
Phylogeographic Study of Apodemus ilex (Rodentia:
Muridae) in Southwest China
Qi Liu1,2., Peng Chen1,2., Kai He1,2., C. William Kilpatrick3, Shao-Ying Liu4, Fa-Hong Yu5*, Xue-Long

Jiang1*

1 State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China, 2 Graduate University

of Chinese Academy of Sciences, Beijing, China, 3 Department of Biology, University of Vermont, Burlington, Vermont, United States of America, 4 Sichuan Academy of

Forestry, Chengdu, China, 5 Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, Florida, United States of America

Abstract

Background: The Mountains of southwest China have complex river systems and a profoundly complex topography and are
among the most important biodiversity hotspots in the world. However, only a few studies have shed light on how the
mountains and river valleys promote genetic diversity. Apodemus ilex is a fine model for investigating this subject.

Methodology/Principal Findings: To assess the genetic diversity and biogeographic patterns of Apodemus ilex, the
complete cytochrome b gene sequences (1,140 bp) were determined from 203 samples of A. draco/ilex that were collected
from southwest China. The results obtained suggested that A. ilex and A. draco are sistergroups and diverged from each
other approximately 2.25 million years ago. A. ilex could be divided into Eastern and Western phylogroups, each containing
two sub-groups and being widespread in different geographical regions of the southern Hengduan Mountains and the
western Yunnan - Guizhou Plateau. The population expansions of A. ilex were roughly from 0.089 Mya to 0.023 Mya.

Conclusions: Our result suggested that A. ilex is a valid species rather than synonym of A. draco. As a middle-high elevation
inhabitant, the phylogenetic pattern of A. ilex was strongly related to the complex geographical structures in southwest
China, particularly the existence of deep river valley systems, such as the Mekong and Salween rivers. Also, it appears that
the evolutionary history of A. ilex, such as lineage divergences and population expansions were strongly affected by climate
fluctuation in the Late Pleistocene.
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Introduction

Apodemus species are among the most common small rodents

inhabiting woodlands and forests of the Palaearctic and Oriental

Region [1,2,3,4]. The genus has been subdivided into four

subgenera, Apodemus, Sylvaemus, Alsomys and Karstomys [5] and

comprises 20–22 extant species [2,4,6].

There are 12 extant Apodemus species in the Oriental Region [2],

but only four forms are reported from the Eastern Trans-

Himalayas [4], including A. peninsulae, A. latronum, A. chevrieri and

the A. draco complex. The Apodemus draco complex include A. draco,

A. ilex, and A. orestes and are distributed in mountain areas in

China, Myanmar, and India [2]. These taxa have been treated as

three valid species, subspecies of a single species, or synonyms of

Apodemus draco in different taxonomic revisions [2,3,5,7,8]. The

fossil records and phylogenetic analysis suggested an initial

radiation of Apodemus in East Asia into a Japanese endemic (A.

argenteus), a Nepalese endemic (A. gurkha) and the ancestral lineage

of the remaining eastern Asian species (subgenus Apodemus) after a

two-step radiation process associated with the recent tectonic

movements that occurred 5–7 Mya (million years ago) and 2–

3 Mya, respectively [9,10,11]. The phylogeography of Apodemus in

the Far East of Asia showed extensive isolations within Apodemus

species and could be linked to the presence of many biogeographic

barriers such as mountains, rivers, seas, and deserts [1], similar to

many other species [9,12,13,14].

The Hengduan Mountains (i.e. the mountains of Southwest

China) have the most complex river systems and a profoundly

complex and dynamic geological history. The uplifting of the

Himalayas and the Qinghai-Tibet Plateau and the successive

alternation of glaciation and interglaciation in the Pliocene-

Pleistocene contributed to the formation of natural geographical

barriers and habitat heterogeneity [15]. This made it not only an

important center of relic survival but also decisive evolutionary

localities exist. Hence it is an excellent model system for

biogeographic studies [16]. Previous studies of Apodemus considered

this region to be the Pleistocene refugium or the radiation center

for the East Asian Apodemus species [1,8,17,18]. However, there

has not been sufficient evidence from morphometric and

molecular studies to describe the phylogenetic relationship
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between A. draco and A. ilex, especially the biogeography in the

south of the Hengduan Mountains and the Yunnan-Guizhou

Plateau.

