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The accumulation of myeloid-derived suppressor cells (MDSCs) is one of the major
obstacles to achieve an appropriate anti-tumor immune response and successful tumor
immunotherapy. MDSCs in tumor-bearing hosts are primarily polymorphonuclear (PMN-
MDSCs). However, the mechanisms regulating the development of MDSCs remain poorly
understood. In this report, we showed that interferon regulatory factor 4 (IRF4) plays a key
role in the development of PMN-MDSCs, but not monocytic MDSCs. IRF4 deficiency
caused a significant elevation of PMN-MDSCs and enhanced the suppressive activity of
PMN-MDSCs, increasing tumor growth and metastasis in mice. Mechanistic studies
showed that c-Myc was up-regulated by the IRF4 protein. Over-expression of c-Myc
almost abrogated the effects of IRF4 deletion on PMN-MDSCs development. Importantly,
the IRF4 expression level was negatively correlated with the PMN-MDSCs frequency and
tumor development but positively correlated with c-Myc expression in clinical cancer
patients. In summary, this study demonstrated that IRF4 represents a novel regulator of
PMN-MDSCs development in cancer, which may have predictive value for
tumor progression.
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INTRODUCTION

The immunosuppressive state of individuals with tumors is a key
factor in limiting the body’s anti-tumor immune response. Immuno-
suppressive cells, including tumor-associated macrophages, marrow-
derived suppressor cells, tumor-associated neutrophils, cancer-
associated fibroblasts, and regulatory T cell interactions to actively
promote tumorigenesis (1). Myeloid-derived suppressor cells
(MDSCs) has well known roles in the suppression of anti-tumor
immunity in tumor-bearing hosts (2, 3). Therefore, the key to anti-
tumor immunotherapy is to design targeted therapy for the tumor
immunosuppression mechanism, and targeting MDSCs has become
a promising strategy for tumor immunotherapy (4, 5).

Mouse MDSCs, characterized by the co-expression of the
myeloid markers CD11b and Gr1, are broadly classified into two
distinct subsets, polymorphonuclear (PMN-MDSCs) and
monocytic (M-MDSCs), based on the expression status of the
Ly6G and Ly6C epitopes (6, 7). MDSCs are now defined as
different subpopulations with specific phenotypes in human with
clear immunosuppressive capacities, which have three subsets:
M-MDSCs (HLA-DR-CD11b+CD33hi), PMN-MDSCs (HLA-
DR-CD11b+CD33low), and e-MDSC (Lin-HLA-DR-CD33+) (8,
9). These subsets differ with respect to their function, tissue
distribution, and regulatory mechanism (8, 10, 11). Interestingly,
most tumor-derived MDSCs are polymorphonuclear (12, 13).
Although some important transcription factors and signaling
pathways have been identified to regulate the differentiation of
tumor-derived MDSCs (14–16), the concrete mechanisms
remain to be fully elucidated.

IRF4, also known as LSIRF, ICSAT, Pip and Mum1, was first
cloned independently as a member of the IRF gene family in
1996 (17). Under physiological conditions, IRF4 is a key
regulator of the differentiation of lymphoid, myeloid and DC,
including the differentiation of mature B cells into plasma cells
(18). Recent studies have found that the abnormal expression of
IRF4 is closely related to the occurrence of various malignant
tumors (lymphoma, multiple myeloma, etc.) and autoimmune
diseases (19, 20). Numerous studies suggest that IRF4 is an
oncogene (21, 22), for instance, Weilemann et al. proposed that
IRF4 is needed for the survival of anaplasia large cell lymphoma
(21). Some studies also suggest that IRF4 is a tumor suppressor
gene (23, 24). For example, Naresh et al. suggest that follicular
lymphoma does not express or rarely expresses IRF4 (23).
However, the function of IRF4 in tumor immunology is still
poorly understood compared with the extensive studies on IRF4
in tumor biology (19). Recently, it has been reported that IRF4
can regulate differentiation in the myeloid system and DC cells
(25, 26), the silencing of IRF4 could promote the development
and function of MDSCs (27).
Abbreviations: BM, bone marrow; CFSE, 5,6 carboxy fluorescein diacetate
succinimidyl ester; ChIP, Chromatin immunoprecipitation assay; Con A,
Concanavalin A; c-Myc, Cellular myelocytomatosis oncogene; HCC,
Hepatocellular carcinoma; IRF, interferon regulatory factor; KO, knockout mice;
LLC, Lewis lung carcinoma; M, monocytic; MDSCs, myeloid-derived suppressor
cells; PMN, polymorphonuclear; PB, peripheral blood; SP, spleen; WT, wild-type
C57BL/6 mice.
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The c-Myc gene, a crucial member of the Myc gene family, is an
adjustable gene, which could be regulated by a variety of substances.
It regulates the transcription of thousands of genes required for a
range of cellular processes, including proliferation, differentiation,
and metabolism, which is closely related to the development of
various tumors (28). In addition to the pivotal role in tumors, Myc is
involved in physiological and pathological processes of many other
immune diseases. Studies have confirmed that the expression of
Myc family members in immune cells is strictly regulated during the
development or activation of immune cells (29).
MATERIALS AND METHODS

Ethics Statement
This research was approved by the Ethics Review Board of
Guangzhou Medical University; written informed consent was
provided by the study participants. All experimental protocols
using animals were approved by the Animal Care and Use
Committee of Guangzhou Medical University. Animal experiments
were performed in strict accordance with the regulations of the
Administration of Affairs Concerning Experimental Animals, and all
efforts were made to minimize suffering.

