causes additional related pathological changes 
in adipose tissue as seen with alcohol administration. To test this, we used 3‑deazaadenosine (DZA), 
which selectively elevates intracellular SAH levels by blocking its hydrolysis. Fully differentiated 3T3‑
L1 adipocytes were treated in vitro for 48 h with DZA and analysed for lipolysis, adipokine release 
and differentiation status. DZA treatment enhanced adipocyte lipolysis, as judged by lower levels 
of intracellular triglycerides, reduced lipid droplet sizes and higher levels of glycerol and free fatty 
acids released into the culture medium. These findings coincided with activation of both adipose 
triglyceride lipase and hormone sensitive lipase. DZA treatment also significantly reduced adipocyte 
differentiation factors, impaired adiponectin and leptin secretion but increased release of pro‑
inflammatory cytokines, IL‑6, TNF and MCP‑1. Together, our results demonstrate that elevation of 
intracellular SAH alone by DZA treatment of 3T3‑L1 adipocytes induces lipolysis and dysregulates 
adipokine secretion. Selective elevation of intracellular SAH by DZA treatment mimics ethanol’s 
effects and induces adipose dysfunction. We conclude that alcohol‑induced elevations in adipose SAH 
levels contribute to the pathogenesis and progression of ALD.
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LDs  Lipid droplets
mRNA  Messenger RNA
MCP-1  Monocyte chemoattractant protein-1
NEFA  Non-esterified fatty acid
PLINs  Perilipins
PPARγ  Peroxisome proliferator activated receptor gamma
RT-PCR  Reverse transcription polymerase chain reaction
SAM  S-adenosylmethionine
SAH  S-adenosylhomocysteine
TG  Triglyceride
TNF  Tumour necrosis factor

Adipocytes, the primary component of fat tissues, mainly serve as a depot to store triglycerides. These cells have 
recently emerged as key regulators of the immune system as well as in modulating metabolism and  behaviour1, 

2. Adipose tissue communicates with other tissues and organs, including the liver, to integrate total body lipid 
homeostasis by controlling both circulation of free fatty acid (FFA) levels and secreting a host of biologically 
active proteins collectively known as  adipokines3. Under physiological conditions both lipid storage and release 
are coordinated and tightly regulated so that dietary lipids are stored in a well-fed state and released during 
fasting to supply energy to the rest of the body. Lipolysis is the process responsible for the catabolism of triglyc-
erides (TG) which generate FFAs that are subsequently used as energy substrates, as essential precursors for 
lipid/membrane synthesis, or as mediators in cell signalling  processes4. The regulation of TG storage and non-
esterified fatty acid (NEFA) release by adipose tissue is perturbed particularly when the release of FFAs becomes 
dissociated from energy requirements in extra-adipose tissues. This leads to increased circulating FFA levels and 
its uptake for storage as TGs in organs/tissue such as the liver, leading to the development of hepatic  steatosis5.

Chronic alcohol exposure is associated with increased oxidative stress, cell death and inflammatory response 
in the  liver6. Alcohol consumption can also profoundly disturb the normal function of adipose tissue by inducing 
adipocyte lipolysis, reducing secretion of adipokines, and increasing release of pro-inflammatory mediators, all of 
which promote the pathogenesis of alcohol-associated liver disease (ALD)7, 8. Particularly relevant in the context 
of alcohol-associated fatty liver is the contribution of increased flow of FFAs to the liver from enhanced adipose 
tissue  lipolysis9. Adiponectin and leptin are the key adipokines that modulate hepatic lipid homeostasis toward 
reduction of lipid content in the  liver10. Alcohol exposure has been shown to decrease the secretion of these 
adipokines and promote the development of hepatic  steatosis10, 11. Further studies have reported that chronic 
alcohol consumption results in impaired methionine metabolism in adipose tissue, characterized by increased 
S-adenosylhomocysteine (SAH) levels and a consequent decrease in the S-adenosylmethionine (SAM):SAH 
 ratio12. This loss in the methylation potential has been shown to enhance hormone sensitive lipase (HSL) activa-
tion to promote lipolysis in adipose  tissue13, 14.

Based on these findings, we hypothesized that increased intracellular SAH alone can cause pathological 
changes in the adipocyte, as seen with alcohol administration. To test this, we exposed cultured differenti-
ated 3T3-L1 adipocytes to 3-deazaadenosine (DZA), which causes intracellular SAH accumulation by blocking 
the activity of S-adenosylhomocysteine  hydrolase15. We then examined the mechanisms underlying the effect 
of increased intracellular SAH to adipocyte dysfunction and the potential role in the progression of alcohol-
associated fatty liver disease.