In this study, the complete cytochrome b gene sequences (cyt-b)

were determined from 203 samples of A. draco/ilex that were

collected from southwest China, including the Hengduan

Mountains and the Yunnan-Guizhou Plateau. Using phylogenetic

and phylogeographical approaches, we examined the different

revisions regarding the taxonomic status of A. ilex, the effect of the

complex geological structures in the Himalayan regions on the

genetic diversity of A. ilex, as well as the hypotheses of the

biogeographic patterns and colonization history of A. ilex. In

addition, a Bayesian method with a ‘‘relaxed’’ clock model [19]

was applied to co-estimate the phylogenetic relationships and

divergence times of Apodemus.

Methods

Ethics Statement
All animal samples were obtained following the regulations for

the implementation of China on the protection of terrestrial wild

animals (State Council Decree [1992] No. 13) and approved by

Wildlife Protection Office, Yunnan and Sichuan Provincial

Forestry Departments, China as well as the Ethics Committee of

Kunming Institute of Zoology, Chinese Academy of Sciences,

China.

Sampling and sequencing
A total of 203 samples of Apodemus draco/ilex were collected from

51 localities in the southern Hengduan-Mountains and the

Yunnan-Guizhou Plateau in China (Table S1, Figure 1). Speci-

mens were identified based on the description of Thomas [20] and

Barrett-Hamilton [21].

Total genomic DNAs were extracted from muscle or liver

preserved in 95% ethanol at 220uC by using the phenol/proteinase

K/sodium dodecyl sulphate method [22]. Mitochondrial cyt-b

sequences (1,140 bp) were amplified with the universal primers of

L14724 and H15915 [23]. The 50 ml PCR reaction contained 5 ml

of 10X PCR buffer, 2 ml of 2 mM dNTP mixture, 2 ml of bovine

serum albumin (1 mg/ml), 1 ml of 10 mM of each primer, 2.5 ml of

25 mM MgCl2, 1.25 U rTaq DNA Polymerase (Takara, Dalian,

China) and approximately 100 ng total genomic DNA as template,

and DNase/RNase free water diluted to a final volume of 50 ml. A

touchdown PCR protocol [24] was used to prevent non-specific

amplification, including an initial denaturation at 94uC for 10 min,

10 cycles of denaturation at 94uC for 60 s, annealing at 52.5uC but

Figure 1. Samples of A. ilex used in this study. Numbers are corresponding to those in Table 1 and presented as pie-charts. Slice size
proportional to the frequency of the subclades occurring in the site.
doi:10.1371/journal.pone.0031453.g001
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decreased by 0.5uC per cycle for 60 s, extension at 72uC for 60 s,

followed by additional 20 cycles of denaturation at 92uC for 60 s,

annealing at 47.5uC for 60 s, extension at 72uC for 60 s, and a final

extension at 72uC for 10 min. PCR products were purified with

UNIQ-10 spin column DNA gel extraction kit (Shengong,

Shanghai, China) and sequenced from both directions with the

same PCR primers in an automated DNA sequencer (ABI PRISM

3730) by using Big Dye terminator v3.1 in Tiangen Biotech CO.,

LTD (Beijing, China).

In addition, 34 cyt-b sequences from GenBank, including 4

sequences of A. ilex, 7 sequences of A. draco, and 23 sequences of A.

agrarius, A. alpicola, A. chevrieri, A. flavicollis, A. latronum, A. mystacinus,

A. peninsulae, A. semotus, A. speciosus, A. sylvaticus A. uralensis, Mus

musculus, and Rattus rattus were included in analyses (Table S2).

Phylogenetic and molecular divergence analysis
The DNA sequences were edited with Seqman and EditSeq

(DNASTAR, Lasergene v7.1) and aligned with ClustalX v1.83

[25]. Genetic distance was calculated with MEGA v4.0 [26] with

the Kimura 2-parameter (K2P) model [27].