Mice and Cell Lines
IRF4 conditional (floxed) mutant mice (IRF4flox/flox; Stock No.
009380) and LysM-Cre mice (B6N.129P2 (B6) Lyz2tm1(cre)Ifo/J;
Stock No: 018956) were originally were purchased from the Jackson
Laboratory (Bar Harbor, ME, USA) and maintained with a C57B/L6
background. All mice were housed in a specific pathogen-free facility.
All cell lines, including B16-F10 (B16), 3T3, 293T, and 32D were
purchased from American type culture collection (ATCC). Female
C57BL/6mice were purchased from the Animal Experimental Center
of Sun Yat-Sen University (Guangzhou, China).

Generation of Interferon Regulatory
Factor 4 KO Mice
IRF4 KO mice were generated as described previously (30).
LysM-Cre mice were mated with IRF4flox/flox mice, and cohorts
were established by mating F1 IRF4flox/+; Cre+ mice to littermate
IRF4flox/+; Cre- mice. The mice were maintained under a 14-h
light/10-h dark cycle at a constant temperature (22°C) with free
access to food and water.

Reagents
The following reagents, including Concanavalin A (Con A),
dimethyl sulfoxide and c-Myc inhibitor (10074-G5) were
purchased from Sigma-Aldrich (St. Louis, MO). The recombinant
mouse cytokines, including GM-CSF, IL-6, and IL-4 were obtained
from Peprotech (Rocky Hill, NJ). The antibodies against IRF4,
S100A9, c-Myc, and b-actin and HRP-conjugated secondary
antibodies were purchased from Santa Cruz Biotechnology (Santa
Cruz, CA). The following fluorescein-conjugated anti-mouse
antibodies: Gr-1-PE-Cy7 (RB6-8C5), Gr-1-PE (RB6-8C5), Ly-6C-
PerCP-Cyanine5.5 (HK1.4), CD11b-FITC (M1/70.15), CD11b-PE-
Cy7 (M1/70.15), CD3e-FITC (145-2C11), CD4-PE (RM4-5),
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CD8a-PE-Cy5 (53-6.7), CD8a-PE-Cy7 (53-6.7), PD-L1–APC
(MIH5), PD-L2–Brilliant Violet 421 (TY25), GM-CSF-PerCP-
Cy5.5 (MP1-22E9), IL-1a–PE (ALF-161), IL-10–APC (JES5-
16E3), and IL-6–APC (MP5-20F3) and the corresponding isotype
antibodies as well as the anti-human antibodies CD33-PE (HIM3-
4), CD11b-FITC (ICRF44), and HLA-DR-PE-Cy5 (L243) and their
isotype control antibodies (QA16A12) were obtained from
Biolegend (San Diego, CA). Fluorescein-conjugated anti-mouse
antibody Ly-6G-PE (1A8) was purchased from BD Biosciences
(San Jose, CA). Lipofectamine 2000, 5,6 carboxy fluorescein
diacetate succinimidyl ester (CFSE) and the reagents for cell
culture were purchased from Invitrogen (Carlsbad, CA). Mouse
Ly6G microbeads were purchased from Miltenyi Biotec
(Teterow, Germany).

Microarray Analysis
An aliquot of 0.1 µg of total RNA was used to synthesize double-
stranded cDNA, then produce biotin-tagged cRNA using the
MessageAmp™ Premier RNA Amplification Kit. The resulting
bio-tagged cRNA were fragmented to strands of 35–200 bases in
length according to the protocols from Affymetrix. Hybridization
was performed at 45°Cwith rotation for 16 h (Affymetrix GeneChip
Hybridization Oven 640). The GeneChip arrays were washed and
then stained (streptavidin-phycoerythrin) on an Affymetrix Fluidics
Station 450 followed by scanning on a GeneChip Scanner 3000. The
hybridization data were analyzed using GeneChip Operating
software (GCOS 1.4). The scanned images were first assessed by
visual inspection then analyzed to generate raw data files saved as
CEL files using the default setting of GCOS 1.4. An invariant set
normalization procedure was performed to normalize the different
arrays using DNA-chip analyzer.

Tumor Models and Analyses
To establish tumor growth models (31), B16-F10 tumor cells
(1×105) were injected subcutaneously (s.c.) into the flanks of
mice. The tumors were measured every 2–3 days with calipers,
and the volumes were calculated as V = ½ (length [mm] × [width
{mm}]2). For tumor metastasis models (32), mice were injected
intravenously with B16-F10 tumor cells (1×105). At 3–4 weeks post
tumor injection, the lungs were inflated with formalin followed by
nodule counts and hematoxylin/eosin (H&E) staining.

Myeloid-Derived Suppressor
Cell Depletion
For PMN-MDSCs depletion (32, 33), anti-Ly6G antibodies (IA8;
BD Biosciences) were injected (80 mg per injection) through the
tail vein 3 days and 1 day before and 1 day after the injection of
tumor cells. Depletion efficiency was evaluated by flow cytometry
3 weeks after the tumor injection. The anti-IgG antibody
(BioLegend, San Diego, CA) was used as a control.