Results
DZA stimulates lipolysis in adipocytes. To examine whether DZA stimulates lipolysis, the differenti-
ated 3T3-L1 adipocytes were treated with 0, 50 and 100 µM of DZA concentrations for 48 h. Hydrolysis of TG 
in adipocytes by cellular lipases results in the release of glycerol and  FFAs16. Hence, their release in the incuba-
tion medium as well as total cellular TG content was examined to assess  lipolysis17. DZA treatment for 48 h 
increased release of glycerol and FFAs into the medium by ~ 2 and 1.5-fold, respectively (Fig. 1A,B). In addition, 
we observed a parallel 1.5-fold decrease in the cellular content of TGs with 48 h DZA treatments (Fig. 1C). Taken 
together, these results indicate that DZA is the trigger that promotes active lipolysis in 3T3-L1 adipocytes. Next, 
we measured the activity of glycerol-3-phosphate dehydrogenase (G-3-PDH), an enzyme expressed in differenti-
ated adipocytes and used to measure TG  synthesis18. We observed 62% and 57% reduction in G-3-PDH enzyme 
following treatment with 50 and 100 µM DZA, respectively (Fig. 1D).

Morphological assessment of adipocytes. There is a morphological and functional difference between 
3T3-L1 preadipocytes and well-differentiated mature adipocytes. The first indication of 3T3-L1 preadipocyte 
differentiation into fully differentiated adipocytes is the accumulation of lipid droplets (LDs) which can be 
stained with BODIPY 493/503, a lipophilic fluorescent dye. BODIPY staining revealed characteristic larger 
sized intracellular LDs in control 3T3-L1 adipocytes, which became progressively smaller with increasing DZA 
treatments (Fig. 1E). Quantification analysis confirmed clear differences in LD numbers (Fig. 1F) and relative 
size (Fig. 1G) between the control and DZA-treated 3T3-L1 adipocytes. The widely distributed LDs in control 
3T3-L1 adipocytes were larger in size (~ 15 µm in diameter) with fewer number of LDs per cell, whereas 50 
and 100 µM DZA treated 3T3-L1 adipocytes showed higher numbers of much smaller-sized LDs (2–6 µm in 
diameter) per cell. This morphological assessment corroborated the biochemical assessment of lower cellular 
TG content and higher levels of glycerol and FFAs released into the medium portending that DZA treatments 
promote the hydrolysis of LD TG stores, thereby generating much smaller LDs.
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Figure 1.  DZA stimulates lipolysis in 3T3-L1 adipocytes. Quantification of (A) glycerol and (B) free fatty acid (FFA) levels in 
the medium normalized to cellular DNA and expressed as µg/µg DNA, (C) cellular triglyceride (TG) content normalized to 
cellular DNA and expressed as µmole/µg DNA and (D) glycerol-3-phosphate dehydrogenase (G-3-PDH) activity expressed as 
U/mg protein (1 unit of activity represents the oxidation amount of 1.0 nmol/L per minute) in control and DZA-treated 3T3-
L1 adipocytes (n = 8). (E) Representative confocal images of BODIPY 493/503 and DAPI (nucleus – blue) stained control and 
DZA-treated 3T3-L1 adipocytes (Scale bar—20 µm). Distribution of lipid droplets (LDs, stained green) in 3T3-L1 adipocytes, 
n = 4 experiments; images of 27 random cells from each treatment group per experiment were captured and analysed for 
(F) Average # of LDs per cell and (G) relative size (diameter) of LDs/cell. Data are presented as the mean ± SEM; values not 
sharing a common letter significantly differ from each other at p ≤ 0.05.
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DZA treatment increases intracellular SAH and reduces methylation potential. To determine 
the cellular methylation potential, intracellular SAM, SAH and SAM:SAH ratios were measured in mature adi-
pocytes treated with different concentration of DZA. While DZA treatment did not affect intracellular SAM 
levels (Fig.  2A), it markedly increased SAH levels (Fig.  2B), resulting in a dose-dependent decrease in the 
SAM:SAH ratio (Fig. 2C).

DZA activates ATGL in adipocytes. Adipose triglyceride lipase (ATGL) is the rate-limiting enzyme for 
TG hydrolysis in  adipocytes19 and comparative gene identification-58 (CGI-58) is its  coactivator20, 21. The protein 
coded by G0/G1 switch gene 2 (GOS2) is highly expressed in adipocytes and specifically interacts with ATGL 
inhibiting its TG hydrolase  activity19, 22–24. Immunofluorescent staining (Fig. 3A–D) and quantitative analysis 
(Fig. 3E–H) revealed decreased GOS2 but increased ATGL, activated ATGL (pATGL-Ser(406)) and CGI-58 in 
DZA-treated 3T3-L1 adipocytes compared to control cells. BODIPY co-staining showed cellular localization 
of pATGL-Ser(406) at the LD surface of DZA-treated 3T3-L1 adipocytes compared to untreated control cells 
(Fig. 3B inset). Consistent with the protein expression data, RT-PCR revealed higher level of mRNA encoding 
for CGI-58 (Fig. 3J) in DZA-treated 3T3-L1 adipocytes compared with untreated adipocytes. However, despite 
an increase in overall ATGL protein expression, lower mRNA levels were observed in both DZA-treated 3T3-L1 
adipocytes compared with untreated controls (Fig. 3I).