We apply Bayesian inference (BI) and maximum likelihood

(ML) to reconstruct phylogenetic relationships. We used RAxML

v7.2.8 [28,29] for ML analyses on the CIPRES Science Gateway

v3.1 ([30] http://www.phylo.org). The data set was partitioned by

codon. We used the GTRGAMMA model for each partition as

recommended by RAxML and selected the novel rapid Boot-

strapping algorithm [29] and ran 450 bootstrap replicates.

We used BEAST v1.5.4 for simultaneous Bayesian phyloge-

netics analysis and ‘‘relaxed’’ molecular dating estimation [31].

The data set was partitioned by codon and the GTR+I+C model

was selected as the best evolutionary substitution model by

likelihood-ratio test in MrModeltest v2.3 [32,33]. We chose

*BEAST model as our tree prior in BEAST analyses [34]. The

analyses consisted of a random generated starting tree, uncorre-

lated lognormal relaxed molecular clock, and the program’s

default prior distributions of model parameters. Each analysis

consisted of 40 million generations, sampled every 1,000

generations. The analyses were repeated four times and conver-

gence was assessed using Tracer v1.5 [31]. Posterior probabilities

(PP)$0.95 are considered to be strongly or significantly supported

[35].

Three divergence dates were used as the calibration points in

molecular dating estimation and were treated as lognormal

distributions [36] in analysis under a relaxed molecular clock

model. This is the most appropriate method to use paleontological

information [36] and overcomes the problem of rate variation

across different timescale [37,38]. The first calibration date was

derived from A. dominans, the common ancestor of A. flavicollis and

A. sylvaticus lived about 4.2–4.9 million years ago in European

Mammal Neogene (MN) unit 14 [39]. In analysis, the mean

sampled age was 4.2 Mya and the older 95% credible interval (CI)

was 4.9 Mya (standard deviation = 0.1). The second calibration

date was based on the oldest fossil of Apodemus that lived about

11.0–9.88 Mya in MN11 [40]. Estimation of divergence time was

calculated with 9.88 Mya (offset = 9.0, mean = 0.88) as the mean

sampled age and 11.0 Mya (standard deviation = 0.62) as the older

95% CI. The third calibration date was 12.3–11.0 Mya, the

divergence time of Mus and Rattus [41]. The mean sampled age

was 11.0 Mya (offset = 10.0, mean = 1.0) and the older 95% CI

was 12.3 Mya (standard deviation = 0.63).

Genetic diversity, structure, and population dynamics
The genetic distances among different evolutionary lineages and

transversion/transition (Tv/Ts) ratios were estimated with MEGA

v4.0 [26]. The number of haplotypes (N), nucleotide diversity (pi),

and haplotype diversity (Hd) were calculated with DnaSP v5.10

[42]. The minimum-spanning networks were derived from

Network v4.5 using the median-joining approach [43]. Because

the Tv/Ts ratio was 5.33 in A. ilex, we set the weight of

transversion to 5 and the weight of transition to 1 in analysis.

Optimal phylogenetic trees were further calculated with the

calculation options of maximum parsimony [44,45].

Population subdivision was estimated using the hierarchical

analysis of molecular variance (AMOVA) and Genetic differences

among populations were calculated by pairwise Fst test using

Arlequin v3.5 [46]. AMOVA were performed with 10,000

permutations with 3 different grouping options, which were

grouped based either on the mtDNA clades/subclades identified in

BEAST analysis or on their geographical distributions (see result).