In Vitro Generation of Myeloid-Derived
Suppressor Cell
To generate MDSCs, we followed previously described
procedures (34). Mouse Bone marrow (BM) cells were
obtained from the femurs and tibias of mice and cultured in
24-well plates in RPMI 1640 medium containing 10% FBS, 50
Frontiers in Immunology | www.frontiersin.org 3
mM 2-mercaptoethanol, 10 ng/ml IL-6, and 20 ng/ml GM-CSF.
After 5 days of culture, the level of MDSCs was analyzed by flow
cytometry. For MDSCs cultured with supernatant from tumor
cells or 3T3 cells: BM cells from naive mice were cultured with
GM-CSF and IL-6 in the presence of 30% (vol/vol) 3T3 or B16-
F10 tumor supernatants (TS), After 2 days of culture, IRF4
expression was evaluated by qRT-PCR or by WB.

Invasion Assay
Matrigel matrix solution (200 mg/ml, Matrigel™ Basement
Membrane Matrix, BD Bioscience) was applied to each
transwell (Falcon, Franklin Lakes, NJ, USA). B16 cells (5×104)
were seeded on the upper chamber of the transwell, and the
lower chamber was then filled with collagen matrix (5 mg/ml).
Noninvading cells on top of the matrix were removed after 18 h,
and invading cells on the lower surface of the Matrigel matrix
were fixed with 4% PFA and stained with 0.2% crystal violet. The
cells were counted using ImageJ software (version 1.46).

Cell Surface Staining
Cells were washed twice in sterile PBS (500 g, 8 min), and
blocked in PBS containing 1% BSA for 30 min. Then, the cells
were stained with conjugated antibodies that were specific for cell
surface antigens for 30 min at 4°C in dark. These antigens
included CD11b, Gr1, Ly6G, Ly6C, CD3e, CD4, CD8a, PD-L1,
PD-L2, CD33, HLA-DR, CD14, and CD15. The stained cells
were washed twice in in washing buffer (PBS containing 0.1%
BSA), and re-suspended in 300ul washing buffer. Cells were
analyzed by using flow cytometry (Beckman Coulter, Fullerton,
CA), and the results were analyzed with use of the software
CytoExpert 2.0 (Beckman Coulter). Isotype-matched cytokine
controls were included in each staining protocol.

Cell Sorting
For sorting of the mouse PMN-MDSC cells, mouse splenocytes
were stained with CD11b-PE-Cy7, Ly-6G-PE, and Ly-6C-PerCP-
Cyanine5.5 antibodies by cell surface staining as described
before, and CD11b+Ly6G+Ly6C−/low cells were isolated by cell
sorting on a FACS Aria cell sorter (BD, Mountain View, CA). For
sorting of the human PMN-MDSC cells, peripheral blood
mononuclear cells were stained with CD33-PE, CD11b-FITC,
and HLA-DR-PE-Cy5, and HLA-DR-CD11b+CD33low cells were
isolated by cell sorting on a FACS Aria cell sorter (BD, Mountain
View, CA). The purified cells were identified by FACS, the
purification of sorted cells was above 90%.

Cell Intracellular Cytokine and
Molecule Staining
Single-cell suspensions from the spleens of WT and IRF4 KO
tumor bearing mice were stimulated with 20 ng/ml phorbol 12-
myristate 13-acetate (PMA) plus 1 µg/ml ionomycin for 5 h at
37°C under a 5% CO2 atmosphere. Brefeldin A (10 g/ml, Sigma,
Shanghai, China) was added during the last 4 h of incubation.
Cells were washed twice in PBS, fixed with 4% paraformaldehyde,
and permeabilized overnight at 4°C in PBS buffer containing 0.1%
saponin (Sigma), 0.1% BSA, and 0.05% NaN3. Cells were then
stained for 30 min at 4°C in the dark with conjugated antibodies
February 2021 | Volume 12 | Article 627072
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specific for the cell surface antigens CD11b, and Gr1 as well as the
intracellular cytokines or proteinsGM-CSF, IL-10, IL-1a, and IL-6.
The expression phenotypes of the antibody-labeled lymphocytes
were analyzed by flow cytometry (Beckman Coulter, Fullerton,
CA), and the resultswere analyzedwith the softwareCytoExpert 2.0
(Beckman Coulter). Isotype-matched cytokine controls were
included in each staining protocol.

Lentivirus Transduction
The lentiviral stock preparation and viral transduction were
performed as previously described (35). HEK 293T cells were
transfected with lentiviral vectors and packaging plasmids
(pCMV-DR8.2, pMD.G) using Lipofectamine 2000. The culture
supernatants were collected, concentrated and stored at -80°C.
BM cells were infected with a 30% volume of concentrated
lentiviral stock solution (the virus titer was 2×108 TU/ml) with
8 mg/ml polybrene. The medium was replaced with fresh
medium at 3 h postinfection. The efficiency of infection was
about 70%.

Quantitative RT-PCR
The total RNA was extracted with an RNase Minikit, and cDNA
was synthesized with SuperScript III reverse transcriptase
(Qiagen, Valencia, CA). PCR was performed in triplicate using
SYBR Green Mastermix (TaKaRa, Otsu, Japan) and was
normalized to endogenous b-actin. The primer sequences used
are listed in Supplemental Table 1.

Western Blotting
Cultured or purified cells were collected and lysed. The protein
concentration was measured with a bicinchoninic acid protein
assay kit (Beyotime). The protein sample was separated in 10%
SDS-denatured polyacrylamide gel and transferred to a
polyvinylidene difluoride membrane. The polyvinylidene
difluoride membranes were blocked with 5% skim milk in TBST
at room temperature for 2 h. The targeted molecules were probed
using specifc primary Abs and HRP-conjugated secondary Abs
and were detected with an ECL HRP chemiluminescent substrate
reagent kit (Invitrogen, Carlsbad, CA).