DZA activates HSL in adipocytes. HSL, another important lipase, is actively involved in adipocyte 
 lipolysis25. We sought to determine whether DZA influences HSL and the phosphorylated form of HSL in 3T3-
L1 adipocytes. Immunofluorescent staining and RT-PCR analyses showed that DZA treatments increased total 
HSL protein (Fig. 4A,D) and its mRNA (Fig. 4G) compared to control cells. Phosphorylation at Ser-563 activates 
HSL facilitating its translocation from the cytosol to LDs while phosphorylation at Ser-565 has been suggested 
to have an antilipolytic  role26. Immunofluorescence imagery and quantitative analysis of pHSL-Ser(563) and 
pHSL-Ser(565) expression revealed DZA-induced an increase in pHSL-Ser(563) and a concomitant decrease in 
pHSL-Ser(565) level compared to control cells (Fig. 4B,C,E,F).

DZA modulates the expression of LD‑ and adipocyte‑specific proteins. We then determined 
whether DZA modulates the expression of LD-associated proteins in adipocytes (Fig. 5A,B). Perilipin1 (PLIN1) 
is located on the surface of intracellular LDs and regulates lipolysis by inhibiting ATGL activity in  adipocytes27. 
Fatty acid binding protein 4 (FABP4) is a fatty acid carrier protein primarily expressed in  adipocytes28 that also 
regulates  lipolysis29. Immunofluorescence image analysis showed lower PLIN1 but higher FABP4 expression on 
the surface of LDs stained with BODIPY 493/503 in DZA-treated 3T3-L1 adipocytes compared with controls 
(Fig. 5A–D). In accordance with the protein expression data, lower PLIN1 mRNA levels were observed in DZA-
treated 3T3-L1 adipocytes compared with controls (Fig. 5E). However, despite an increase in overall FABP4 
protein expression, lower mRNA levels were observed in both DZA-treated 3T3-L1 adipocytes compared with 
untreated controls (Fig. 5F).

DZA downregulates protective adipokine secretion. Immunofluorescent staining revealed a signifi-
cant decrease in adiponectin protein expression and a concomitant decrease in its secretion in DZA-treated 3T3-
L1 adipocytes compared with untreated control adipocytes (Fig. 6A–C). A similar dose-dependent reduction in 
secreted leptin levels were observed with DZA treatment of 3T3-L1 adipocytes compared with untreated control 
cells (Fig. 6D).

DZA promotes the release of inflammatory cytokines from adipocytes. Increased levels of 
secreted proinflammatory cytokines and chemokines act on adipocytes in a paracrine manner to promote 
their  dysfunction30. We observed significantly higher levels of the inflammatory cytokines interleukin-6 (IL-

