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Abstract: JC polyomavirus (JCPyV) is a small non-enveloped virus that establishes lifelong, persistent
infection in most of the adult population. Immune-competent patients are generally asymptomatic,
but immune-compromised and immune-suppressed patients are at risk for the neurodegenerative
disease progressive multifocal leukoencephalopathy (PML). Studies with purified JCPyV found it
undergoes receptor-dependent infectious entry requiring both lactoseries tetrasaccharide C (LSTc)
attachment and 5-hydroxytryptamine type 2 entry receptors. Subsequent work discovered the major
targets of JCPyV infection in the central nervous system (oligodendrocytes and astrocytes) do not
express the required attachment receptor at detectable levels, virus could not bind these cells in tissue
sections, and viral quasi-species harboring recurrent mutations in the binding pocket for attachment.
While several research groups found evidence JCPyV can use novel receptors for infection, it was
also discovered that extracellular vesicles (EVs) can mediate receptor independent JCPyV infection.
Recent work also found JCPyV associated EVs include both exosomes and secretory autophagosomes.
EVs effectively present a means of immune evasion and increased tissue tropism that complicates
viral studies and anti-viral therapeutics. This review focuses on JCPyV infection mechanisms and EV
associated and outlines key areas of study necessary to understand the interplay between virus and
extracellular vesicles.
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1. Introduction

Polyomaviruses were initially considered members of the Papovaviridae family, com-
bining papillomaviruses and polyomaviruses together for their clear similarities in genome
features and capsid morphology, but around 2000 the two viral families were split to Papil-
lomaviridae and Polyomaviridae to clarify distinct families [1,2]. The Polyomaviridae family
currently includes 117 viral species that infect an array of animal species. Of the identified
species, 14 are human polyomaviruses with only four associated with disease in humans—
BK, JC, Merkel Cell, and Trichodysplasia spinulosa-associated polyomaviruses [1]. The first
two human polyomaviruses were discovered in 1971—BK and JC polyomaviruses—from
patient samples and named after the initials of the respective patients [3,4]. Both BKPyV and
JCPyV establish persistent infections in the kidney, but typically only BKPyV is pathologic
at this site causing hemorrhagic cystitis and nephropathy [5]. JCPyV is the etiologic agent
of the neurodegenerative disease progressive multifocal leukoencephalopathy (PML) and
is associated with several other rare neurological diseases [5,6]. Merkel cell polyomavirus
(MCPyV) was discovered in 2008 from Merkel Cell carcinoma (MCC) tissue samples and
has since been associated with about 80% of MCCs [7,8]. In 2010 Trichodysplasia spinulosa-
associated polyomavirus (TSPyV) was linked to the eponymous disease after isolation
and identification from patient TS spines and lesions [9,10]. Some recent evidence links
human polyomaviruses 6 and 7 with pruritic rashes and requires further confirmatory stud-
ies [11,12]. Polyomavirus-induced diseases are all associated with immune-compromised
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and/or immune-suppressed patients, indicating that uncontrolled infections allow for
disease progression [13]. While four polyomaviruses are clearly associated with human
disease, BKPyV and JCPyV are the best-studied human polyomaviruses and currently
the only two identified in association with extracellular vesicles [14–16]. JCPyV infection
mechanisms and the consequences of EV association will be the focus of this work.

2. Progressive Multifocal Leukoencephalopathy

Progressive multifocal leukoencephalopathy (PML) is a rare but rapidly develop-
ing, neurodegenerative disease [17,18]. Severely immune-compromised and immune-
suppressed patients have the greatest risk for PML development. Though the first cases of
PML were associated with lymphoproliferative disorders [19,20], during the HIV/AIDS
pandemic PML developed in up to 5% of patients and was considered an AIDS-defining dis-
ease [21,22]. Introduction of antiretroviral therapies against HIV has reduced the prevalence
of PML and increased survival statistics for patients but PML survivors often suffer debili-
tating symptoms [20]. In the early 2000s the monoclonal antibody therapy natalizumab
(brand name Tysabri) used to treat multiple sclerosis was the first immune-suppressive
therapy found to increase PML risk [23–25]. Since then, additional immune-suppressive
and disease-modifying therapies have been linked with increased risk for PML [26,27].
Patient risk for PML also increases the longer someone is treated with immune-suppressive
therapies [28].

