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Diet‑induced prediabetes: effects of exercise 
treatment on risk factors for cardiovascular 
complications
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Abstract 

Background:  An animal model of prediabetes that has been developed in our laboratory using a high fat high car-
bohydrate diet and lack of physical activity displays risk factors for cardiovascular complications. The effect of exercise 
against these risk factors in this animal model remains unknown. Therefore, we evaluated the effect of intermittent 
and regular exercise treatment on the risk factors for cardiovascular complications in this animal model of prediabetes.

Methods:  Following prediabetes induction, animals were randomly assigned to the following groups (n = 6): non-
diabetic, prediabetic, intermittently exercising prediabetic and regularly exercising prediabetic. Exercise exposure was 
7 weeks long. Body weight changes, caloric intake, blood glucose, total cholesterol, and triglyceride concentration 
was measured after 20 and 29 weeks while blood pressure was only measured after 29 weeks. Plasma endothelial 
nitric oxide synthase, malonaldehyde, glutathione peroxidase, tumour necrosis factor-alpha and C-reactive protein 
concentration from the heart were measured 2 weeks post-exercise termination (week 30).

Results:  We found increased body weight, caloric intake and mean arterial pressure in the prediabetic group by com-
parison to the non-prediabetic group. The same trend was observed in blood glucose and triglyceride concentrations. 
However, all of these parameters were reduced in the intermittently exercising prediabetic and regularly exercising 
prediabetic groups. This reduction was further accompanied by a decrease in the endothelial nitric oxide synthase, 
tumour necrosis factor-alpha and C-reactive protein concentration with improved oxidative stress biomarkers.

Conclusions:  The progression of pre-diabetes to diabetes is slowed or possibly stopped by exercise (regular or inter-
mittent). Additionally, biomarker profiles indicative of cardiovascular disease in pre-diabetics are improved by exercise.

Keywords:  Unhealthy diet, Prediabetes, Cardiovascular complications, Exercise intervention, Oxidative stress, 
Inflammation
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Introduction
The abundance of Western-style diets and decreased 
physical activity in the modern world has resulted in 
increased incidence of prediabetes and many cases of 
undiagnosed diabetes [1–4]. This consequently pre-
cipitates cardiovascular complications which are more 

life-threatening than other diabetes complications [1, 
5–10]. In our laboratory, an animal model of predia-
betes has been developed using an unhealthy high-fat 
high-carbohydrate diet and lack of physical activity. This 
animal model opens new avenues for developing differ-
ent therapeutic approaches in the treatment of this con-
dition [11]. This animal model displays some of the risk 
factors that are associated with the pathophysiology and 
pathogenesis of cardiovascular complications in human 
diabetes mellitus [8, 12–14]. Lipid abnormalities in the 
concentration of triglycerides, high-density lipoprotein 
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cholesterol (HDL-C) and low-density lipoprotein choles-
terol (LDL-C); increased markers of oxidative stress and 
inflammation as well as high blood pressure were found 
in this animal model [15–18]. These factors are highly 
atherogenic and predictive of cardiovascular complica-
tions in humans [19, 20]. This shows how this animal 
model closely represents the human condition.

Due to the abundance of highly palatable foods and the 
environment’s hedonic food cues, changing dietary hab-
its seems challenging [21–26]. For this reason, in almost 
all the treatments that are combined with dietary inter-
vention, people tend to relapse back to unhealthy and 
hedonic eating [21]. Additionally, pharmacological treat-
ment comes with high costs and a need to adhere to dos-
age instructions [27]. Some of the advantages of exercise 
therapy include an exercise regimen customized accord-
ing to the patient’s needs and multi-targeted exercise 
benefits in the overall health of a patient. Neurobiological 
studies have shown that exercise is rewarding [28–30]. 
This suggests that exercise may get pleasurable and toler-
able as one continues with it. Therefore, this study sought 
to evaluate the effects of both regular and intermittent 
exercise treatment on the changes associated with cardi-
ovascular complications in a high-fat high-carbohydrate 
diet-induced animal model of prediabetes. Accordingly, 
we looked at body weight gain, caloric intake, blood glu-
cose and triglyceride concentration as well as mean arte-
rial pressure. Furthermore, we looked at oxidative stress 
markers: malonaldehyde (MDA), glutathione peroxidase 
(GPx1); inflammatory markers: tumour necrosis factor-
alpha (TNF-α) and C-reactive protein as well as endothe-
lial nitric oxide synthase (eNOS).