Figure 2.  DZA reduces the methylation potential in 3T3-L1 adipocytes. (A) Intracellular SAM level, (B) SAH 
level and (C) Intracellular SAM:SAH ratio in control and DZA-treated 3T3-L1 adipocytes (n = 4). Data are 
presented as the mean ± SEM; values not sharing a common letter significantly differ from each other at p ≤ 0.05.
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Figure 3.  DZA activates ATGL in 3T3-L1 adipocytes. Immunofluorescence images showing localization of 
(A) ATGL, (B) pATGL-Ser(406), (C) CGI-58 and (D) GOS2 in BODIPY 493/503 and DAPI stained control 
and DZA-treated 3T3-L1 adipocytes (Scale bar—20 µm) with a magnified images of a representative 100 µM 
DZA-treated cell showing localization of pATGL-Ser(406) and CGI-58 on the LD surface. (E) The fluorescence 
intensity of ATGL, (F) pATGL-Ser(406), (G) CGI-58 and (H) GOS2 expression in each group of cells 
normalized to % of control cells, (n = 4) experiments; confocal images of 31 random cells from CGI-58 mRNA 
expression in control and DZA-treated 3T3-L1 adipocytes, n = 5. Data are presented as the mean ± SEM; values 
not sharing a common letter significantly differ from each other at p ≤ 0.05.
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Figure 4.  DZA activates HSL in 3T3-L1 adipocytes. Representative immunofluorescence images of (A) total 
HSL (B) pHSL-Ser(563), and (C) pHSL-Ser(565) in BODIPY 493/503 and DAPI stained control and DZA-
treated 3T3-L1 adipocytes (Scale bar—20 µm). The fluorescence intensity of (D) HSL, (E) pHSL-Ser(563) and 
(F) pHSL-Ser(565) in DZA-treated cells normalized to % of control cells, n = 4 experiments; Images (confocal 
microscope—Panel A; Keyence BZ-X810 florescence microscope—Panels B and C) of 22 random cells from 
each treatment group per experiment were captured and analysed. (G) Relative HSL mRNA levels in control and 
DZA-treated 3T3-L1 adipocytes (n = 5). Data are presented as the mean ± SEM; values not sharing a common 
letter significantly differ from each other at p ≤ 0.05.
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Figure 5.  DZA modulates the expression of adipocyte-specific proteins. Representative immunofluorescence 
image of (A) PLIN1 and (B) FABP4 in BODIPY 493/503 and DAPI stained control and DZA-treated 3T3-L1 
adipocytes (Scale bar—20 µm). (C) Fluorescence intensity of PLIN1 and (D) FABP4 in representative DZA-
treated cells normalized to % of control cells, n = 4 experiments; images of 30 random cells from each treatment 
group per experiment were captured using Keyence BZ-X810 florescence microscope (Panel A) or confocal 
microscope (Panel B) and analysed. Relative mRNA expression levels of (E) PLIN1 and (F) FABP4 in control 
and DZA-treated 3T3-L1 adipocytes (n = 6). Data are presented as the mean ± SEM; values not sharing a 
common letter significantly differ from each other at p ≤ 0.05.
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6), tumour necrosis factor (TNF) and macrophage chemotactic protein-1 (MCP-1) and their mRNA levels 
(Fig. 7A–F) in DZA-treated 3T3-L1 adipocytes compared with untreated control adipocytes.

DZA alters the expression of adipocyte differentiation markers. Adipocyte differentiation is con-
trolled by a transcriptional cascade composed of key players such as peroxisome proliferator-activated receptor 
gamma (PPARγ) and CCAAT/enhancer-binding protein alpha (C/EBPα)31. We next investigated whether DZA 
affects 3T3-L1 adipocyte differentiation by conducting immunofluorescent staining and RT-PCR analyses. DZA 
exposure downregulated the protein expression of PPARγ and C/EBPα (Fig. 8A–C) and PPARγ mRNA expres-
sion (Fig. 8D) compared with untreated control 3T3-L1 adipocytes.

Discussion
This present study reveals that DZA treatment selectively elevates intracellular SAH levels, increases lipolysis 
and dysregulates adipokine secretion, thus mimicking the effects of chronic ethanol consumption on adipose 
tissue as seen in experimental rodent  models9, 32–34. DZA’s effects on adipocyte TG lipolysis occurred largely by 
(1) enhancing the activation of two key lipases, ATGL and HSL, (2) decreasing TG biosynthesis, (3) lowering the 
level of anti-lipolytic LD-associated protein, PLIN1 and (4) increasing the pro-lipolytic LD-associated proteins, 
CGI-58 and FABP4. Further, DZA treatment resulted in a decrease in the secretion of protective adipokines, 
adiponectin and leptin, while increasing the release of pro-inflammatory mediators, TNFα, MCP-1 and IL-6. 
The net effect of all these SAH-induced changes in adipocytes are known to play a causal role in the pathogenesis 
and progression of  ALD5, 7–9, 12, 32–36.

We have maintained a long-standing interest in examining the alcohol-induced alterations in the methio-
nine metabolic pathway and its functional ramifications. We have previously reported that the alcohol-induced 
increases in hepatocellular SAH and the resultant lowering of SAM:SAH ratio lead to the development of ALD 

