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Background: For respiration induced tumor displacement during a radiation therapy, a common method 
to prevent the extra radiation is image-guided radiation therapy. Moreover, mask region-based convolutional 
neural networks (Mask R-CNN) is one of the state-of-the-art (SOTA) object detection frameworks capable 
of conducting object classification, localization, and pixel-level instance segmentation.
Methods: We developed a novel ultrasound image tracking technology based on Mask R-CNN for stable 
tracking of the detected diaphragm motion and applied to the respiratory motion compensation system 
(RMCS). For training Mask R-CNN, 1800 ultrasonic images of the human diaphragm are collected. 
Subsequently, an ultrasonic image tracking algorithm was developed to compute the mean pixel coordinates 
of the diaphragm detected by Mask R-CNN. These calculated coordinates are then utilized by the RMCS 
for compensation purposes. The tracking similarity verification experiment of mask ultrasonic imaging 
tracking algorithm (M-UITA) is performed.
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Introduction

One of the main causes of death in the world is cancer. In 
2020, nearly 20 million people suffered from cancer. The 
top three most common cancers are breast cancer, lung 
cancer, and colorectal cancer and the number of deaths 
from lung cancer accounts for the largest proportion of all 
cancers: 18% of the total number of deaths, according to 
Sung et al. (2021) (1).

Radiation therapy is a commonly used approach for 
cancer treatment. It delivers high-energy photons to target 
and destroy cancer cells in a specific area. However, this 
treatment can also damage surrounding healthy tissues, 
leading to radiation-induced side effects. According to 
American Cancer Society’s report (2), common side effects 
of radiation therapy include skin inflammation, fatigue, 
decreased appetite, and difficulty swallowing. Severe 
side effects may include spondylitis and myocarditis. 
Additionally, during the treatment process, respiratory 
motion can cause organ movement (3-5), leading to 
excessive tumor displacement, particularly in the case of 
lung tumors. Consequently, these displacements contribute 
to the occurrence of radiation side effects.

In 2018, Dhont et al. (6) evaluated the 3D motion of 
19 lung and 18 liver tumors recorded during stereotactic 
radiotherapy and compared it with motion on 4-dimensional 
computed tomography (4D-CT). The results showed 
that the tumor displacements in the superior-inferior 
(SI) and anterior-posterior (AP) directions were very 
large (>5 mm). The tumor displacements increased the 
planning target volume (PTV), most notably in the SI 

direction of lung (5–13.7 mm) and the SI direction of 
liver (5–8 mm). In 2009, Cerviño et al. (7) analyzed the 
correlation between the motion of lung tumor and the 
motion of diaphragm to research the possibility of the use 
of diaphragm as a surrogate for tumor motion. This study 
analyzed 32 cohorts of fluoroscopic image sequences from 
10 lung cancer patients and developed two linear models 
for correlation analysis. The results suggested that the 
correlation between diaphragm motion and tumor motion 
varies by patient, but in general there is a linear relationship 
between diaphragm and tumor motion. In 2014, Yang  
et al. (8) evaluated the correlation factor between liver 
tumor motion and diaphragm displacement. The results 
showed that the diaphragm motion and tumor motion are 
highly related. In 2021, Li et al. (9) verified the feasibility of 
using the diaphragm as a tracking surrogate of lung tumor 
in the treatment of Cyberknife Synchrony. The results 
of the research showed that there was a good consistency 
between the lung tumor and the diaphragm in SI and right-
left (RL) directions. The research pointed out that the 
tracking of the diaphragm helps patients with unobservable 
lung tumors to better perform CyberKnife Synchrony.