PML disease progression is marked by lytic destruction of oligodendrocytes and
astrocytes [17,29]. Destruction of the myelin-producing oligodendrocytes accelerates neu-
rodegeneration and presents characteristic asymmetrical lesions. Diagnosis is based on
confirmation of such lesions using magnetic resonance imaging and evaluation of JCPyV
titer from patient CSF samples [30–32]. Symptoms include hemiparesis, ataxia, disrupted
motor function, and sensory deficits [6,30,33,34]. There is currently no licensed anti-JCPyV
treatment to help PML patients. Treatments are centered around ceasing PML disease
progression via immune reconstitution, but this has a risk for immune reconstitution in-
flammatory syndrome (IRIS). The majority of natalizumab treated patients and ~20% of
HIV/AIDS patients are at risk for IRIS [35,36]. PML associated IRIS has ~28% mortality
rate [37]. Further research into JCPyV dissemination to and within the central nervous
system, and at a subcellular level is needed to help prevent CNS infection and disease
progression to better treat at-risk patients.

3. JC Polyomavirus Genome Organization

Polyomaviruses contain viral minichromosomes that are double-stranded, closed
circular DNA genomes wrapped around host-derived histone proteins. The JCPyV genome
is approximately 5130 bp with a variable non-coding control region (NCCR) that expresses
9 proteins and 1 microRNA [29,38]. JCPyV NCCRs are classified as archetype or prototype
(also referred to as rearranged). JCPyV archetype (Cy strain) NCCR is organized with an
origin of replication (ORI) followed by blocks termed A through F that contain enhancer ele-
ments and a bi-directional promoter for early and late gene expression (Figure 1) [29,38,39].
Prototype (Mad-1 strain) and prototype-like JCPyV NCCRs are rearranged with some
combination of deletion(s) and duplication(s) of blocks A through F that increase the tran-
scription binding sites for both early and late gene expression [40,41]. Mad-1 (named for its
discovery in Madison, Wisconsin) contains a deletion of blocks B and D, and duplication
of blocks A, C, and E (depicted in Figure 1). JCPyV early gene expression includes the
regulatory proteins large T antigen, small t antigen, and three T prime (T’) proteins while
late gene expression includes agnoprotein and the structural proteins viral protein 1 (VP1),
VP2, and VP3 (Figure 1) [29,42].
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Figure 1. JCPyV genome organization. JCPyV archetype (top sequence, Cy strain) verses prototype, 
or rearranged, (bottom sequence, Mad-1 strain) non-coding control region (NCCR). NCCRs contain 
a combination of blocks a-f that contain enhancer elements and a bi-directional promoter. Archetype 
NCCR is composed of blocks a, b, c, d, e, f whereas prototype Mad-1 NCCR is composed of blocks 
a, c, e, a, c, e, f. The mechanism and location of rearrangement is not defined. Archetype is mostly 
found in the kidney while prototype is associated with PML tissue. The genome expresses nine 
proteins split into early versus late. Early expression (purple genes) includes large T-antigen, small 
t-antigen, and the minor T’ proteins T’135, T’136, and T’165. Late expression (green genes) includes 
agnoprotein, VP1, VP2, and VP3. The single viral microRNA is expressed late and has a seed region 
complementary to T, as depicted. Schematic created with BioRender.com (accessed on 18 April 
2022). 

Archetype NCCR is classified as the transmissible form of JCPyV since it is detected 
across healthy patients and contains full genetic information to create prototype and pro-
totype-like viruses detected in PML patients [43–45]. Archetype establishes low-level, per-
sistent infections in the kidney and is mostly detected in kidney and urine from healthy 
and PML patients [46,47]. Archetype can infect and might also persist in bone marrow-
derived cells, stromal cells, and brain tissue [48–53]. However, archetype is rarely found 
associated with PML tissue, whereas rearranged JCPyV is neuropathogenic and mostly 
detected in the cerebral spinal fluid (CSF), brain, and blood [49,51]. Mad-1 is the repre-
sentative rearranged JCPyV strain and is often studied in laboratory settings. 

Based on sequence analyses there are 7 genotypes of JCPyV that can be correlated 
with geographic populations [54–58]. Sequence analyses are often based on the sequence 
of the major viral capsid protein (VP1), but some studies have adjusted their methods to 
include whole genome phylogenetic analysis [54,59]. There is no identified correlation be-
tween VP1 sequence and neurotropism, but there is a clear association of rearranged 
NCCRs and neuropathogenic JCPyV [43,44,60,61]. Interestingly, research also shows a 
propensity for prototype JCPyV variants to develop from JCPyV types 1–4. Most rear-
ranged variants detected in PML patient samples are derived from types 1 and 2, while 