Figure 6.  DZA downregulates protective adipokine secretion. Representative immunofluorescence image of 
(A) adiponectin in BODIPY 493/503 and DAPI stained control and DZA-treated 3T3-L1 adipocytes (Scale 
bar—20 µm). (B) Fluorescence intensity of adiponectin in representative DZA-treated cells normalized to % 
of control cells, n = 4 experiments; images of 32 random cells from each treatment group per experiment were 
captured using confocal microscope. (C) Adiponectin and (D) leptin levels in the culture medium of control 
and DZA-treated 3T3-L1 adipocytes normalized to cellular DNA and expressed as µg/µg DNA, n = 6. Data are 
presented as the mean ± SEM; values not sharing a common letter significantly differ from each other at p ≤ 0.05.
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features, including hepatic  steatosis37–40. In expanding our examination of this pathway in other tissues and 
organs, we recently confirmed that chronic ethanol administration results in a similar reduction in the intracel-
lular SAM:SAH ratio in epididymal white adipose tissue (eWAT; Supplementary Fig. S1A) as seen in the  liver37–40. 
This hypomethylation status in eWAT is associated with (1) a reduced size of epididymal adipocytes reflecting a 
reduction in the size of the unilocular LD (Supplementary Figs. S1B & S1C), as also reported by  others32, 34, (2) 
an increased activation of ATGL and HSL (Supplementary Fig. S1D), (3) increased serum NEFA level (Supple-
mentary Fig. S2). These alcohol-induced changes in WAT with concurrent increases in liver fatty acid transport/
binding proteins (cluster of differentiation 36 (CD36; Supplementary Fig. S3A) and adipose-specific FABP4 
(Supplementary Fig. S3B)) facilitate increased uptake of adipose-derived circulating FFA, thereby contributing 
to the development of hepatic steatosis (Supplementary Figs. S3C & S3D). Here, we sought to examine the role of 
alcohol-induced hypomethylation state of eWAT to the rise in lipolysis and modulation in adipokine release by 
inducing intracellular SAH accumulation in differentiated 3T3-L1 adipocytes by DZA and examining whether 
this treatment alone could mimic the pathological changes as seen in vivo after alcohol administration. Specifi-
cally, we focused our investigation on those factors that contribute to the progression of alcohol-associated fatty 
liver  disease7, 8, 32–34.

Here, we observed that the rise in intracellular SAH and the reduction in the methylation potential in adipo-
cytes, caused by 48 h DZA treatment, enhanced the release of glycerol and FFAs into the spent medium, indicat-
ing a rise in lipolysis, as was previously  reported12. We also observed that DZA treatment reduced intracellular 
TG levels in adipocytes, which could not only result from enhanced lipolysis as seen in these cells but also from 
impaired synthesis. Thus, we examined G-3-PDH, an important enzyme in the TG biosynthetic pathway, which 
is highly expressed in differentiating  adipocytes41 and catalyses the reversible conversion between dihydroxy-
acetone phosphate and glycerol-3-phosphate42. We observed that the activity of G-3-PDH is reduced indicating 
that DZA also inhibits TG biosynthesis in adipocytes. DZA treatment also inhibited the de novo lipogenesis as 
shown by a significant decline in acetyl-CoA carboxylase (ACC) and fatty acid synthase (FAS) levels in adipocytes 
(Supplementary Figs. S4A-C). Thus, both enhanced lipolysis and reduced biosynthesis contribute to a loss in the 
cellular TGs observed. This decrease in cellular TGs by DZA in adipocytes is also reflected by a reduction in LD 
size as visualized by BODIPY 493/503 staining.

Stored cellular TGs are hydrolysed to glycerol and FFA in a three-step process catalysed by the consecutive 
action of ATGL, HSL, and monoglyceride  lipase4, 43, 44. Based on an increase in lipolysis in adipocytes by DZA 
treatments, we then concentrated on the lipases and their activation status in these cells. ATGL is the key lipase, 
which hydrolyse TG to fatty  acids45 and its elevated expression in 3T3-L1 adipocytes has been shown to increase 
both glycerol and FFA  release46. CGI-58 is a coactivator of  ATGL20, 47 and accelerates TG  hydrolysis21, whereas 

Figure 7.  DZA promotes the release of inflammatory cytokines from 3T3-L1 adipocytes. Quantification of 
proinflammatory cytokines (A) IL-6, (B) TNF and (C) MCP-1 in the spent medium of control and DZA-treated 
3T3-L1 adipocytes normalized to cellular DNA and expressed as µg/µg DNA (n = 5). Relative mRNA expression 
levels of (D) IL-6, (E) TNF and (F) MCP-1 in control and DZA-treated 3T3-L1 adipocytes (n = 5). Data are 
presented as the mean ± SEM; values not sharing a common letter significantly differ from each other at p ≤ 0.05.
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Figure 8.  DZA alters the expression of adipocyte differentiation markers. (A) Representative 
immunofluorescence image of (A) PPARγ and (B) C/EBPα in BODIPY 493/503 and DAPI stained control and 
DZA-treated 3T3-L1 adipocytes (Scale bar—20 µm) and fluorescence intensity of (C) PPARγ and (D) C/EBPα 
in representative DZA-treated cells normalized to % of control cells, n = 5 experiments; images of 32 random 
cells from each treatment group per experiment were captured using confocal microscope. (E) Relative mRNA 
expression levels of PPARγ in control and DZA-treated 3T3-L1 adipocytes (n = 6). Data are presented as the 
mean ± SEM; values not sharing a common letter significantly differ from each other at p ≤ 0.05.
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GOS2 is a potent endogenous peptide inhibitor of ATGL and its hydrolase function 19, 22–24. ATGL and CGI-58 
form a complex that catalyses the initial steps of lipolysis at the surface of the  LD24, 48. In this study, we observed 
decreased GOS2 levels in conjunction with increased expression of total ATGL, its activated form and CGI-58 
after DZA treatments indicating that this lipase is contributing to the increased lipolysis seen in 3T3-L1 adipo-
cytes. Surprisingly, despite increased ATGL and FABP4 protein expression, their mRNA levels were lowered by 
DZA treatments. We are currently investigating the mechanism for the discordance between these proteins and 
their mRNA levels as has previously been reported in other  studies49–52.