Chromatin Immunoprecipitation Assay
The ChIP assay was performed following the instructions from
Millipore (Billerica, MA, USA). In brief, cultured BM cells were
fixed with a 1% formaldehyde solution, lysed and sheared by
sonication. The cell lysates were precleared with protein-G-
agarose and immunoprecipitated with specific antibodies or
the anti-IgG control. The antibody-chromatin complexes were
collected with protein-G-agarose. The DNA in the complex was
recovered and quantitated with qPCR. As an input control, 10%
of the lysate was used before immunoprecipitation. The
amplification of cyclophilin from the input was used as a
loading control.

T-Cell Proliferation Assay
To quantify T-cell proliferation, we followed previously
described procedures (35). Briefly, T-cell proliferation was
determined by CFSE dilution. CD3+ T cells from BALB/c mice
Frontiers in Immunology | www.frontiersin.org 4
was Purified by flow cytometric sorting, and labeled with CFSE
(1 mM) (Invitrogen), stimulated with concanavalin A (5 mg/ml)
and cultured alone or co-cultured with allogeneic MDSCs (from
WT or IRF4 KO mice) at different ratios for 3 days. The cells
were then stained with CD4-PE or CD8-PE-Cy5 antibodies, and
T-cell proliferation was analyzed by flow cytometry.

Plasmid Constructs and
Transfection Assays
The 5’-regulatory sequence of the mouse c-Myc gene was
amplified by PCR using the primers listed in Supplemental
Table 1. The wild type or mutated c-Myc promoter fragments
were cloned into a pGL3-Basic vector (Promega), and the
recombinations were confirmed by DNA sequencing. Transient
transfections of the reporter plasmid were performed on 32D
cells using Lipofectamine 2000 following the manufacturer’s
instructions. The luciferase activity was measured at 48 h
post transfection.

Patients
Hepatocellular carcinoma (HCC) patients (n=20), individuals
with hepatic fibrosis (n=20), were recruited at the Third
Affiliated Hospital of Sun Yat-sen University (Guangzhou,
China). Patients who had recently been pyrexial, had clinical
evidence of an active infection, had previous or secondary
cancers, or had received corticosteroids or nonsteroidal anti-
inflammatory drugs were excluded from the study. The basic
characteristics of patients are outlined in Supplemental Table II.

Statistics
The data were analyzed using Mann-Whitney tests, c2 tests, or
Student’s t tests as appropriate. The correlations between
different parameters were analyzed using a Spearman rank test.
Statistical tests were performed using Graph Pad Prism version
5.0a and SPSS Statistics 17.0. P-values of less than 0.05 were
considered significant.
RESULTS

Decreased Interferon Regulatory Factor 4
Expression in Tumor-Deriving Myeloid-
Derived Suppressor Cells
To determine the potential regulatory mechanism of MDSCs in
tumor, a melanoma B16-F10 (B16) was used to establish a tumor
mouse model. Gene chips were analyzed and screened by using
MDSCs (T-MDSCs) sorted from tumor-bearing mouse spleens
with immature myeloid cells from normal mouse spleens (N-
MDSCs) as a control. We found that the expression of interferon
regulatory factor 4 (IRF4) in the MDSCs of the tumor group was
significantly down-regulated (Figure 1A). This result was
validated by qRT-PCR (P<0.05, Figure 1B). The western blot
(WB) further confirmed that expression of IRF4 in T-MDSCs
was clearly down-regulated compared with N-MDSCs (Figure
1C). A lower expression of IRF4 was found in CD11b+Gr1+cells
(MDSC) compared with CD11b+Gr1- cells (no-MDSC) in the
February 2021 | Volume 12 | Article 627072
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spleen of tumor-bearing mice (Figure 1D). In vitro cell culture
showed that the expression of IRF4 in MDSCs induced by the
supernatant of cultured tumor cells was significantly decreased
compared with the MDSCs induced by the supernatant of
cultured 3T3 cells (P<0.05, Figures 1E, F). These data
demonstrated that lower level of IRF4 was expressed in the
tumor-induced MDSCs. This finding suggested that IRF4 may be
a key transcription factor regulating MDSCs differentiation and
accumulation in tumor development.

Interferon Regulatory Factor 4 Deficiency
Could Facilitate Tumor Growth and
Metastasis
To investigate whether the IRF4 gene can affect tumor
progression in mice, a tumor growth models and tumor
metastasis models were established in mouse. 6–8 weeks old
IRF4flox/flox/LysM-Cre+ (IRF4 KO) female mice were selected for
Frontiers in Immunology | www.frontiersin.org 5
experiments, IRF4flox/flox/LysM-Cre- female mice (WT) of the
same age as a control. To detect tumor metastasis, B16 cells were
injected into the WT and IRF4 KO mice via the tail vein, and the
status of the tumor metastasis was determined 3 weeks later. The
number of lung tumor metastasized mice increased significantly
compared with WT mice (P<0.05, Figure 2A). Moreover, the
appearance of lung was imaged (Figure 2D), and the slice of lung
tissues was stained by H&E staining and observed under
microscope (Figure 2E). Result showed that the number of
lung metastasis nodules in the mouse and the area of lung
metastasis nodules in IRF4-deficient mice were significantly
increased relative to the control (P<0.05, Figures 2B, C). These
results indicated that absence of IRF4 could significantly
promote lung tumor metastasis.