Figure 1. JCPyV genome organization. JCPyV archetype (top sequence, Cy strain) verses prototype,
or rearranged, (bottom sequence, Mad-1 strain) non-coding control region (NCCR). NCCRs contain a
combination of blocks a-f that contain enhancer elements and a bi-directional promoter. Archetype
NCCR is composed of blocks a, b, c, d, e, f whereas prototype Mad-1 NCCR is composed of blocks
a, c, e, a, c, e, f. The mechanism and location of rearrangement is not defined. Archetype is mostly
found in the kidney while prototype is associated with PML tissue. The genome expresses nine
proteins split into early versus late. Early expression (purple genes) includes large T-antigen, small
t-antigen, and the minor T’ proteins T’135, T’136, and T’165. Late expression (green genes) includes
agnoprotein, VP1, VP2, and VP3. The single viral microRNA is expressed late and has a seed region
complementary to T, as depicted. Schematic created with BioRender.com (accessed on 18 April 2022).

Archetype NCCR is classified as the transmissible form of JCPyV since it is detected
across healthy patients and contains full genetic information to create prototype and
prototype-like viruses detected in PML patients [43–45]. Archetype establishes low-level,
persistent infections in the kidney and is mostly detected in kidney and urine from healthy
and PML patients [46,47]. Archetype can infect and might also persist in bone marrow-
derived cells, stromal cells, and brain tissue [48–53]. However, archetype is rarely found
associated with PML tissue, whereas rearranged JCPyV is neuropathogenic and mostly de-
tected in the cerebral spinal fluid (CSF), brain, and blood [49,51]. Mad-1 is the representative
rearranged JCPyV strain and is often studied in laboratory settings.

Based on sequence analyses there are 7 genotypes of JCPyV that can be correlated with
geographic populations [54–58]. Sequence analyses are often based on the sequence of the
major viral capsid protein (VP1), but some studies have adjusted their methods to include
whole genome phylogenetic analysis [54,59]. There is no identified correlation between
VP1 sequence and neurotropism, but there is a clear association of rearranged NCCRs and
neuropathogenic JCPyV [43,44,60,61]. Interestingly, research also shows a propensity for
prototype JCPyV variants to develop from JCPyV types 1–4. Most rearranged variants
detected in PML patient samples are derived from types 1 and 2, while types 4 and quite
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rarely type 3 also contribute to PML cases [43,44,54,62–66]. Likelihood of rearrangement is
as follows: types 1 > 2 > 4 > 3 [54,59]. Figure 2 outlines major amino acid changes in and
around the major VP1 binding pocket of the different genotypes.
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4. Capsid Morphology and Assembly

Polyomavirus particles are composed of 72 capsomeres assembled into icosahedrons
with T = 7d symmetry that measure approximately 40–50 nm in diameter [67–69]. One cap-
somere is constructed of five major viral capsid protein (VP1) molecules that assemble into
pentamers with one minor viral capsid protein (VP2 or VP3) attached at the center [70–72].
VP1 makes up the entire outer face of a virion making it the major mediator of virus-host
interactions. All well-studied human PyVs attach to sialic acid-containing receptors at the
cell surface before entry and hemagglutinate red blood cells, though exact receptors differ
between viral species and strains [73–75].

5. JC Polyomavirus Receptor-Dependent Infection

JCPyV utilizes a required two-step mechanism to infect a target cell, (1) attachment
followed by (2) entry. Nonenveloped virions require the attachment receptor known as
lactoseries tetrasaccharide C (LSTc) for infection [76,77]. Researchers used VP1 pentamers
(type 1) in a glycan array and found VP1 strongly binds LSTc. The tight interaction between
LSTc and VP1 allowed for crystallization and characterization of the complex. Researchers
defined exact amino acid contacts between the VP1 binding pocket and the α-2,6-linked
sialic acid and neighboring GlcNac of LSTc. Findings were confirmed using virus binding
and infection assays [76]. Interestingly, deep sequencing of viral genomes from PML
patients found a host of viral quasi-species containing mutations in this sialic-acid binding
pocket of VP1 [62,63,78]. Most viral species were derived from genotypes 1 and 2. The VP1
mutations coincided with critical contact locations previously identified and destroy the
sialic-acid binding capacity of these viruses in vitro [76,79]. Confounding this discovery,
oligodendrocytes and astrocytes were found to lack the necessary sialic acid-containing
attachment receptor LSTc, and JCPyV (genotype 1) was incapable of binding these cell
types at detectable levels in patient tissue sections [80].