For tumor displacement during a radiation therapy, 
increasing the PTV is a conservative approach. However, 
enlarging the volume leads the healthy tissue around the tumor 
to an extra exposure to radiation beam. A common method to 
prevent the extra radiation is image-guided radiation therapy 
(10-13). Generally, linear accelerators (LINACs) for radiation 
therapy are equipped with cone beam computed tomography 
(CBCT), which can be used to scan patient’s bone or metal 
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implants. The PTV would be registered with the tumor’s 
actual location by image fusion technology (14). However, 
potential effects of additional CBCT dose (15) on patients 
as well as the issue of low contrast of soft tissue (16) while 
imaging should be concerned.

Several studies on motion management were reported 
recently (17-19). In 2016, we proposed an ultrasound image 
tracking algorithm, UITA, to track diaphragm motion (20). 
UITA was applied to a respiratory motion compensation 
system (RMCS) (21) for tumor motion reduction. UITA 
analyzes the relative displacement and brightness difference 
of the region of interest, which is selected manually and 
used as a reference for dynamic search of the brightest 
point. UITA was built based on traditional computer vision. 
However, speckle noise is everywhere in an ultrasound 
image, which interferes with the stability while tracking 
diaphragm and compensating the respiratory induced 
motion. Deep learning methods offer a good object detection 
robustness which has a deep potential for tracking tumor 
motion under ultrasound imaging. In 2019, Huang et al. (22) 
combined fully convolutional neural network (FCNN) and 
convolutional long short-term memory (CLSTM) network 
to design an ultrasound-based tumor tracking technique. The 
results showed an average tracking error of 0.97±0.52 mm for 
85 specific locations in 39 ultrasound imaging scenarios, with 
tracking rates ranging from 66 to 101 frames per second. For 
image guidance radiotherapy, this method is very effective in 
tracking tumor motion.

Mask R-CNN, a SOTA object detection framework 
introduced by He et al. in 2017 (23), stands out from 
traditional computer vision due to its ability to perform 
object classification, localization, and pixel-level instance 
segmentation. Consequently, this study aims to develop a 
novel ultrasound image tracking technology based on Mask 
R-CNN. The primary goal is to achieve superior stability 
in tracking the detected diaphragm motion. Furthermore, 
we evaluate its effectiveness by applying it to RMCS for 
compensation assessment.

Methods

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013) and approved 
by the Ethics Committee of Taipei Medical University 
Hospital (No. IRB 201902015), informed consent was 
taken from all the patients. To investigate the viability of 
implementing mask ultrasonic imaging tracking algorithm 
(M-UITA) in RMCS, we conducted CT image verification 
at Taipei Medical University Hospital. Two experiments 
were performed with diaphragm phantoms in this study. 
The first one is the verification experiment of tracking 
displacement accuracy of M-UITA. This experiment 
compares the correlation between the CBCT image and 
the tracking trajectory of M-UITA, to confirm whether 
the coordinate change of the tracked object conforms 
to the actual displacement; the second experiment is 
the respiration motion compensation experiment. The 
compensation rates tracked using UITA and M-UITA were 
compared to demonstrate the advantage of the proposed 
technology. Figure 1 shows the workflow of M-UITA.

The specifications of the hardware equipment used in 
this work are as follows: the CBCT device model is Elekta 
Synergy System; the ultrasound imaging system is produced 
by Fukuda Denshi Company with the model UF-4000 and 
the ultrasonic probe model is FUT-C111A with a frequency 
of 3.5MHz. The CPU device model is I5-10400 and the 
GPU device model is NVIDIA GeForce GTX 1070ti. 
Python is used in this study for machine learning training 
and implementing M-UITA.

Experimental apparatus

The experimental setup for this study included the 
following apparatus: the RMCS, the respiratory motion 
simulation system (RMSS) (21), ultrasound equipment, and 
a diaphragm phantom. RMSS and diaphragm phantom 
were utilized to simulate human respiratory motion. The 
breathing waveform in this experiment was recorded using 

Detection and 
segmentation 

with Mask R-CNN

Compute the mean 
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the segmented area

Data operation
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RMCS program
Ultrasound images 
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Figure 1 The workflow of M-UITA. M-UITA, mask ultrasonic imaging tracking algorithm; R-CNN, region-based convolutional neural 
networks; RMCS, respiratory motion compensation system.
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ultrasound imaging of the real-time human diaphragm 
and capturing the diaphragmatic displacement signals 
with UITA. RMSS would simulate the movement of the 
diaphragm phantom based on the pre-recorded respiratory 
signals it receives.