HSL is another major rate determining lipase in adipocyte  lipolysis25. The activation and phosphorylation of 
HSL allows its translocation from cytosol to the LD surface, where it stimulates  lipolysis53. HSL activity is post-
translationally regulated by phosphorylation at multiple serine residues, in which Ser(563) is considered to be 
one of the major phosphorylation sites associated with increased HSL  activity54. On the other hand, HSL activity 
is negatively regulated by phosphorylation at Ser(565)55, as it impairs phosphorylation on Ser(563) to decrease 
HSL  activity26, 55, 56. Here, we observed that DZA treatment increased total HSL and pHSL-Ser(563) levels but 
decreased pHSL-Ser(565) level in 3T3-L1 adipocytes indicating that this lipase is also activated.

PLIN1, the best-known member of the PLIN family of proteins, is the predominant isoform found on the 
LD surface of mature  adipocytes16. PLIN1 modulates lipolysis by regulating the interaction of ATGL with its 
coactivator CGI-5857, 58, and also by limiting the access of cytosolic lipases to the LDs, thereby facilitating TG 
storage under basal  conditions59. Following a lipolytic trigger, PLIN1 gets phosphorylated which not only dis-
sociates CGI-58, leading to ATGL activation but also helps recruit phosphorylated HSL to the LD  surface16, 24, 57, 

60. FABP4, a member of the cytosolic fatty acid binding protein family that it highly expressed in  adipocytes61, 
plays a role in transporting FFAs to subcellular  compartments16. It has been shown that FABP4 physically inter-
acts with HSL to increase its lipolytic activity and can also form a complex with CGI-58 to increase hydrolysis 
of LD TG stores 62–64. In this study, we found decreased PLIN1 and increased FABP4 and CGI-58 expression in 
DZA-treated adipocytes, which together promote the activation of both lipases, HSL and ATGL, and their access 
to LD to ultimately enhance lipolysis in these cells.

Adipose dysfunction is characterized by proinflammatory macrophage polarization and altered adipokine 
 secretion65. The adipokines, adiponectin and leptin, are secreted almost exclusively by adipocytes and reduction 
in their serum levels are implicated in the development of alcohol-associated fatty liver  disease11, 13, 33, 35, 36, 66. In 
this study, we found that adipocytes treated with DZA secrete much less adiponectin and leptin compared to 
control adipocytes. Interestingly, we also observed a modest decrease in cellular adiponectin content. The cel-
lular decrease in adiponectin by DZA treatment was much less in magnitude than that secreted, which showed 
a decline of almost 50% with the higher DZA dose compared with control. These data indicated that DZA may 
have a greater effect in disrupting intracellular trafficking of adiponectin as documented in a previous study 
which showed a 40% reduction in its secretion from subcutaneous adipocytes of rats fed ethanol compared with 
pair-fed  controls33.

Here, we found that DZA treatment enhanced the release of inflammatory cytokines by 3T3-L1 adipocytes 
including TNF, IL-6 and MCP-1. Such increases have been reported in adipose depots of ethanol-fed rats but 
have been attributed to infiltrating macrophages and other immune  cells32. Here we show that adipocytes also 
can secrete these cytokines as has been reported before by other  investigators67–69. DZA treatment-induced 
increased lipolysis could also contribute to the production of these cytokines as shown by many  investigators70–72.

Adipogenesis is regulated by a complex mechanism including transcriptional factors such as PPARγ and C/
EBPα73. PPARγ is highly expressed in adipocytes, where it plays an essential role in the differentiation by regu-
lating the expressions of genes responsible for maturation of the adipocyte  phenotype73, 74. PPARγ cooperates 
with C/EBPα to regulate adipocyte differentiation and induces the expression of  FABP475. In the present study 
DZA suppressed adipogenesis by downregulating PPARγ and C/EBPα in addition to upregulating major lipases 
to induce lipolysis, reducing TG synthesis and suppressing both cellular and secretory levels of adiponectin. All 
these changes could be reflective of a de-differentiation of 3T3-L1 adipocytes by DZA. However, we observed 
an increased release of pro-inflammatory cytokines, IL-6, TNF and MCP-1, and an increase in differentiated 
adipocyte-specific binding protein (FABP4) with DZA treatment suggesting that it is inducing adipocyte dys-
function, rather than de-differentiation.