Alternative attachment factors examined include gangliosides that serve as major
attachment factors for other well-studied polyomaviruses like BKPyV and SV40 [77,81,82].
Gangliosides are glycosphingolipids that carry sialic acid receptors and are plentiful in
brain tissue [83]. These attributes make gangliosides good candidate receptor species for
JCPyV. Studies using JCPyV virus-like particles (VLPs) of the genotype 1, 2, or 3 genetic
background found JCPyV can attach to gangliosides [62,81,84]. However, direct comparison
between JCPyV types 1 and 3 (using pentamers and live virus) demonstrated while each
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can bind gangliosides loosely, both genotypes have greater affinity for LSTc [77]. Stroh and
colleagues showed that reincubation with ganglioside GM1 inhibited virus (type 1 and 3)
infection, but less so than blocking with LSTc [77]. In the same study infections with JCPyV
and JC pseudovirus (PsV) of JC type 1 (Mad-1 NCCR) and Mad-1 NCCR with type 3 VP1
sequence was unaffected by exogenous gangliosides [77]. These data implied gangliosides
are not required for entry by genotypes 1 or 3 JCPyV. The Gorelik group showed that
VLPs (type 3) containing the same sialic-acid binding pocket mutations discovered in PML
patients were found to bind some gangliosides, and binding to target cells was unaffected by
neuraminidase treatment [62]. Geoghegan and colleagues then demonstrated that VLPs of
JCPyV genotype 2 and 3 wild-type (WT) or harboring a sialic acid binding mutation (S269F
or L55F, respectively) can bind non-sialylated glycosaminoglycans (GAGs) on SFT cells
(gliosarcoma). They also showed pseudoviruses (type 2 and 3, WT and sialic acid mutant)
use GAGs for transduction in ART (ovarian tumor), SFT, and 293TT (transformed kidney)
cells [84]. They hypothesized that VP1 receptor binding switches after the major capsid
protein mutates from WT to sialic acid binding deficiency. While interesting, this has not
yet been confirmed with crystallographic studies, live virus, recapitulated in the genotype
1 background, or completed with relevant permissive cell lines such as the commonly used
SVG-A (transformed glial cells) or primary astrocytes. There is also some evidence that
adipocyte plasma membrane-associated protein (APMAP) facilitates JCPyV (genotype 1)
infection, though it is unclear whether it facilitates attachment or entry [85]. APMAP is an
N-linked glycosylated type I transmembrane protein found in a variety of tissue types and
could be an interesting avenue of research regarding JCPyV receptor-mediated infection in
the brain [86,87].

During the second step of infectious entry JCPyV interacts with the 5-hydroxytryptamine
type 2 receptor (5-HT2R) family that consists of three isoforms—2A, 2B, and 2C [88–90].
This interaction induces clathrin-dependent endocytosis by a β-arrestin mediated signal-
ing pathway [90–93]. Once internalized the virus undergoes a series of trafficking and
uncoating events before arriving at the nuclear compartment for transcription, genome
replication, and assembly [94]. Table 1 summarizes research studies regarding JCPyV
genotypes, receptors, and relevant publications.

Table 1. Summary of virus-receptor studies for rearranged JCPyV types. Abbreviations are as
follows: VLP, Virus-Like Particles; PsV, Pseudovirus; LSTc, LactoSeries Tetrasaccharide C; GAG,
GlycosAminoGlycans; 5-HT2, 5-HydroxyTryptamine 2; APMAP, Adipocyte Plasma Membrane-
Associated Protein. Type is synonymous with genotype.

Receptor Pentamer VLP PsV Virus

LSTc Type 1 [76], 3 [77] — Type 1, 3 [77] Type 1 [76,77], 3
[77]

Gangliosides Type 1, 3 [77] Type 1 [81], 2 &
3 [84], 3 [62]

Type 1 & 3 [77],
2 & 3 [62,84] Type 1, 3 [77]

GAGs — Type 2, 3 [84] Type 2, 3 [84] —

5HT2A/B/C — — Type 1 [90] Type 1 [88–90,95]

APMAP — — — Type 1 [85]

Overall, diversity in VP1 sequences between viral genotypes and dissimilar receptor
distribution on cell types studied could explain differential virus attachment factors but
more direct comparison research is needed to clarify differences, define interactions for
WT and sialic acid binding deficient viruses, and confirm requirements for productive
infection. Currently, it is clear and well-established JCPyV (WT) requires LSTc and 5-HT2Rs
for productive, receptor-dependent infection. However, this defined mechanism does not
explain how JCPyV bypasses CNS barriers, whether sialic-acid binding deficient mutant
viruses are infectious, or how JCPyV infects receptor-null cells like oligodendrocytes and
astrocytes.
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6. Extracellular Vesicles

