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ABSTRACT Staphylococcus epidermidis CSF41498 is amenable to genetic manipula-
tion and has been used to study mechanisms of biofilm formation. We report here
the whole-genome sequence of this strain, which contains 2,427 protein-coding
genes and 82 RNAs within its 2,481,008-bp-long genome, as well as three plasmids.

Staphylococcus epidermidis is a commensal bacterium and opportunistic pathogen
that generally colonizes the human skin and mucous membranes (1, 2). Because of

its prevalence, S. epidermidis is one of the major causes of nosocomial infections due to
its ability to form biofilms on medical implant devices (3). These biofilm infections are
extremely difficult to treat, owing to their inherent resistance to the host immune
system and antibiotics (4–7).

CSF41498 is a biofilm-forming strain originally isolated from cerebrospinal fluid in
Dublin, Ireland (8). This strain is susceptible to several antibiotics, including erythro-
mycin, trimethoprim, tetracycline, kanamycin, and chloramphenicol, facilitating the
introduction of plasmids and generation of marked mutations. Furthermore, genetic
manipulation of this strain is possible due to the ability to move DNA via electropo-
ration and transduction using bacteriophages �A6C and �187 (9, 10). In addition,
CSF41498 has been used to study multiple aspects of biofilm formation, making this
strain and its genome sequence useful tools (8, 11–16).

For DNA extraction, S. epidermidis CSF41498 was grown on blood agar plates
overnight at 37°C. DNA was then extracted using the DNeasy UltraClean microbial kit
(Qiagen, Germany) per the manufacturer’s directions. Sequencing was performed as
previously described (17). RS II (Pacific Biosciences, USA) single-molecule real-time
(SMRT) sequencing produced 116,695 reads, with an average length of 14,633 bp. The
reads were assembled using HGAP2 in the SMRT Analysis portal into three polished
contigs representing one chromosome and two plasmids. MiSeq (Illumina, Inc., USA)
short-read sequencing produced 1,526,588 paired-end reads with an average length of
300 bp and insert size of 500 bp. These reads were mapped to the trimmed and
circularized SMRT sequences using the mapper within Geneious (Biomatters, New
Zealand) to correct the errors in the long-read sequencing, resulting in an average
depth of coverage of 89� for the chromosome and 150� for the plasmids. Reads that
did not map to any of the long-read contigs were assembled by the Geneious de novo
assembler to form a third plasmid around 8 kb in length, with an average read depth
of 850�. This plasmid is smaller than the fragmentation size for the long-read sequenc-
ing, which is why there was no contig detected from the SMRT assembly; however, as
verification, we found long reads that did map to the plasmid. Genes were predicted
using the NCBI Prokaryotic Genome Annotation Pipeline version 4.5 (18).

The genome of strain CSF41498 is 2,481,008 bp long, containing 2,427 protein-
coding sequences (CDSs) and 82 RNAs, with 32.2% GC content. The plasmid
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pCSF41498_1 comprises 24,519 bp coding for 26 CDSs. The plasmid pCSF41498_2
comprises 21,583 bp coding for 27 CDSs. The plasmid pCSF41498_3 comprises 8,256 bp
coding for 8 CDSs.

Data availability. The complete genome sequence of S. epidermidis CSF41498 has
been deposited in GenBank under the accession numbers CP030246 to CP030249. The
sequencing reads have also been deposited in GenBank under accession number
SRS3935761.
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