In addition, to detect the role of IRF4 in tumor growth, B16
tumor cells were injected into the WT and IRF4 KO mice
subcutaneously. The diameter of tumor was recorded, and the
A B

C D

E F

FIGURE 1 | Interferon regulatory factor 4 (IRF4) expression decreases in tumor-derived MDSCs. (A) Microarray analysis showing differentially expressed genes in
splenic myeloid-derived suppressor cells (MDSCs) from tumor-bearing mice was injected with B16-F10 cells via the subcutaneously (T-MDSC) and the
corresponding control cells from naive mice (N-MDSC). (B) Interferon regulatory factor 4 (IRF4) was evaluated by qRT-PCR with additional samples. (C) IRF4
expression in splenic MDSCs from tumor-bearing mice and control cells from naive mice was determined by a western blot (WB). (D) IRF4 expression in splenic
CD11b+Gr1+cells and CD11b+Gr1-cells from tumor-bearing mice was determined by WB. (E, F) Bone marrow (BM) cells from naive mice were cultured with GM-
CSF and IL-6 in the presence of 30% (vol/vol) 3T3 or B16-F10 tumor supernatants (TS); IRF4 expression was evaluated by qRT-PCR (e) and WB (f). (B, E) Data are
shown as the mean ± SEM of six samples from three independent experiments. *P < 0.05, ** P < 0.01 compared with the corresponding controls in unpaired t tests.
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mean volume of tumor was calculated from day 7 to day 23, with
3–4 days interval. The results showed that the volume of tumor
in the skin of IRF4 KO was bigger than that in the WT mice on
day 17, day 20, and day 23 (P<0.05, Figure 2F). Furthermore, 3
weeks after B16 injection, the spleens and tumors tissue (Figure
2G) were picked out frommice, and weighed. The body weight of
WT and IRF4 KO mice were also detected. The ratio of tumor-
to-body weight and spleen-to-body weight were calculated,
respectively. The results showed that the weight ratios of
tumor/body and spleen/body were significantly increased in
the IRF4 KO mice (P<0.05, Figures 2H, I). These results
suggested that a deficiency of IRF4 in tumor-bearing mice not
only promote lung tumor metastasis, but also promote tumor
growth significantly.
Frontiers in Immunology | www.frontiersin.org 6
Interferon Regulatory Factor 4 Inhibits the
Effect of Primarily Polymorphonuclear-
Myeloid-Derived Suppressor Cells on
Tumor Growth and Metastasis
To detect the effect of PMN-MDSC on tumor growth and
metastasis, B16 cells were injected to both WT and IRF4 KO
mice from the vain of tail (tumor metastasis model) or
subcutaneously (tumor growth models), respectively. Three weeks
later, bone marrow (BM), spleen (SP), lung, peripheral blood (PB),
and tumor tissue were picked out from B16-bearing WT and IRF4
KO mice. Mononuclear cells were isolated, respectively. The
percentage of MDSCs (CD11b+ Gr1+) was analyzed by FACS.
Results showed that the proportion and absolute number of
MDSCs in samples from the IRF4 KO mice were significantly
A

D

F

H I

G

E

B C

FIGURE 2 | Interferon regulatory factor 4 (IRF4) deficiency in the host facilitates tumor development. (A–E) WT (n=18) or IRF4 KO (n=18) mice were injected with
B16-F10 cells via the tail vein; mice were sacrificed after 3 weeks. (A) Percentage of mice with lung nodules; *P < 0.05, c2 test. (B) The number of lung nodules per
mouse; *P < 0.05, Student’s t test. (C) Lung nodule area per mouse using NIH ImageJ; ***p < 0.001, Mann-Whitney test. (D) Representative images of lungs.
(E) Representative images of lung H&E staining; arrows indicate metastases. (F–I) Tumor growth model; mice were subcutaneously injected with 1×105 B16-F10
tumor cells (n=6). Primary tumor growth was monitored (F); *P < 0.05, Mann-Whitney test. Representative images of tumor (G). The ratio of tumor (H) or spleen
(I) weight to mouse body weight; *P < 0.05, Student’s t test.
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increased in both the tumor metastasis models (P<0.05,
Figures 3A, B) and tumor growth models (P<0.05, Figures 3C, D).

Moreover, the subsets of MDSCs in KO tumor-bearing WT
and IRF4 mice were also explored by FACS. As showed in Figure
3E, the percentage of CD11b+Ly6G+Ly6C−/low PMN-MDSCs in
the bone marrow and spleen of IRF4 KO tumor-bearing mice
were increased significantly (P<0.01), whereas there was no
significant change in the percentage of CD11b+Ly6G−Ly6Chigh

M-MDSCs (P>0.05). These findings suggested that IRF4 deletion
can specifically result in the accumulation of PMN-MDSCs in
the bone marrow and spleen of tumor mice.

To determine whether tumor progression was mediated by
PMN-MDSCs mice, B16 cells were injected to both WT and
Frontiers in Immunology | www.frontiersin.org 7
IRF4 KO mice through the vain of tail or subcutaneously. Anti-
Ly6G antibodies were injected into mice through the tail vein 3
days and 1 day before and 1 day after the injection of B16 cells as
described in materials and methods. Three weeks later, the radio
of the tumor weight to the body weight was calculated, and the
number of lung nodule was counted. The results showed that
anti-Ly6G antibodies could decrease the value of these two
detections in both WT and IRF4 KO mice (P<0.05, Figures
3F–H). More interesting is that the elimination of PMN-MDSCs
can clearly reverse tumor growth (Figure 3F) and lung tumor
metastasis (Figures 3G, H) in IRF4 KO mice. These data
indicated that IRF4 mediates the effect of PMN-MDSCs on
tumor growth and metastasis.
A