Pairwise Fst values were also performed with 10,000 permutations

with a significant level of 0.05. An Fst value$0.25 indicated that

the gene flow was limited between two populations [47]. The

historical population dynamics were analyzed by mismatch

distribution analyses (MDA) [48], Fu’s test [49] and Ramos-

Onsins and Rozas’s R2 test [50]. The behavior of Fs is better for

large population sizes, whereas R2 is better for small sample sizes

[50]. MDA and the Fu’s test was performed using Arlequin v3.5

[46] with 10,000 permutations on each subclade or subgroup if

neutrality holds statistical significance. The raggedness index (rg)

and sum of squared deviations (SSD) between observed and

expected mismatch distributions were estimated simultaneously

with MDA. Under population expansion model, the rg and SSD

were expected to have lower value [51]. R2 test was also

performed using DnaSP v5.10 [42] and significant level was

estimated by coalescent simulations with 10,000 replicates. If

sudden expansion model was not rejected, the expansion time was

calculated with the equation t= 2ut [48], where t was measured in

generations (one year per generation for A. ilex), t was calculated

simultaneously with MDA, u was calculated using formula

u = 2 mk, in which 2 m was the mutation rate per nucleotide and

k was the number of nucleotides (1,140 bp).

Results

Phylogenetic analysis and molecular divergence time
Because A. draco and A. ilex are morphologically indistinguish-

able, the sequences of the samples were identified based on the

pairwise comparison with the sequences from the specimens

collected at or near their type localities. The type locality for A.

draco is located at Kuatum, Fujian, China, while the type locality

for A. ilex is at Salween - Mekong divide (28u209N) [20]. In

analysis, the sequences determined from the topotype specimen of

A. draco by Liu et al. [8] (Accession number : AY389009) and the

specimen from near the type locality of A. ilex from Mt. Meili,

China (28u23.89N) were serve as the reference sequences for A.

draco and A. ilex, respectively. Of the 203 sequences generated in

this study, 6 were identified as A. draco and 197 as A. ilex (Tables

S1, S2). Haplotype analysis of 201 cyt-b sequences of A. ilex,

including 4 sequences from GenBank, identified 134 haplotypes.

The new identified haplotypes were submitted to GenBank

(Accession numbers: JF503102–JF503107 (A. draco) and

JF503109–JF503198, JF503200–JF503228, JF503230–JF503240

(A. ilex)).

The phylogeny estimated by RAxML and BEAST were

congruent with each other and the topologies were overall highly

supported. Thus, only the Bayesian trees were given and both

Bayesian posterior probabilities and ML bootstrap support values

(BS) were represented (Figures 2, 3). All populations of A. ilex and

Phylogeography of Apodemus ilex
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A. draco formed strongly supported (BS$94, PP = 1.0) reciprocal

monophyletic groups. The sister relationship between A. draco and

A. ilex was also supported (BS = 90, PP = 0.87), with 9.0% of a K2P

distance. All 201 A. ilex samples were grouped into the Eastern (E)

and Western (W) clades, each containing two subclades: E1/E2

and W1/W2 (Figures 2, 3). All clades and subclades were

significantly supported by BI analyses (PP = 1.0) and at least

moderately supported by ML analyses (BS$62). The K2P

distances between clades and subclades were: E/W = 3.1%, E1/

E2 = 1.9% and W1/W2 = 1.6%.

Table 1 presents the divergence times based on the Bayesian

relaxed molecular dating estimation. A. ilex and A. draco diverged

from their common ancestor at about 2.25 Mya (95% CI = 1.69–

2.82). The earliest split within A. draco occurred about 1.15 Mya

(95% CI = 0.84–1.46), much earlier than the split of the clades E

and W of A. ilex at about 0.62 Mya (95% CI = 0.44–0.84). The

divergence times of subclades E1/E2 and W1/W2 were at about

0.33 Mya (95% CI = 0.23–0.45) and 0.32 Mya (95% CI = 0.22–

0.45), respectively.

Genetic diversity and structure of A. ilex
Phylogenetics analysis of 201 cyt-b sequences of A. ilex detected

965 conserved sites (84.6% of all sites) and 175 variable sites

(15.4% of all sites). The K2P distances between haplotypes of A.

ilex ranged from 0.0% to 4.1% (average 2.1%). The overall

haplotype diversity (Hd) and nucleotide diversity (Pi) were 0.993

and 0.021, respectively. The pairwise Fst estimation among

populations ranged widely from 0.00 to 1.00. Most populations

are strongly differentiated from each other (Fst.0.25) indicating

restricted gene flow. High levels of gene flow are more often

observed within geographically close populations (e.g. population

16 and 18, Fst,0.001; Table S3).