Materials and methods
Chemicals
All chemicals and reagents were of analytical grade and 
were purchased from standard commercial suppliers.

Animals
Male Sprague–Dawley rats (150–180 g) bred and housed 
in the Biomedical Research Unit of the University of 
KwaZulu-Natal under standard laboratory conditions 
were used in the study. The animals were allowed access 
to food and fluids ad libitum. All animal experimentation 
was approved by the Animal Research Ethics Commit-
tee of the University of KwaZulu-Natal (Ethical clearance 
number: AREC/060/017D). Prediabetes was induced in 
experimental animals by continuously exposing them 
to a high-fat high-carbohydrate diet supplemented with 
15% fructose for 20  weeks (see Fig.  1) [11]. Meanwhile, 
the non-diabetic animals were given standard rat chow 
and water during the same 20-week period. At the end 
of week 20, the animals were randomly assigned to the 

following groups (n = 6 per group): non-diabetic (ND), 
prediabetic (PD), intermittently exercising PD (PD + IE) 
and regularly exercising PD (PD + RE). The animals 
stayed on the same diet after prediabetes induction until 
the end of the experiment at week 30. Procedures involv-
ing animal care were conducted in conformity with the 
institutional guidelines for animal care of the University 
of KwaZulu-Natal.

Exercise treadmill running protocol
The exercising animals were subjected to moderate 
endurance exercise on a rat treadmill apparatus consist-
ing of a 2-lane animal exerciser for a 7-week exercise pro-
tocol. The first 2 weeks were used for treadmill running 
acclimatization. During this period, the animals were 
familiarized with the treadmill apparatus by placing them 
on the moving treadmill every 3rd day before the actual 
treadmill running protocol. The duration of the training 
sessions during the acclimatization period was gradu-
ally increased from 5 min to a maximum of 15 min at a 
constant running speed of 16 m/min. Thereafter, the ani-
mals were subjected to either an intermittent or regular 
treadmill running regimen for 5  weeks [31]. Both exer-
cise regimens were 15  min in duration and continuous 
but divided into three sessions of 5 min each with a 1 min 
rest period in between to prevent fatigue. The intermit-
tent treadmill running regimen was performed every 
other 3rd day. For the PD + RE group, a program of regu-
lar treadmill running regimen was performed every 24 h 
at the same time for 5 weeks. The initial running speed 
for both intermittent and regular treadmill running 
regimen was set at 18 m/min and increased by 2 m/min 
every week for 5 weeks to a maximum of 26 m/min after 
5  weeks. Necessary precautionary measures were taken 
to prevent injuries while constant surveillance of ani-
mals was done under the supervision of the Biomedical 
Research Unit personnel.

Experimental protocol
Treadmill exercise was carried out for 7  weeks starting 
on week 21 (see Fig. 1). The protocol duration for the ND 
and PD groups was the same as the other groups except 
that they had no access to a treadmill. Body weights, 
caloric intake, blood pressure, blood glucose, total cho-
lesterol and triglyceride concentrations were measured 
1  week pre-exercise (week 20) and one week after ter-
mination of exercise (week 29) [32]. Blood pressure was 
monitored on week 29 using the tail-cuff method. Ani-
mals were sacrificed on the 1st day of week 30 to collect 
blood samples for eNOS measurement. The heart was 
harvested for MDA, GPx1, TNF-α and C-reactive protein 
measurements.
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Blood collection and tissue harvesting
For blood collection and heart harvesting, all animals 
were anaesthetised with Isofor (100  mg/kg) (Safeline 
Pharmaceuticals (Pty) Ltd, Roodeport, South Africa) via 
a gas anaesthetic chamber (Biomedical Resource Unit, 
University of KwaZulu-Natal, Durban, South Africa) for 
3 min. Blood was collected by cardiac puncture and then 
transferred into individual pre-cooled heparinized con-
tainers. The blood was then spun in a refrigerated cen-
trifuge (Eppendorf centrifuge 5403, Germany) at 4  °C, 