The diaphragm phantom was designed based on the 
research (24) but with some improvements. The diaphragm 
phantom was composed of agarose, a rubber belt and a 
metal wire. Since the lung exists in the body, there will 
be a relative displacement between the surface of the 
human body and the diaphragm when it compresses and 
expands; while there is no relative displacement between 
the probe and the surface because the ultrasonic probe is 
attached on the body surface. To simulate this movement, 
the diaphragm phantom was designed in two layers: The 
top layer simulates the surface of the human body, and 
the bottom layer simulates the tissue in the body. Figure 2  
presents the design of the diaphragm phantom. The 

ultrasonic probe was fixed by a fixture and set on a still 
surface where was no relative displacement with ground as 
shown in Figure 3A. When RMSS moved according to the 
respiratory signal, the bottom layer did the same movement; 
however, the top phantom wouldn’t move since the probe 
was stuck in a notch on the upper phantom’s surface.  
Figure 3B shows the setting of the ultrasound probe. A small 
piece of agarose on top simulates the abdominal skin, which 
remains stationary relative to the probe. This configuration 
was designed to closely replicate the actual movement of 
the diaphragm during human breathing. A rubber belt was 
affixed to the wall to simulate the diaphragm’s motion, and 
ultrasonic waves would be reflected off the belt to generate 
an ultrasound image. To enhance the visibility of the rubber 
belt in the CT images, a metal wire was closely affixed to 
it, creating a distinct contour. The CT images were then 
analyzed using Tracker software. In each frame of the CT 
image series, we manually identified the feature points 

Metal wire

Metal wire

Top phantom
Top phantomRubber belt

Rubber belt

Bottom phantom

Bottom phantom

A B

Figure 2 The diaphragm phantom. (A) Side view of the diaphragm phantom. (B) Top view of the diaphragm phantom.
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Figure 3 Experimental apparatus. (A) The fixture was set on a still surface. (B) The setting of the ultrasound probe. RMSS, respiratory 
motion simulation system; RMCS, respiratory motion compensation system.



Quantitative Imaging in Medicine and Surgery, Vol 13, No 10 October 2023 6831

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2023;13(10):6827-6839 | https://dx.doi.org/10.21037/qims-23-23

of the diaphragm phantom and obtained its movement 
trajectories. Figure 4 shows the complete experimental 
setup.

Dataset and model training

A dataset of 1,800 human diaphragm images was acquired 
using ultrasonic equipment. The images were 800×600 
pixels in size. To increase the variety of the dataset 
for model training, deformed diaphragm shapes were 
intentionally recorded under severe breathing, with an 

amplitude of about ±20 mm. Examples of diaphragm images 
from the dataset are shown in Figure 5. The diaphragm 
region (indicated by the white line) was identified as the 
optimal detection point (feature point) for the entire 
system. The 1,800 images were divided into a training set 
(80%) and a validation set (20%) to prepare the dataset for 
training and validation. Data labeling was accomplished 
using VIA (VGG Image Annotator). Due to the limited 
number of samples in this study, a pre-trained model based 
on the COCO dataset (25) was utilized. The advantage 
of using a pre-trained model for transfer learning is that 