In clade E, the haplotypes in both E1 and E2 are widely

distributed in the east and some areas of the west of the Mekong

Figure 2. Chronogram of Apodemus based on cyt-b sequences. Branch lengths represent time; Node bars indicate the 95% CI for the clade
age; An asterisk indicates node for calibration; The tx above the nodes refer to median ages and 95% CI for each node in Table 2; Numbers below the
nodes are Bayesian posterior probabilities (PP) and ML bootstrap (BS) values. A ‘-’ indicates the value is lower than 0.5 (PP) or 50 (BS).
doi:10.1371/journal.pone.0031453.g002
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River (populations 1, 14, 34, 36, 39 containing E1 haplotypes and

population 1 containing E2 haplotypes; Figure 1). In clade W, the

haplotypes in W1 were mainly distributed in the west of the

Salween River and two localities east of the Mekong River

(populations 10 and 26); while the haplotypes in W2 were

distributed mainly in the southern part of the Yunnan-Guizhou

Plateau and west of the Mekong River. In addition, sympatric

distribution of different maternal lineages were observed in several

localities (i.e. population 1, 2, 8, 10, 11, 16, 19, 34, 36, 39; Figure 1)

Further geographical structure was examined with AMOVA

using three grouping options, including (1) the populations

grouped by the subclades E1, E2, W1 and W2; (2) the populations

grouped by geographical distributions, namely, the individuals

from the west of the Salween River as group 1, the individuals

distributed between the Salween and Mekong rivers as group 2,

and the individuals from the east of the Mekong River as group 3;

and (3) the populations grouped with the same way as (2) except

for populations 1 and 14 which were included in group 3 (Figure 1).

The results of AMOVA showed significant genetic structures at all

hierarchical levels (P,0.001) and the largest proportion of

variances were always found among groups (Table 2). In size

order, the variances among groups were the second grouping

option (43.30%),the third grouping option (54.12%),the first

grouping option (55.17%), with the corresponding increased Wst

values from 0.715, 0.737 to 0.822, respectively.

The network analyses generated eleven most parsimony trees

that were similar to the gene tree inferred from the BEAST

analyses, including four subclades (E1, E2, E3 and E4; Figure 4).

The clade E1 has the most complex structure and can be further

divided into 4 subgroups (E1a, E1b, E1c, and E1d). E1a consisted

of the haplotypes from Caojian (population 14), E1b consisted of

the haplotypes from Mt. Haba, Mt. Yulong, Lushi and Mt.

Bangma (populations 3 and 6, 10, 24 and 36, respectively), E1c

mainly included the haplotypes from the Mt. Wuliang and Mt.

Ailao in central Yunnan (populations 15–22), and E1d contained

the haplotypes from the northwest of Yunnan (Table S1). Star-like

structures were found in E1c, E1d, W1 and W2 (Figure 4), though

the original haplotypes were not found in W1 and W2. These

structures are evidence of population expansion [52].

Population historical demography of A. ilex
The analysis of MDA suggested that all four groups showed

multimodal distributions (Figure S1) but with small SSD and rg

values (Table 3). Moreover, Fu’s and R2 test showed the large

populations have significant negative Fs (i.e. E1, W1, W2) when

small populations have significant small R2 (i.e. E2) (Table 3).

Further analyses of the subgroups E1c and E1d revealed smooth

unimodal mismatch distributions and significant negative Fu’s Fs

values (Table 3, Figure S1). The insignificant values of PSSD and

Prg (P.0.05) in E1c, E1d and W2 confirmed the expansions within

these group/subgroups; while the significant PSSD/Prg (P,0.05) of

W1 might be due to insufficient sample size [53]. Group E2 had

multimodal distribution and insignificant negative Fu’s Fs value,

but the significant small R2 value and the insignificant values of

PSSD and Prg implied the possibility of expansion in congruent with

the network topologies. Because the divergence time between

group E and W was at about 0.62 Mya, the population expansions

of E1c, E1d and W1 were approximately at 0.064, 0.038 and

0.039 Mya, respectively (Table 3).

Discussion

Taxonomic implication of Apodemus ilex
The taxonomic status of A. draco, A. ilex and A. orestes have been