1000× g for 15  min. Plasma was collected and stored 
at − 80 °C in a Bio Ultra freezer (Snijders Scientific, Hol-
land) until ready for biochemical analysis. The heart 
was removed and stored at -80 °C in a Bio Ultra freezer 
(Snijders Scientific, Holland) until ready for biochemical 
analysis.

Biochemical analysis
GPx1, TNF-α, and C-reactive protein concentration from 
the heart as well as plasma eNOS were measured using 

20-week of PD induction ND n = 6 HFHC+Fructose n = 18

Body weight (g), food intake (g), fluid intake (ml), 
calorie intake (cal), blood glucose, TG, Total 

cholesterol (mmol/L)

Week 21, exercise 
treatment commenced ND PD PD+IE PD+RE

n = 6     
per group

Week 27, exercise 
treatment terminated

Week 29, wash out 
period ended

Body weight (g), food intake (g), fluid intake (ml), 
calorie intake (cal), blood glucose, TG, Total 

cholesterol (mmol/L), MAP (mmHg)

Week 30, animals 
sacrificed

Collection of blood tissue for eNOS concentration, 
heart tissue for MDA, GPx1, TNF-α and CRP 

concentration

Male Sprague-Dawley rats (150-180 g)

Fig. 1  A diagrammatical depiction of the experimental design
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their respective ELISA kits (Elabscience Biotechnology 
Co., Ltd) according to the manufacturer’s instructions. 
MDA concentration was measured using an established 
laboratory protocol [33].

Analysis of data
All data were expressed as means with standard devia-
tion. Statistical comparisons were performed with 
GraphPad Prism software (version 5.00, GraphPad Soft-
ware, Inc., San Diego, California, USA) using one-way 
analysis of variance (ANOVA) followed by the Tukey–
Kramer post hoc multiple comparisons test. A value of 
p < 0.05 was considered statistically significant.

Results
Bodyweight changes, caloric intake, blood glucose, 
triglyceride and total cholesterol concentration
Body weight changes, caloric intake, blood glucose, tri-
glyceride and total cholesterol concentrations were 
monitored in the ND, PD, PD + IE and PD + RE groups 
(n = 6, per group) at week 20 and one week after exercise 
termination. At week 20, there was an increase in body 
weight gain and total caloric intake in the PD groups 
(including PD + IE and PD + RE groups) *(ND vs. PD, 
ND vs. PD + IE and ND vs. PD + RE p < 0.05, Table  1). 
One week after exercise termination, there was a PD 
effect on weight gain *(ND vs. PD, p < 0.05, Table 1), while 
an exercise effect was present in the PD groups #(PD vs. 
PD + IE and PD vs. PD + RE, p < 0.05, Table  1). A PD 
effect was present on total caloric intake throughout 
the experimental period *(ND vs. PD, ND vs. PD + IE 
and ND vs. PD + RE, p < 0.05, Table  1), while an exer-
cise effect was present in the PD groups #(PD vs. PD + IE 
and PD vs. PD + RE, p < 0.05, Table  1). There was a PD 
effect on blood glucose concentration throughout the 

experimental period *(ND vs. PD, ND vs. PD + IE and 
ND vs. PD + RE, p < 0.05, Table 1). However, there was an 
exercise effect in the PD groups #(PD vs PD + IE and PD 
vs. PD + RE, p < 0.05, Table 1). There was a PD effect on 
triglyceride concentration throughout the experimental 
period *(ND vs. PD, ND vs. PD + IE and ND vs. PD + RE, 
p < 0.05, Table  1). An exercise effect was also present in 
the PD groups #(PD vs. PD + IE and PD vs. PD + RE, 
p < 0.05, Table 1).