The results of this study collectively demonstrate that DZA-induced increase in intracellular SAH in 3T3-L1 
adipocytes (1) stimulates lipolysis by activating lipases, (2) reduces the secretion of adipokines, (3) increases 
the release of inflammatory cytokines and (4) downregulates adipogenesis as schematically shown in Fig. 9. To 
summarize, the selective elevation of intracellular SAH mimics ethanol’s effect in inducing adipose dysfunction 
that contributes to the pathogenesis of  ALD8, 9, 32, 33. We conclude that alcohol-induced alterations in the adipose 
methionine metabolic pathway contributes to adipose dysfunction that ultimately results in the pathogenesis 
and progression of ALD.

Materials and methods
Cell culture. Mouse 3T3-L1 fibroblasts were purchased from ATCC, USA. Cells were grown in DMEM 
medium containing 10% FBS (Hyclone Cat# SH30070.03) and 1% penicillin–streptomycin (Gibco Cat# 
15240062). At 70% confluence, cells were induced to differentiate by adding methylisobutylxanthine, dexa-
methasone and insulin to the cultured media as described  previously76. After three days of exposure, the dif-
ferentiation medium was replaced with insulin-supplemented medium and cells cultured for the next 6 days. 
The cells were then maintained in 10% FBS- containing DMEM until fully differentiated into adipocytes with 
sufficient lipid LD formation (Fig. 10). The 3T3-L1 adipocytes were then treated with different concentrations of 
DZA (0 µM, 50 µM and 100 µM) for 48 h. After treatment, the spent medium was collected for measuring adi-
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ponectin, free glycerol, FFAs and adipokine levels. The cells were washed with phosphate buffered saline (PBS), 
harvested and lysed for further analysis.

Estimation of triglycerides (TGs). Total lipids were extracted from the 3T3-L1 adipocytes treated with 
different concentration of DZA to quantify triglyceride mass using the triglyceride diagnostics kit (Thermo 
DMA kit, Thermo Electron Clinical Chemistry, Louisville, CO, USA) as detailed  previously37.

Figure 9.  Schematic representation of the effect of DZA treatment: This study shows that the elevation 
in intracellular SAH levels in adipocytes by DZA treatment ultimately promotes liver injury by increasing 
circulating FFAs and pro-inflammatory cytokines while decreasing protective adipokine release.

Figure.10:.  Schematic of procedure for the differentiation of 3T3-L1 pre-adipocytes into mature adipocytes.
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Estimation of glycerol. The free glycerol in the culture media, which serves as an index of lipolysis, was 
measured using a colorimetric assay kit (Free Glycerol Reagent kit, Sigma Cat# F6428) according to the manu-
facturer instructions using glycerol standard solution (Sigma Cat# G7793). Glycerol levels were normalized to 
cellular DNA and expressed as µg glycerol/µg DNA.

Estimation of free fatty acids (FFAs). Levels of FFAs in the culture medium were determined by a 
colorimetric fatty acid detection kit (Cat# SFA-1, ZenBio Inc., Research Triangle Park, NC, USA) following the 
manufacturer’s instructions. Oleic acid was used as a standard. FFA concentrations were normalized to cellular 
DNA and expressed as µg FFA/µg DNA.

Assay of glycerol‑3‑phosphate dehydrogenase (G‑3‑PDH) activity. G-3-PDH activity was deter-
mined based on the method by Wise and  Green77. The fully differentiated 3T3-L1 adipocytes, grown and treated 
with different concentration of DZA, were rinsed twice with PBS, scraped into 300 µl of lysis buffer contain 
50 mM tris-HCl (pH-7.5), 1 mM ethylenediaminetetraacetic acid, 1 mM β-mercaptoethanol and sonicated. The 
resulting 20 µl extract was added with 480 µl of assay buffer (100 mM triethanolamine hydrochloride (pH 7.5), 
2.6 mM ethylenediaminetetraacetic acid, 0.1 mM β-mercaptoethanol, 0.12 mM nicotinamide adenine dinucleo-
tide and 0.2 mM dihydroxyacetone phosphate) to determine the change in absorbance at 340 nm monitored at 
room temperature with a spectrophotometer (DU-800, Beckman Coulter, Brea, CA). 1 unit of G-3-PDH activ-
ity represents the oxidation amount of 1.0 nmol/L of substrate per minute and data are expressed as Unit/mg 
protein.

BODIPY staining of adipocytes. After treatment with DZA, 3T3-L1 adipocytes were fixed in 4% w/v 
paraformaldehyde in 50 mM PIPES, pH 7.0, for 20 min and the accumulated lipid were visualized by staining 
with 1 µg/ml BODIPY 493/503 (Invitrogen, Carlsbad, CA). The cell nuclei were stained with DAPI (1 µg/ml) and 
were visualized using a LSM 800 confocal microscope (Carl Zeiss, Peabody, MA). Images were captured, and the 
staining intensity was quantified using ZEN 2.5 version software.