controversial for a long time. Apodemus ilex was named based on

specimens collected from the Salween-Mekong divide (28u200N),

China [20] but was treated as a synonym of A. orestes [7] or A. draco

[5,54]. Musser et al. [6] included orestes within A. draco, but, after

comparing the cranial characteristics between A. orestes and A. draco

that are distributed in Wuliang Mountain, China, Jiang and Wang

considered A. orestes as a valid species [3]. Patterns of genetic

variations observed in the complex of A. draco based on cyt-b genes

suggested that A. orestes was a subspecies of A. draco, and A. ilex,

which is distributed in the Yunnan-Guizhou Plateau, is a valid

species [8]. However, Musser et al. [2] still considered A. ilex and

A. orestes as synonyms of A. draco.

With inclusion of 214 samples of A. draco/ilex that were

widespread in the southern Hengduan Mountains and Yunnan-

Guizhou Plateau, two major phylogroups were identified within

the A. draco complex, one representing A. draco that consists of the

specimens from eastern and western China, including all

specimens from the western Sichuan Plateau, and another

representing A. ilex that contains the samples mainly from the

southern Hengduan Mountains and the western Yunnan Plateau.

The average genetic distance between A. draco and A. ilex was 0.09

(K2P). The molecular dating estimation suggested that the

divergence between A. draco and A. ilex was at about 2.25 Mya,

Table 1. Divergence information within and between groups
of Apodemus.

Node Age 95% CI range Divergence Event

t1* 11.92 10.49–14.20 Rattus/Mus

t2* 10.84 10.18–11.95 Mus/Apodemus

t3 9.63 9.16–10.39 Sylvaemus Group/Apodemus Group

t4* 3.97 3.41–4.63 sylvaemus/(alpicola+flavicollis+tralensis)

t5 2.87 2.21–3.63 tralensis/(alpicola+flavicollis)

t6 2.20 1.55–2.85 flavicollis/alpicola

t7 8.35 6.98–9.48 Apodemus Group/mystacinus

t8 7.06 5.94–8.38 agrarius subgroup/draco subgroup

t9 6.12 4.89–7.49 peninsulae/(agrarius+chevrieri+speciosus)

t10 5.13 3.95–6.45 speciosus/(agrarius+chevrieri)

t11 1.56 1.12–2.08 chevrieri/agrarius

t12 4.74 3.64–5.99 latronum/(draco+ilex+semotus)

t13 2.67 2.02–3.34 semotus(draco+ilex)

t14 2.25 1.69–2.82 draco/ilex

t15 1.15 0.84–1.46 draco MRCA

t16 0.62 0.44–084 ilex E/W

t17 0.33 0.23–0.45 ilex E1/E2

t18 0.32 0.22–0.45 ilex W1/W2

*Nodes used for calibration.
doi:10.1371/journal.pone.0031453.t001

Figure 3. Bayesian phylogenetic analysis of A. draco and A. ilex based on cyt-b sequences. Branch lengths represent substitution per site
and numbers at each node represent the Bayesian posterior probabilities and ML bootstrap values. A ‘-’ indicates the value is lower than 0.5 (PP) or 50
(BS).
doi:10.1371/journal.pone.0031453.g003
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earlier than the split of A. alpicola and A. flavicollis or A. agrarius and

A. chevrieri at 2.20–1.56 Mya (Table 1, Figure 2). These results

support the recognition of A. ilex is a valid species under genetic

and phylogenetic species concepts [55,56]. The taxonomic status

of A. orestes will be discussed elsewhere (Chen et al. in preparation).