Mean arterial pressure and eNOS concentration
Mean arterial pressure one week after exercise termina-
tion and plasma eNOS concentration two weeks after 
exercise termination in the ND, PD, PD + IE and PD + RE 
animal groups (n = 6, per group) were measured. A PD 
effect was present on mean arterial pressure *(ND vs. PD, 
ND vs. PD + IE and ND vs. PD + RE, p < 0.05, Fig.  2a), 
while an exercise effect was present in the PD groups 
#(PD vs. PD + IE and PD vs. PD + RE, p < 0.05, Fig.  2a). 
A PD effect was present in the non-exercising group on 
eNOS concentration *(ND vs. PD, PD vs. PD + IE and 
PD vs. PD + RE, p < 0.05, Fig. 2b), while regular exercise 
lowered eNOS concentration #(ND vs. PD + RE, p < 0.05, 
Fig. 2b).

MDA and GPx1 concentration
The concentration of MDA and GPx1 in the heart tis-
sue of ND, PD, PD + IE and PD + RE animal groups 
(n = 6, per group) two weeks after exercise termination 
was measured. There was a PD effect on MDA concen-
tration *(ND vs. PD, p < 0.05, Fig.  3a). A similar effect 
was observed in the PD + RE group *(ND vs. PD + RE, 
p < 0.05, Fig. 3a), while a regular exercise effect was pre-
sent in the PD groups #(PD vs. PD + RE, p < 0.05, Fig. 3a) 
and α(PD + IE vs. PD + RE, p < 0.05, Fig. 3a). A PD effect 

Table 1  Body weight, caloric intake, blood glucose, triglyceride and total cholesterol concentrations in the ND, PD, PD + IE and 
PDM + RE groups (n = 6, per group) following exercise

Values are presented as means ± SD. *p < 0.05 denotes comparison with ND group; #p < 0.05 denotes comparison with PD group

Animal 
groups 
(n = 6)

Body weight (g) Total caloric intake (Cal) Blood glucose (mmol/L) Triglycerides (mmol/L) Total cholesterol 
(mmol/L

20th week of the prediabetes induction period

ND 499.70 ± 11.06 223.30 ± 21.92 4.60 ± 0.79 1.49 ± 0.38 3.85 ± 0.23

PD 566.30 ± 6.51* 311.94 ± 32.02* 6.83 ± 0.25* 3.08 ± 0.27* 4.15 ± 0.26

PD + IE 564.60 ± 8.62* 308.18 ± 22.65* 6.77 ± 0.38* 3.10 ± 0.15* 4.13 ± 0.31

PD + RE 567.00 ± 5.90* 310.35 ± 28.37* 6.83 ± 0.30* 3.08 ± 0.18* 4.14 ± 0.17

The 2nd week after exercise termination

ND 503.00 ± 18.92 216.30 ± 29.13 4.80 ± 0.10 1.38 ± 0.38 3.87 ± 1.24

PD 589.60 ± 39.02* 339.97 ± 18.09* 7.07 ± 0.40* 5.88 ± 1.49* 4.26 ± 0.72

PD + IE 518.80 ± 65.08# 268.93 ± 27.45*# 6.37 ± 0.21*# 2.58 ± 0.59*# 3.93 ± 1.14

PD + RE 505.40 ± 49.77# 277.55 ± 10.02*# 5.80 ± 0.26*# 3.06 ± 0.46*# 3.90 ± 1.19
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was also present on GPx1 concentration *(ND vs. PD, 
p < 0.05, Fig.  3b), while an exercise effect was present 
in the PD groups #(PD vs. PD + IE and PD vs. PD + RE, 
p < 0.05, Fig. 3b).