(f) CT

(d) Ultrasound probe

(e) Diaphragm phantom

(a) RMSS

(b) RMCS

(c) Ultrasound imaging system

Figure 4 The overall experiment setup. CT, computed tomography; RMSS, respiratory motion simulation system; RMCS, respiratory 
motion compensation system.
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even if the number of data samples is small, the parameters 
of the model can be adjusted to a good state based on the 
pre-trained model. In this study, anchor boxes of three 
scales were set according to the size of the diaphragm in 
ultrasound images: 64×64, 128×128, 256×256, and the 
aspect ratios of the anchor boxes were set to 1:1, 1:2 and 
1:2, 2:1. Residual networks such as ResNet-34, ResNet-50, 
and ResNet-101 are often used in Mask R-CNN models 
as the backbone architecture for feature extraction. In this 
study, the pixel accuracy of diaphragm segmentation has 
a certain influence on the compensation effect of RMCS. 
According to the experimental results (26), the detection 
accuracy of ResNet-101 is the highest among the above 
three. Therefore, ResNet-101 was selected to be the 

backbone of the Mask R-CNN model for training. The 
overall loss function of Mask R-CNN includes the loss of 
the RPN network and the loss of each branch: classification, 
bounding box regression and mask regression (23). The 
errors were calculated as following:

overall RPN BranchesL L L= +  [1]
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For training the model, the learning rate was set to 0.001, 
the batch size was set to 5, and the number of epochs was 
set to 100. Figure 6 shows that the loss curves of the model 
all have a downward trend, and the errors of the training 
and validation datasets converge to 0.236 and 0.438.

M-UITA working process

M-UITA first detects the contour of the diaphragm in the 
ultrasonic image, and then obtains the coordinates of all 
pixels in the contour. The mean coordinate of all pixels will 
be calculated and converted into actual coordinates (mm) 
for RMCS to read. Figure 7 displays the screenshots of 
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Figure 6 The loss curves of the model.
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Figure 8 The pre-recorded respiratory signals. (A) Sin; (B) Pattern A; (C) Pattern B; (D) Pattern C; (E) Pattern D; (F) Pattern E.

M-UITA in action. The red dots in the figures represent 
the visualized mean coordinates calculated by M-UITA.

M-UITA tracking verification experiment

The purpose of this experiment is to verify whether the 
diaphragm tracking displacement of M-UITA is reliable. 
First, three pre-recorded respiratory waveforms were 
prepared in this experiment: sine wave, Pattern A and 
Pattern B. Pattern A, B were real human respiratory 
signals. The waveforms are shown in Figure 8. Diaphragm 
phantoms moved by based on the input respiratory 
waveforms to the RMSS and tracked with M-UITA. At 
the same time, CT was set at 90 degrees so that the high-
energy rays hit the diaphragm phantom perpendicularly, 
which allowed us to record the pure movement of the 

diaphragm phantom in S-I direction. The obtained CT 
image sequence were manually marked with the feature 
points to generate the displacement coordinates of the CT 
image, and the movement trajectories were used as the 
real values of this experiment. The detection frame rate of 
M-UITA is about 10 FPS, which is different from the frame 
rate of CT images (5.55 FPS). Therefore, it is impossible to 
directly calculate the point-to-point coordinate error under 
the same time resolution. In order to quantify the similarity 
between M-UITA’s tracked trajectories and CT image 
trajectories, we calculated the discrete Fréchet distance 
(DFD) (27) between the two trajectories as an evaluation 
metric. The DFD is a measure of similarity or dissimilarity 
between two curves. It quantifies the minimum separation 
required for a continuous motion along both curves without 
backtracking.
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Respiration motion compensation experiment

After the verification of tracking similarity, M-UITA was 
applied to RMCS to conduct compensation experiments 
to observe the feasibility. In the experiment, three pre-
recorded real human respiratory signals were prepared, 
Pattern C, D, and E. The respiratory signals are shown in 
Figure 8. The characteristic of Pattern C was high frequency 
with baseline shift; Pattern D was medium frequency with 
baseline shift and large fluctuations; Pattern E was low 
frequency and regular large fluctuations. These waveforms 
were input to RMSS, which made the diaphragm phantom 
move. M-UITA and UITA further tracked the phantom’s 
movement, and transmitted the tracking signals to RMCS 
for movement compensation. In the end of the experiment, 
root mean square error (RMSE) and the compensation 
rate (CR) between the compensated residual signal and the 
original input signal were calculated. Each waveform was 
performed three times to calculate the standard deviation, 
and an interval of two standard deviations was used as the 
margin of error for the CR. RMSE and CR were calculated 
as following:

( )2

1

n
i ii

RMSS RMCS
RMSE

n
=

−
= ∑  [4]

( )% 1 100%compensated

uncompensated

RMSE
CR

RMSE
 

= − ×  
 

 [5]

Results

In the first experiment, DFD was calculated to quantify the 
similarity between the displacement trajectory tracked by 
M-UITA and the actual diaphragm displacement trajectory. 
Actual displacements are defined by the images obtained 
from CT scans. Accuracy is determined by the fact that the 
coordinates in the CT images are marked by a tracker with 
a precision of 1mm. Furthermore, M-UITA and UITA were 
applied for tracking the diaphragm movement with RMCS 
in the second experiment for evaluating the effectiveness of 
the proposed method.

Results of the verification experiment

The DFDs of sin, Pattern A and Pattern B were calculated 
to be 3.12 mm, 3.85 mm and 3.71 mm, respectively. The 
DFDs are presented in Table 1. In Figure 9A, the sine 
wave tracking signals of M-UITA almost overlapped with 
the actual displacement, while some defects and jitters 
existed at the turning point. Figure 9B, there was a slight 
translation between the M-UITA and the CT trajectories 
in Pattern A. It was because during the movement, the 
bottom phantom moved at a slow speed. When the bottom 
phantom overcame the friction with the top phantom, it 
caused inconsistent sliding. Pattern B was a waveform with 
many twists in a short period of time. Although there were 
also defects and jitters like sine wave and Pattern A at the 
turning point, the M-UITA and the CT trajectories were 
almost overlap as can be seen in Figure 9C.

Since the displacement of the diaphragm at the turning 
point of the waveform did not have a large movement 
like the intervals of peaks and valleys and M-UITA 
tracked continuously, even a slight change of detected 
area would cause a fluctuation of the mean coordinate, 
making the tracking trajectories not smooth. However, 
the calculated DFD of each waveform could prove that 
there was a high correlation between actual displacement 
and the displacement tracked by M-UITA. The DFD 
between M-UITA and the actual displacement trajectory 
was less than 4 mm, which is approximately equivalent to 
the tumor’s diameter reference value, indicating that the 
similarity of two trajectories is very close. The radiation 
treatment typically sets a radiation field that includes an 
additional 1–2 cm margin around the tumor region.

Results of the compensation experiment

The average RMSE of the three waveforms tracked with 
M-UITA were: Pattern C: 7.00 mm, Pattern D: 8.20 mm, 
Pattern E: 6.35 mm; the average RMSE tracked with UITA 
were: Pattern C: 7.49 mm, Pattern D: 7.18 mm, Pattern E: 
7.15 mm; while the CR of M-UITA was at most 6% higher 
than that of UITA. For the detailed experimental data, 
please refer to Table 2 and Table 3. Figure 9D shows the CRs 
of the three waveforms, and the error bars were drawn with 
twice the standard deviation.

Deep learning-based tracking technology provide higher 
robustness in tracking specific objects in noisy scenes, such 
as ultrasound images. Figure 10 illustrates the tracking 
trajectories of each input signal. In Figure 10B, it can be 

Table 1 The result of DFDs

Pattern Sin A B

DFD (mm) 3.12 3.85 3.71

DFDs, discrete Fréchet distances.
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Figure 9 The tracking trajectory of (A) Sin, (B) Pattern A, (C) Pattern B and (D) CRs with error bar drawn with twice the standard 
deviation. M-UITA, mask ultrasonic imaging tracking algorithm; CT, computed tomography; CRs, compensation rates.