Phylogeographic structure in A. ilex and topography of
mountains and rivers

The Hengduan Mountains have long been recognized as a

refugial area for animals [57,58]. Previous analyses either focused

on the northern Hengduan Mountain [59,60,61] or treated this

area as one refugium Only a few studies have addressed the effect

of the extremely complex topography of the southern Hengduan

Mountains and the Yunnan Plateau [62,63]. Our research

revealed the significant internal genetic structure within the

mountains which is relevant to the ‘‘microrefugia’’ [64] or ‘‘refugia

within refugia’’ [65,66]. These concepts are usually used to explain

the phylogenetic structure in the refugia such as the Iberian

Peninsula or disjunctive populations surviving in isolated micro-

habitats. The extremely complex topography [67], climate [68]

and habitats [69] in the mountains as well as the mid-high

elevation distributed pattern of A. ilex could have lead to the

geographically isolation of A.ilex among different mountain areas

and the subsequently restricted gene flow, which are respond for

the strong geographic structure and the high pairwise Fst values

[70].

The minimum-spanning network and AMOVA analyses

indicated the geographic structure of A. ilex was also shaped by

the Mekong and Salween river systems. When the two rivers were

setup as the genetic barriers in the AMOVA analyses, the

Table 2. Results of AMOVA based on different grouping options.

Groups WST WSC WCT %among groups
%among populations
within groups

%within
populations

Four subclades 0.822* 0.603* 0.551* 55.17 27.05 17.78

Divided by two river 0.715* 0.497* 0.433* 43.30 28.20 28.50

Third choice 0.737* 0.427* 0.541* 54.12 19.57 26.31

*P,0.05.
doi:10.1371/journal.pone.0031453.t002

Figure 4. The median-joining network of A. ilex based on cyt-b sequences. The circle size is proportional to the haplotype frequency and the
branch length is proportional to the number of mutations.
doi:10.1371/journal.pone.0031453.g004
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variances existed mainly among populations in different regions

(WST = 0.715) (Table 2). This result is congruent with the recent

proposed hypothesis that deep river valleys may have acted as

barriers to Apodemus species [1] as well as to other animals [71].

However, another montane mammal, the Yunnan hare (Lepus

comus) has no phylogeographic pattern in the same area. Neither

the area of low-elevation nor the river systems seem to be the

barrier for the hares [72]. On the other hand, the paleo-drainage

systems have facilitated dispersal of a frog species [62]. The

discrepancy may due to the different habitats, dispersal abilities

and colonization histories. The Nanorana yunnanensis is a semi-

aquatic anuran living in cold montane streams [62]; the L. comus is

much larger than A. ilex and may have colonized this area only

recently [72].

Effect of glaciation
The biogeographic histories of the montane inhabitants are

usually affected by Pleistocene glacial cycles [73,74,75]. Generally,

animals respond to climate change in two different ways [76]. First

is by changing their distribution. The montane animals usually

have larger distribution during glacial periods (but see [77,78])

when they spread to lowland [79,80], and the glacial and

interglacial climate fluctuation can result in population isolation

and reconnection [73,74,81,82,83,84]. Second is by adapting to

new environments [75,76,81]. Apparently, A. ilex occupies the

same habitats as its relatives (i.e. A. draco and A. semotus) and hasn’t

adapted to a new environment, thus it had to shift distribution

responding to climate change.

With a Bayesian method under a ‘‘relaxed’’ clock model, A. ilex

diverged from A. draco at around 2.25 Mya. Therefore, the

ancestor of A. ilex probably expanded southward from the

northern Hengduan Mountains during global cooling in the

period 2.7–2.5 Mya [85]. After that, divergence of A. draco/ilex

may be attributed to the accelerated uplift of the Qinghai-Tibet

Plateau and the resulting geomorphic changes of the plateau and

the surrounding areas [86] as well as to turnover of vegetation and

habitats [87]. The divergence between the eastern and western

populations of A. ilex (,0.62 Mya) was within the Yulong

glaciation (0.73–0.5 Mya) [88] and the simultaneous divergences

of the subclades E1/E2 (0.33 Mya) and W1/W2 (0.32 Mya) were

consistent with the Lijiang glaciation (0.31–0.13 Mya) [89].