E

G H

F

B C D

FIGURE 3 | Interferon regulatory factor 4 (IRF4) deficiency causes polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs) elevation in tumor-bearing
mice. (A–D) B16-F10 tumor cells were injected into WT or KO mice (n=6) via the tail veil to establish tumor metastasis (A, B) or tumor-growth (C, D) models. Mice
were sacrificed after 3 weeks. The percentages (A, C) and absolute numbers (B, D) of MDSCs were analyzed by flow cytometry; *P < 0.05, **P < 0.01, Student’s
t test. (E) The proportions of the MDSCs subtypes in the bone marrow (BM) and spleens from tumor-growth models were evaluated by flow cytometry. Each group
included six mice; representative results (left) and the graphical representation (right) are shown; **P < 0.01, Student’s t test. (F–H) Mice (n=5) were injected
intravenously with anti-Ly6G antibodies or an anti-IgG control before and after B16 tumor cell injection. (F) The ratio of tumor weight to mouse body weight;
*P < 0.05, Student’s t test. (G, H) Lung transfer was evaluated 3 weeks after tumor injection. (G) Representative images of lung tissue. (H) The number of lung
nodules per mouse; **P < 0.01, Student’s t test.
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Interferon Regulatory Factor 4 Deficiency
Enhance the Immunosuppressive Function
of Primarily Polymorphonuclear-Myeloid-
Derived Suppressor Cells
MDSCs are characterized by their immunosuppressive function,
and we next investigated whether an IRF4 deficiency could influence
the function of PMN-MDSCs. The splenic PMN-MDSCs from
Frontiers in Immunology | www.frontiersin.org 8
tumor-bearing WT and IRF4 KO mice were sorted by flow
cytometry and mixed with T lymphocytes derived from allogeneic
mice in different ratios (stimulated by ConA and labeled with
CFSE). Three days later, the proliferation of T cells was detected
by FACs. The results showed that PMN-MDSCs from the IRF4 KO
group had a stronger ability to inhibit T cell proliferation than WT-
derived PMN-MDSCs (P<0.05, Figure 4A). Simultaneously, a
A

B

C

FIGURE 4 | Functional analysis of myeloid-derived suppressor cells (MDSCs). (A) Allogeneic mixed lymphocytes reaction. Allogeneic CD3+ T cells were stimulated
with concanavalin A (ConA) and then cocultured with splenic G-MDSCs that were purified with Ly6G beads from the spleen of tumor-bearing mice at different ratios
for 3 days. T-cell proliferation was evaluated by CFSE dilution; unstimulated T cells were used as a negative control. Representative data from single experiment (left)
and mean ± SEM from three independent experiments (right) are shown. (B) B16 cells were cocultured with polymorphonuclear (PMN)-MDSCs, and a cell invasion
assay was performed with Matrigel (crystal violet). Left, representative from a single experiment; right, mean ± SEMs from three independent experiments, *P < 0.05,
**P < 0.01, unpaired t test. (C) Single-cell suspensions of spleen cells from WT and IRF4 KO tumor-bearing mice were stimulated with PMA and ionomycin. The
expression of PD-L1, PD-L2, GM-CSF, IL-1a, IL-6, and IL-10 were detected in MDSCs by FACS. Numbers in the quadrants are the percentages of cells in each
expression phenotype (n = 5 mice per group). A representative of two independent experiments is shown.
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difference in tumor metastasis was detected in WT and IRF4 KO
tumor-bearing mice. In the tumor invasion experiment, B16 tumor
cells were co-cultured with PMN-MDSCs derived from the spleens
of both WT and IRF4 KO mice for 18 h. The results demonstrated
that the PMN-MDSCs derived from IRF4 KO mice possessed a
greater ability to promote tumor invasion compared with those
from the WT group (P < 0.01, Figure 4B). The ability of MDSCs in
producing inflammatory factors, including IL-1a, IL-6, IL-10, and
GM-CSF, and the expression of PD-L1 and PD-L2 (programmed
Frontiers in Immunology | www.frontiersin.org 9
cell death 1 ligand 1/2) were detected by flow cytometry. As showed
in Figure 4C, the significantly higher levels of IL-1a and IL-10
producingMDSCs were found in IRF4 KOmice (P<0.05) compared
with the WT mice, whereas there was no clear difference in GM-
CSF and IL-6 production (P>0.05). Additionally, the expression of
PD-L1 on MDSCs derived from IRF4 KO mice was significantly
higher than that from WT mice. There was also no difference
between the groups in the expression of PD-L2 onMDSCs, (P>0.05,
Figure 4C). These results revealed that an IRF4 deficiency could
BA