Table 2 The result of RMSEs

Pattern
M-UITA UITA

#1 #2 #3 Average #1 #2 #3 Average

C 6.89 6.99 7.12 7.00 7.59 7.48 7.41 7.49

D 8.26 8.11 8.24 8.20 7.31 7.01 7.21 7.18

E 6.35 6.44 6.25 6.35 7.20 7.19 7.07 7.15

RMSEs, root mean square errors; M-UITA, mask ultrasonic imaging tracking algorithm; UITA, ultrasonic imaging tracking algorithm.

Table 3 The result of CRs

Pattern
M-UITA UITA

#1 #2 #3 Average #1 #2 #3 Average

C 43.61 44.14 41.30 43.02 38.16 38.39 40.19 38.91

D 45.15 44.17 43.34 44.22 43.17 45.78 44.41 44.45

E 48.16 48.80 50.66 49.21 43.32 42.02 44.64 42.99

CRs, compensation rates; M-UITA, mask ultrasonic imaging tracking algorithm; UITA, ultrasonic imaging tracking algorithm.
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observed that in Pattern C, after 70 seconds, the tracking 
waveform of UITA exhibits a highly unstable state. This 
is likely due to UITA’s failure to locate the feature point, 
resulting in an inaccurate tracking trajectory. This issue may 
be attributed to a slight gap between the ultrasonic probe 
and the upper diaphragm phantom during the compensation 
process, which caused the diaphragm contour to disappear. 
In contrast, M-UITA demonstrated a stable tracking 
process without encountering this problem. In Pattern D, 
the compensation rate using M-UITA is similar to that of 
UITA. As the respiratory frequency is lower, factors such as 
speckles and contact surface gaps in the ultrasound image 

are reduced, which might not fully highlight M-UITA’s 
advantages. However, at the turning points, the residual 
signal exhibits larger concaves (closer to zero), indicating 
that M-UITA can more accurately track the diaphragm’s 
displacement during these critical moments.

Discussion

UITA, being a traditional computer vision method based on 
rules, requires manual parameter setting (e.g., binarization, 
erosion) before tracking. If the scene conditions do not 
match the settings, effective tracking may not be achieved. 

30

20

10

0

−10

−20D
is

pl
ac

em
en

t, 
m

m
30

20

10

0

−10

−20D
is

pl
ac

em
en

t, 
m

m

20

10

0

−10

−20

−30

D
is

pl
ac

em
en

t, 
m

m

20

10

0

−10

−20

−30

D
is

pl
ac

em
en

t, 
m

m

10
5
0

−5
−10
−15
−20
−25

D
is

pl
ac

em
en

t, 
m

m

15
10
5
0

−5
−10
−15
−20
−25

D
is

pl
ac

em
en

t, 
m

m

0     10     20     30    40     50     60    70     80
Time, s

0       10       20       30      40       50       60
Time, s

0        10       20       30       40        50       60
Time, s

0         10         20        30        40         50        60
Time, s

0        10        20        30        40        50        60
Time, s

0      10     20     30    40     50     60     70     80
Time, s

Input signal
Compensated signal

Input signal
Compensated signal

Input signal
Compensated signal

Input signal
Compensated signal

Input signal
Compensated signal

Input signal
Compensated signal

Pattern E compensated with M-UITA

Pattern D compensated with M-UITA

Pattern C compensated with M-UITA Pattern C compensated with UITA

Pattern E compensated with UITA

Pattern D compensated with UITA

A B

C D

E F

Figure 10 The tracking trajectories of: (A) Pattern C compensated with M-UITA; (B) Pattern C compensated with UITA; (C) Pattern D 
compensated with M-UITA; (D) Pattern D compensated with UITA; (E) Pattern E compensated with M-UITA; (F) Pattern E compensated 
with UITA. M-UITA, Mask Ultrasonic Imaging Tracking Algorithm; UITA, Ultrasonic Imaging Tracking Algorithm.