TNF‑α and CRP concentration
TNF-α and CRP concentration in the heart tissue of 
ND, PD, PD + IE and PD + RE animal groups (n = 6, per 
group) two weeks after exercise termination were meas-
ured. A PD effect was present in the non-exercising 
group on TNF-α concentration *(ND vs. PD, p < 0.05, 
Fig. 4a) and #(PD vs. PD + IE and PD vs. PD + RE, p < 0.05, 
Fig. 4a). This effect was also present on CRP concentra-
tion *(ND vs. PD, p < 0.05, Fig. 4b) and #(PD vs. PD + IE 
and PD vs. PD + RE, p < 0.05, Fig. 4b).

Discussion
The observed lower caloric intake in the exercised pre-
diabetes animals was accompanied by weight loss by 
comparison to the non-exercised prediabetic animals. 

We have previously shown that prediabetic animals had 
reduced insulin sensitivity, increased insulin and ghrelin 
concentrations as well as decreased leptin concentrations 
[11]. Consequently, this resulted in increased feeding and 
caloric intake. Therefore, a lower caloric intake in the 
exercised prediabetic animals after exercise could suggest 
that exercise assisted in the restoration of the homeo-
static relationship between insulin, ghrelin, and leptin. 
This could explain the adjustments in caloric intake and 
weight gain in the exercised prediabetes animals. This 
agrees with other literature which shows that exercise has 
a positive effect on food intake, appetite hormones and 
weight management [34–40]. Furthermore, studies have 
shown that lower caloric intake may have a positive effect 
on the physiological markers associated with prediabetes 
[41–43].

Blood glucose concentrations were lowered in the exer-
cising prediabetic animals at one-week post-exercise 
termination. Furthermore, the exercising animals were 
found to have reduced insulin concentrations suggesting 

Fig. 2  Mean arterial pressure one week after exercise termination (a) and plasma eNOS concentration two weeks after exercise termination (b) in 
the ND, PD, PD + IE and PDM + RE groups (n = 6, per group). Values are presented as means ± SD. *p < 0.05 denotes comparison with ND group; 
#p < 0.05 denotes comparison with PD group

Fig. 3  MDA (a) and GPx1 (b) concentration in the heart tissue of ND, PD, PD + IE and PDM + RE groups (n = 6, per group) two weeks after exercise 
termination. Values are presented as means ± SD. *p < 0.05 denotes comparison with ND group; #p < 0.05 denotes comparison with PD group; 
αp < 0.05 denotes comparison with PD + IE group
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that exercise may have improved insulin sensitivity [11, 
44]. The lowered blood glucose concentration observed 
in the exercising prediabetes animals may be due to 
increased GLUT4 translocation via the action of insulin 
[45, 46]. Furthermore, improved insulin sensitivity may 
have enhanced carbohydrate loading in the exercising 
prediabetes animals thus shunting some glucose towards 
glycogen storage in the muscle and liver in preparation 
for the next exercise training [47].

There were no total cholesterol concentration changes 
in the groups which may be because our animals were 
still prediabetic and had not developed full-blown dia-
betes. We have previously shown that high triglyceride 
concentration is accompanied by high blood glucose con-
centration and reduced insulin sensitivity in pre-diabetic 
animals [11]. This triglyceride concentration was low-
ered in the exercising prediabetes animals in the present 
study. This may suggest that exercise leads to enhanced 
lipid metabolism and insulin sensitivity thus decreasing 
plasma glucose concentration [48].