C D

E

F

FIGURE 5 | c-Myc mediates the effects of interferon regulatory factor 4 (IRF4) on myeloid-derived suppressor cells (MDSCs) development. (A, B) Gene expression in
sorted MDSCs was determined by quantitative RT-PCR (qRT-PCR) (A) and western blot (B). (C) Mouse bone marrow (BM) cells from normal mice were cultured in
medium containing GM-CSF and IL-6 with the different concentrations of c-Myc inhibitor (10074-G5). The proportions of the indicated populations were determined
by flow cytometry after 5 days of culture. (D–F) BM cells from WT or KO mice were infected with lentivirus expressing c-Myc or an empty vector. (D) The c-Myc
gene expression was determined by qRT-PCR after 48 h of culture. (E) The proportions of indicated populations were determined by flow cytometry after 5 days of
culture. (F) MDSCs were purified by flow cytometric sorting. Allogeneic CD3+ T cells (from BALB/c mice) were stimulated with Con A and then co-cultured with
isolated PMN-MDSCs at 2:1 ratios for 3 days. T cell proliferation was evaluated by 5,6 carboxy fluorescein diacetate succinimidyl ester (CFSE) dilution. A comparison
of the suppressive activity on CD3+ T cells between MDSCs from WT or KO mice were infected with lentivirus expressing c-Myc or an empty vector. (A, D, F) Data
are shown as the mean ± SEMs from three independent experiments. *P < 0.05, compared with the corresponding controls; unpaired t tests were used.
(C, E) Representative results (left) and mean ± SEMs from 3 independent experiments; *P < 0.05, unpaired t tests.
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enhance the immunosuppressive function of PMN-MDSCs in both
tumor growth and tumor invasion, and enhance the ability of
MDSCs to produce inflammatory factors.

c-Myc Mediate the Effects of Interferon
Regulatory Factor 4 on Myeloid-Derived
Suppressor Cell Development
To explore the mechanism by which IRF4 regulates PMN-MDSCs
differentiation and tumor metastasis, the potential target genes of
IRF4 in MDSCs and the genes related to the differentiation and
survival of MDSCs were detected by gene expression. As showed in
Figure 5A, the gene expression and protein expression levels of c-
Myc in MDSCs derived from IRF4 KO mice were significantly
down-regulated compared with the MDSCs derived fromWTmice
(P<0.05). Next, the expression of c-Myc protein in MDSCs was
detected by the method of western blotting. Results showed that the
expression of c-Myc protein inMDSCs derived from IRF4 KOmice
was decreased significantly (P<0.05, Figure 5B). Moreover, different
concentrations of c-Myc inhibitors were added to the cultured
MDSCs in vitro to confirm the effects of c-Myc on the
differentiation of MDSCs. The results indicated that c-Myc
inhibitors increased the proportion of MDSCs in a concentration-
dependent manner (Figure 5C). Additionally, a lentivirus
containing a c-Myc over-expression plasmid was added to
cultured bone marrow cells from both WT and IRF4 KO mice to
induce MDSCs in vitro for 5 days. As showed in Figures 5D–F,
results indicated that c-Myc over-expression in bone marrow cells
(Figure 5D) and decreased percentage of MDSCs induced by IRF4
deletion could be produced by over-expression of c-Myc (Figure
5D). Furthermore, c-Myc over-expression significantly increased
the suppressive activity of MDSCs derived from IRF4-deficient cells
(Figure 5F). These results suggested that c-Myc may mediate the
effects of IRF4 on MDSCs development and function.

c-Myc is a Transcriptional Target of
Interferon Regulatory Factor 4 in Myeloid-
Derived Suppressor Cells
The mechanism of c-Myc regulation by IRF4 in MDSCs was further
investigated in the tumor microenvironment. First, a potential IRF4
binding site was identified in the regulatory region of c-Myc (near the
region from −4,183 to −4,291 bp upstream of the transcription start
site) after screening (Figure 6A). The chromatin immunoprecipitation
experiments confirmed that the IRF4 protein can bind to these two
sites (Figure 6B). Further experiments demonstrated that the over
expression of IRF4 in the 32Dmyeloid cell line promoted the activity of
c-Myc (P<0.05), but this effect disappeared when the potential binding
site of IRF4 was deleted (Figure 6C). These results demonstrated that
IRF4 regulates the expression of c-Myc at the level of transcription.

Clinical Significance of Interferon
Regulatory Factor 4 Regulated Primarily
Polymorphonuclear-Myeloid-Derived
Suppressor Cells Development
To explore the clinical significance of IRF4-mediated differentiation
of PMN-MDSCs, peripheral blood samples from patients with liver
cancer (HCC) were collected, and peripheral blood samples from
Frontiers in Immunology | www.frontiersin.org 10
nontumor patients with liver fibrosis served as controls. The
proportion of the M-MDSCs (HLA-DR-CD11b+CD33hiCD14+)
and PMN-MDSCs (HLA-DR-CD11b+CD33low CD15+) in the
peripheral blood of liver cancer patients was significantly
increased (P<0.01, Figure 7A). Moreover, the expressions of IRF4
and c-Myc in PMN-MDSCs and M-MDSCs from tumor patients
was explored. Results showed that the expressions of IRF4 and c-
Myc were down-regulated in PMN-MDSCs from tumor patients
compared with those in the controls (P<0.05), but no significant
change was detected in expression of IRF4 in M-MDSCs (Figures
7B, C). Furthermore, the expression of IRF4 in PMN-MDSCs was
inversely correlated with the proportion of PMN-MDSCs in liver
cancer patients (Figure 7D). Consistent with the experimental
results in mice, the expression of IRF4 was also positively
A