Quantitative Imaging in Medicine and Surgery, Vol 13, No 10 October 2023 6837

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2023;13(10):6827-6839 | https://dx.doi.org/10.21037/qims-23-23

This is because ensuring the purity of ultrasound images 
and the completeness of diaphragm shape during detection 
for different patients can be challenging. Moreover, during 
treatment, the continuous movement of RMCS leads to 
changes in the angle of the ultrasonic probe and its contact 
with the body surface, deviating from the initial position. 
These factors introduce uncertainties in diaphragm tracking 
with UITA, making the tracking process more challenging. 
On the other hand, M-UITA overcomes these problems. 
It does not require manual parameter adjustments, and it 
exhibits a higher tolerance for uncertainty in the image. 
Unlike UITA, which tracks a single feature point, M-UITA 
tracks the mean pixels of the diaphragm in ultrasound 
images. As long as the diaphragm’s outline remains present, 
even if incomplete or distorted, M-UITA can still detect the 
diaphragm due to the robust generalization of the model. 
Tracking the mean pixel coordinates of the diaphragm area 
represents the overall displacement of the diaphragm more 
effectively than tracking a single specific point.

In fact, the ultrasound image of the human abdomen is 
full of noise composed of fat and other soft tissues, and the 
diaphragm also contains distortions when a person breathes. 
The diaphragm phantom used in this study is composed of 
double layers of agarose, a rubber belt and only translates 
in the SI direction. This simulation is still too ideal when 
compared to the real human ultrasonic images. Since 
M-UITA is not a rule-based traditional computer vision 
method, it learns the features from various samples through 
a deep neural network. M-UITA requires a sufficiently 
complex scene to highlight its excellent tracking ability. In 
addition, M-UITA takes about 0.35 seconds to generate the 
average coordinates of the detected diaphragm. The main 
reasons for this delay can be divided into two parts: (I) the 
detection of diaphragm; (II) the calculation of the mean 
coordinates. The former involves the multi-node parallel 
operation of the neural network, and the upgrade of the 
GPU will have the opportunity to reduce the delay; while 
the architecture of the ultrasonic image tracking algorithm 
is not a multi-node architecture, and relies more on the 
capability of the CPU, and the algorithm of calculation still 
needs to be optimized to accelerate.

In 2019, Price et al. (28) used a reference implant to 
track displacement and achieved a compensation effect as 
high as 98.9%. Although our experiment only achieved a 
compensation effect of 49.21%. However, we used a non-
invasive and indirect positioning with the proposed Mask 
R-CNN model, to develop ultrasonic image tracking 
technology (M-UITA) for the compensation of the 

respiratory displacement. It is believed that future technical 
improvements to M-UITA will significantly improve the 
compensation effect.

Conclusions

This study developed an ultrasound image tracking 
technology called M-UITA, based on Mask R-CNN, and 
applied it to RMCS. A dataset of 1,800 real diaphragm 
ultrasonic images was obtained using ultrasonic equipment 
for model training. M-UITA calculates the mean pixel 
coordinates of the diaphragm segmented by Mask 
R-CNN and then transmits this data to RMCS. To 
assess the feasibility of M-UITA, tracking verification 
and compensation experiments were conducted. In the 
tracking verification, DFDs between the tracking trajectory 
of M-UITA and the real displacement trajectory was 
calculated. The calculated average DFD was less than  
4 mm, which confirmed that the tracking trajectory of the 
proposed method had a high correlation with the actual 
displacement. The respiratory motion compensation 
experiment was conducted to assess the effectiveness of the 
proposed method. The compensation rate was calculated 
for both M-UITA and UITA, and the results showed that 
M-UITA had a compensation rate up to 6.22% higher than 
UITA. This suggests that M-UITA is more effective at 
compensating for respiratory motion. Additionally, M-UITA 
does not require additional manual parameter adjustments, 
which significantly reduces operational complexity.
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