Analysis of intracellular SAM and SAH. High-performance liquid chromatography (HPLC) analysis 
was performed on perchloric acid extracts of DZA-treated 3T3-L1 adipocytes for quantifying SAM and SAH 
levels to calculate the SAM:SAH ratios as detailed  previously37.

Immunofluorescence staining. Fully differentiated 3T3-L1 adipocytes grown on coverslips were treated 
with different concentrations of DZA for 48  h. The processing for immunofluorescent staining was done as 
detailed in our previous  publication15. Briefly, coverslips were rinsed with PBS and fixed with 4% paraformalde-
hyde followed by background quenching with 50 mM  NH4Cl in PBS. Cells were permeabilized with 0.1% Triton 
X-100 in PBS for 5 min at RT and blocked with 2% BSA in PBS for 1 h at RT. The coverslips were then placed into 
a humidified chamber and incubated for 2 h at 37 °C with 1 µg/mL each of anti-PLIN1 (Cat#3467), anti-ATGL 
(Cat#2138), anti-HSL (Cat#4107), anti-pHSL(Ser-563; Cat#4139), anti-pHSL (Ser-565, Cat#4137), anti-adi-
ponectin (Cat#2789), anti-PPARγ (Cat#2435) and anti-C/EBPα (Cat#8178), anti-FABP4 (Cat#20R-2706;, anti-
pATGL (Ser-406,Cat#ab135093), anti-GOS2 (Cat#ab183465) and anti-CGI-58 (Cat#ab183739) from Abcam, 
Cambridge, MA, USA] in PBS containing 2% BSA and 0.1% Triton X-100. All antibodies were purchased from 
Cell Signaling Technology (Danvers, MA, USA) except p-ATGL, GOS2, CGI-58 purchased from Abcam (Cam-
bridge, MA, USA) and FABP4 from Fitzgerald, Acton, MA, USA). Coverslips were then washed with PBS and 
then incubated for 1 h at room temperature with the corresponding Alexa Fluor 647 (Cat#A21235, Invitrogen, 
Waltham, MA, USA) or Alexa Fluor 555 (Cat#A21422, Invitrogen, Waltham, MA, USA) diluted 1:1000 in PBS 
containing 2% BSA and 0.1% Triton X-100. After incubation, the coverslips were washed with PBS, stained with 
DAPI (1 µg/mL) and mounted. We visualized the cells under a LSM 800 confocal microscope (Carl Zeiss, Pea-
body, MA) for ATGL, pATGL-Ser(406), HSL, CGI-58, FABP4, adiponectin, PPARγ, C/EBPα and GOS2 expres-
sions and Keyence BZ-X810 florescence microscope for visualizing pHSL-Ser(563), pHSL-Ser(565) and PLIN1 
expressions. The staining intensity in the captured images were quantified using ZEN 2.5 version software and 
Keyence BZ-X810 Analyzer software, respectively.

Adiponectin and leptin secretion. Total adiponectin and leptin levels in culture medium were deter-
mined by using specific ELISAs (R&D Systems, Inc., Minneapolis, MN, USA) according to the manufacturer’s 
instructions.

Inflammatory cytokine secretion. Mouse TNF (Cat# 558534), IL-6 (Cat#555240) and MCP-1 (Cat# 
555260) levels in culture media were measured by using specific ELISA kits following the manufacturer’s instruc-
tions (BD Biosciences, Pharmingen, San Diego, CA, USA).

mRNA quantification. Total RNA was isolated from control and DZA-treated 3T3-L1 adipocytes as 
detailed  previously15 using PureLink RNA Mini Kit according to the manufacturer’s instructions. The concen-
tration of the RNA and 260/280 nm optical density (OD) ratio was determined spectrophotometrically (Nan-
oDrop Technologies, Wilmington, DE). Two hundred ng RNA was reverse transcribed to cDNA using the high 
capacity reverse transcription kit. Then the cDNA was amplified using TaqMan Universal Master Mix-II with 
fluorescent-labeled FAM primers (TaqMan gene expression systems). After incubation in a Model 7500 qRT-
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PCR thermal cycler, the relative quantity of each RNA transcript was calculated by its threshold cycle (Ct) after 
subtracting that of the reference cDNA (β-actin). Data are expressed as the relative quantity (RQ) of transcript.

Statistical analysis. All experimental data are expressed as mean values ± SEM. Comparisons among mul-
tiple groups were determined by one-way ANOVA, using a Tukey post-hoc test. For comparisons between two 
groups, we used Student’s t-test. A probability values of 0.05 or less was considered significant.
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