B C

FIGURE 6 | c-Myc is a transcriptional target of interferon regulatory factor 4
(IRF4) in myeloid-derived suppressor cells (MDSCs). (A) Sequence analysis of
c-Myc promoter; the potential IRF4-binding sites are underlined. (B) A
chromatin immunoprecipitation (ChIP) assay was performed on a 3-day
culture of bone marrow (BM) cells using anti-IRF4 or anti-IgG antibodies; the
presence of the c-Myc promoter harboring the potential IRF4 binding sites
(site 1: −4,291~−4,183) was measured by qPCR. Site 2 (−3,289~−3,185)
and site 3 (−2,011~−1,910) were detected in parallel as controls. The data
were normalized against input and presented as the fold increase over the
IgG control. (C) 32D cells were co-transfected with the c-Myc reporter (WT,
+157 ~−4,480) or deletant (+157 ~−3,573) and the plasmid expressing IRF4
or vector; luciferase activity was measured 48 h posttransfection. (B, C) Mean
± SEMs from three independent experiments; *P < 0.05, ns P > 0.05,
unpaired t tests.
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correlated with the gene expression of c-Myc in the PMN-MDSCs
from tumor patients (Figure 7E). These results indicated that IRF4
mediated PMN-MDSCs differentiation has very important clinical
significance during tumor progression.
DISCUSSION

Myeloid-derived suppressor cells (MDSCs) has well known roles in
the suppression of anti-tumor immunity in tumor-bearing hosts
(2, 3). However, few reports have focused on the mechanisms
Frontiers in Immunology | www.frontiersin.org 11
controlling the development and differentiation of MDSCs (33, 36,
37). Therefore, elucidation of the signaling events controlling
MDSCs subsets will facilitate the development of an efficient
MDSC-based clinical therapy.

It has been reported that IRF4 can regulate differentiation in
the myeloid system and DC cells (25, 26), the silencing of IRF4
could promote the development and function of MDSCs (27).
However, the role in the lineage determination of immune cells
remains unknown. Despite the extensive studies on the roles of
IRF4 in tumor biology, the function in tumor immunology
remains poorly understood. Under physiological conditions,
A

B C

D E

FIGURE 7 | Clinical significance of interferon regulatory factor 4 (IRF4)-mediated polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs) development.
Peripheral blood samples were collected from hepatocellular carcinoma (HCC) patients (n=20); individuals with hepatic fibrosis (HF) (n=20) were used as a control.
The levels of MDSCs and their subsets were determined by flow cytometry. (A) Representative results (upper) and mean ± SEMs (lower) are shown. (B, C) The
expression of IRF4 (B) and c-Myc (C) in PMN-MDSCs and M-MDSCs were determined by qRT-PCR. Mean ± SEMs from 4 individuals are shown. (D, E) Correlations
between IRF4 expression and PMN-MDSCs frequency (n=12) (D) and c-Myc expression in PMN-MDSCs (n=12) (E) are shown; Spearman rank test.
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the regulatory role of IRF4 in myeloid cell differentiation
deserves further investigation. Here, we demonstrate that IRF4
represents a novel regulator of PMN-MDSCs, but not of M-
MDSCs and IRF4 expression is also negatively correlated with
PMN-MDSCs levels in clinical HCC patients. Thus, our results
indicate that IRF4 may play an important role in MDSCs
subset determination.

IRF4 has been shown to be important for efficient antigen
cross-presentation of moDC (38), and IRF4 expression cloud
induce macrophage by cytokines activation and polarization
(39). Given the substantial reduction of moDC cells and
induction of M2 cells, it seems more likely that this is due to
an impaired sustained activation of anti-tumoral T cells than to
the amplification and action of MDSC in IRF4-KO mice. We
demonstrated that the PMN-MDSC frequency was correlated
with tumor weight and metastasis in the B16 model. It suggested
that the elevated levels of PMN-MDSC in the IRF4 KO mice
could be a secondary effect of the increased tumor progress.

Valdez et al. reported that Prostaglandin E2 can suppress
IRF4 expression in T cells (40). Meanwhile, Prostaglandin E2
promotes tumor progression by inducing myeloid-derived
suppressor cells (41). These studies suggest a possibility that a
high level of prostaglandin E2 in the tumor microenvironment
induces MDSCs development by suppressing IRF4 expression.
Here, we found that the expression of IRF4 was decreased in the
MDSCs treated with supernatant from tumor cells compared
with the supernatant from 3T3 cell. It implied that there might be
some Prostaglandin E2 in the supernatant of cultured tumor cells
which decreased the expression of IRF4 in MDSCs. Further
experiment was needed to elucidate it.

Although the existing evidence suggests that Myc family
members play a crucial role in regulating the development,
differentiation and activation of immune cells (macrophages,
dendritic cells, B cells and T cells, etc.) (42, 43), no studies have
focused on the regulation of MDSCs differentiation and function
by the c-Myc gene. In this study, the important role of the
c-Myc gene in regulating the differentiation and function of
MDSCs is elucidated and can be targeted for MDSCs treatment.
These findings provide a new and important theoretical and
experimental basis for improving the efficacy of current
tumor immunotherapy.

MDSCs expansion in human tumors has also been extensively
studied, revealing that MDSCs derived from distinct types of
tumors vary with respect to both their phenotype and immune
properties (8). Regardless, the significance of MDSCs subsets in
clinical cancer patients is not well defined. In this study, we
found that PMN-MDSCs, but not M-MDSCs, are associated with
tumor metastasis in HCC patients. The negative correlation
between IRF4 expression and PMN-MDSCs levels further
supports the pathological significance of IRF4 in PMN-MDSCs
development. However, we would like to note that the
relationship between IRF4 and PMN-MDSCs in human
tumors requires further detailed investigation in distinct tumor
types before firm conclusions can be drawn.

In conclusion, our study demonstrates that IRF4 is a novel
regulator of PMN-MDSCs in cancer and that c-Myc is the
Frontiers in Immunology | www.frontiersin.org 12
transcriptional target of IRF4 in MDSCs. IRF4 may have
predictive value for determining the PMN-MDSCs level and
tumor progression in cancer patients.
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