We found that when blood glucose and triglyceride 
concentration were lowered in the exercising prediabetes 
animals one-week post-exercise termination there was a 
concomitant improvement in the mean arterial pressure. 
One can easily assume that abnormalities associated with 
increased blood pressure were also attenuated in these 
animals. However, we found higher plasma eNOS con-
centration in the non-exercising prediabetes animals in 
the presence of high mean arterial pressure when com-
pared to the non-diabetic. This high eNOS concentra-
tion that co-exists with high mean arterial pressure in the 
non-exercising prediabetic animals might be a compen-
satory response for insufficient NO following prolonged 
ingestion of the high-fat high-carbohydrate diet. [49–55]. 
Two weeks of post-exercise termination, we observed a 
reduction in the eNOS concentration. This reduction in 

eNOS concentration in the exercising prediabetic ani-
mals was accompanied by improved mean arterial pres-
sure in the animals suggesting the long-lasting beneficial 
effects of exercise training on NO production.

Studies have shown that hypertension induces 
responses that elicit oxidative stress and inflammatory 
responses [56–60]. Indeed, we found increased MDA 
concentration and decreased GPx1 concentration in 
the heart tissue of the non-exercising prediabetic ani-
mals. However, we found reduced MDA concentrations 
along with elevated GPx1 concentrations in the inter-
mittent exercising prediabetic animals. Meanwhile, 
the regular exercising prediabetic animals had elevated 
MDA concentrations despite increased GPx1 concen-
tration. The reduced MDA concentration with elevated 
GPx1 concentration in the intermittent exercising 
animals agrees with other studies which show that an 
elevation in antioxidants prevents the onset of oxida-
tive stress through suppression of ROS generation [61, 
62]. This may lead to an assumption that intermittent 
exercise was better than regular exercise in alleviat-
ing oxidative stress markers in the heart. However, the 
increase in both MDA and GPx1 concentrations in the 
regular exercising prediabetic animals can be linked to 
an adaptational increase in both ROS production and 
antioxidant enzyme production following exercise. 
Recent studies have shown that increased ROS genera-
tion may not always culminate in oxidative stress and 
destruction of cellular structures [63, 64]. However, an 
increase in antioxidant enzyme concentration accom-
panied by ROS production prevents the development 
of oxidative stress in the cells and also activates the 
pathways that regulate growth, differentiation and cell 
proliferation [64, 65]. Therefore, this may suggest that 
regular exercise was more beneficial to heart tissue 
health than intermittent exercise [66–68]. Furthermore, 

Fig. 4  TNF-α (a) and CRP (b) concentration in the heart tissue of ND, PD, PD + IE and PDM + RE groups (n = 6, per group) two weeks after exercise 
termination. Values are presented as means ± SD. *p < 0.05 denotes comparison with ND group; #p < 0.05 denotes comparison with PD group
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exercise-induced ROS production has been shown 
to play a required role in muscle adaptation to train-
ing [66]. However, the adaptational increase in MDA 
concentration was only observed in regular exercising 
animals. This suggests that an exercise-induced ROS 
generation does not only depend on the intensity and 
duration of exercise but also the frequency of exercise.

The findings on the biomarkers of inflammation in the 
present study are of interest because an increase in the 
marker for lipid peroxidation, MDA, is usually associated 
with inflammation [69, 70]. However, this correlation 
was not observed in the present study particularly in the 
regular exercising prediabetic animals. For the intermit-
tent exercising prediabetic animals, the decrease in MDA 
concentration with an increase in GPx1 concentration 
in the heart tissue clearly shows that there was a physio-
logical balance between oxidants and antioxidants in the 
heart tissue. However, a decrease in TNF-α and C-reac-
tive protein concentrations despite increased MDA and 
GPx1 concentrations in the heart tissue of the regular 
exercising animals two weeks after exercise termination 
reveals that there was no oxidative damage and inflam-
mation in the heart tissue. This suggests that an adapta-
tional increase in the antioxidant enzymes as indicated by 
an increase in GPx1 concentration following exercise was 
high enough to suppress the effects of ROS production 
and prevent oxidative damage and inflammation to occur 
in the heart tissue of the exercising animals [64, 71–73].

Conclusion
The progression of pre-diabetes to diabetes is slowed or 
possibly stopped by exercise (regular or intermittent). 
Additionally, biomarker profiles indicative of cardiovas-
cular disease in pre-diabetics are improved by exercise.
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