Because the calibration points we used are old (4 Mya to

12 Mya), these divergence time should be taken with caution.

However, if the divergence time are ‘‘true’’, they provide evidence

that ‘‘nunatak refugia’’ existed in these mountains. Nunataks are

refugia in mountain ranges above the glaciers and are snow-free

during glaciations [78]. Indeed, there are evidence of valley

glaciers in the Hengduan Mountains [89,90]. Accordingly, A. ilex

probably widely colonized the southern Hengduan Mountains and

the Yunnan Plateau before the Yulong glaciation. The develop-

ment of valley glaciers during the Yulong and Lijiang glaciation

resulted in geographical isolation but the populations survived in

multiple in situ refugia [77,78] which result in divergences of the

clades/subclades.

Sympatric distributions of different lineages are observed in

several localities (Figure 1) which may be attributed to population

expansion and the resulting secondary contact during climate

fluctuations as well as to the complicated geological history of the

drainage system [91]. Both the neutral test and MDA analyses

provided evidence of expansion in each clade/subclade. The

expansions of E1c, E1d and W1were roughly from 0.089 Mya to

0.023 Mya, corresponding to the last glacial period since

0.11 Mya [92]. Clade W1 and W2 are well segregated by the

Salween rivers with only a few exception. On the other hand,

without major physical barriers in the east of the Mekong River,

populations can expand much more easily and colonize new

habitats, resulting in secondary contact of E1 and E2.

Conclusion and Perspectives
The Hengduan Mountains are the most important refugial

region in China. Other studies have regarded the mountains as a

single refugium, our research has, however, revealed significant

internal genetic structure which suggests that the ‘‘microrefugia’’

or ‘‘refugia within refugia’’ models are more relevant.

Our finding suggests that both the low-elevation areas and deep

river valleys are strong geographic barriers for A.ilex. However, for

aquatic animals in this area, the drainage system is more likely to

facilitate dispersal rather than prohibit it [62]. Thus, it seems the

drainage system did play a role in shaping geographic patterns, but

in different ways for different animals. Furthermore, the evolution

of the drainage system may have led to a more complex

geographic pattern.

Paleoclimatic change has also shaped genetic structure. The

glacial-interglacial cycles not only resulted in inter- and intraspe-

cific divergence, but also led to population expansion and

secondary contact.

Our study has shed light on the biodiversity in this area.

However, because of the complex topography of the mountains,

complicated geological history of the drainage system, Pleistocene

climate fluctuation and habitat turnover, it is far from clear how

the high endemic biodiversity came into existence. It would be

necessary to use comparative phylogeographic approaches of

animals distributed in different habitats and with different

dispersal abilities to examine how the topography, geographic

Table 3. Neutrality test and Mismatch distribution analyses of A. ilex.

Clade/group
(sample size) Neutrality test Mismatch distribution analyses

Fu’s Fs PFs R2 PR2 SSD PSSD rg Prg Tau (95%CI)
expansion time (95%CI)
(Mya)

E1 (94) 224.37 ,0.005 0.055 0.061 0.009 0.306 0.003 0.899 3.172 (1.025–18.281) -

E2 (24) 21.900 0.220 0.076 0.033 0.009 0.295 0.020 0.350 8.232 (5.523–13.916) -

W1 (30) 29.664 ,0.005 0.081 0.119 0.025 0.016 0.048 0.045 4.389 (3.172–5.389) 0.039 (0.028–0.047)

W2 (50) 25.920 0.062 0.088 0.305 0.006 0.467 0.010 0.527 12.348 (7.621–16.092) -

E1c (32) 212.155 ,0.005 0.080 0.121 0.004 0.746 0.010 0.905 7.343 (4.045–10.094) 0.064 (0.035–0.089)

E1d (48) 225.810 ,0.005 0.038 0.002 ,0.001 0.988 0.013 0.827 4.335(2.672–5.660) 0.038 (0.023–0.049)

doi:10.1371/journal.pone.0031453.t003
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events and climate change have shaped the biodiversity in the

mountains of Southwest China [74,93,94].
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