Extracellular vesicles (EVs) are small, bilipid membrane-bound vesicles released from
cells [96]. EV is a broad term for all vesicles released including exosomes, microvesicles, se-
cretory autophagosomes, and apoptotic bodies [96–98]. EV sizes range from approximately
50 to 1000 nm and often have overlapping protein, lipid, and glycan profiles making it
difficult to separate and characterize specific EVs [96,98]. EVs were initially characterized
as trash released from the cell membranes until the mid-late 80 s when a group discovered
that transferrin was released in EVs from reticulocytes during maturation and termed
these exosomes [99,100]. EVs contain a myriad of proteins, lipids, and genetic material
and research has boomed since the discovery that cargo can be selectively packaged into
vesicles and functional in a target cell [96–98,101–103]. Interestingly, several non-enveloped
viruses have been shown to exploit EVs to aid in immune evasion, increase tissue tropism,
and facilitate en bloc infections [14–16,104–110]. There is also evidence enveloped viruses
use EV pathways to disseminate viral proteins to neighboring cells [110–121]. This novel
propagation of viral proteins and complete, infectious virus creates an obstacle to anti-viral
therapeutics and treatments.

7. JC Polyomavirus Receptor-Independent Infection

Recent work from our lab examined the role of extracellular vesicles (EVs) in JCPyV
(type 1) infection [15,16]. JCPyV was found enclosed within EVs and attached to the
exterior. These virus positive EVs are infectious, resistant to anti-JCPyV antisera, and
can infect target cells in a virus receptor-independent manner [15,16]. Importantly, JC
pseudoviruses (type 1) containing one of the more common sialic-acid binding deficient
mutations discovered in PML patients (L54F or S268F) were incapable of transducing naïve
cells whereas the EV-associated PsV could [15]. This implies these mutant viral particles
detected in patients may still spread by extracellular vesicles and contribute to disease.
This work suggests EVs could cloak JCPyV from immune recognition and increase cellular
tropism to receptor-lacking cells like oligodendrocytes and astrocytes.

8. JC Polyomavirus(+) Extracellular Vesicle Dissemination to the Brain Parenchyma

Overcoming either the blood-brain barrier (BBB) or the blood-cerebral spinal fluid
barrier (BCSFB) to infect the brain parenchyma is important to understanding JCPyV
disease progression. One hypothesis centers around bone marrow-derived cells. There is
evidence JCPyV can persist in bone marrow and infect bone marrow-derived cells such
as B cells [52,53,122]. B cells contain reassortment machinery and may provide means for
JCPyV genome rearrangement and transport from sites of persistence to the central nervous
system [38,52]. Immune cells are also known to monitor and interact with the central
nervous system at the CNS barriers like the choroid plexus, BBB, and dura mater [123].
Other potential sites of viral persistence can include tonsils [50,53]. This site greatly reduces
potential travel distance for JCPyV neuroinvasion. Underlying disease conditions (i.e.,
uncontrolled HIV or MS) also disrupt the BBB and might easily allow JCPyV infection of
brain parenchyma by a hematogenous route [38,51].

Our lab presented another possibility via the BCSFB and extracellular vesicles [16,18,39].
The choroid plexus composes the BCSFB and is the major mediator of communication
between the blood and cerebral spinal fluid [124]. We identified that primary choroid
plexus epithelial cells are permissive to JCPyV in vitro and can produce JCPyV(+) EVs
that are efficiently internalized by SVG-A cells via clathrin-dependent endocytosis or
macropinocytosis [16,125]. We hypothesize the proximal position of the choroid plexus
to ependymal cells and the brain parenchyma gives it optimal potential for JCPyV(+)
EV dissemination into the brain (depicted in Figure 3) [124,126]. In fact, though exact
mechanisms are still unclear EVs have already been demonstrated to cross the blood-CNS
barriers into brain parenchyma [126–128]. In support of this idea the choroid plexus was
recently shown to harbor JCPyV in patients [129]. JCPyV has also been detected associated
with EVs purified from PML patient plasma, serum, and CSF [130]. This presents another
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possible, non-mutually exclusive mode of viral dissemination in the CNS. Understanding
how virus associated EVs are created may provide potential target(s) for PML prevention.
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productively infected by JCPyV and package virus into EVs for dissemination to the CSF. JCPYV(+)
EVs can travel to/through the ependymal layer (undefined) and invade the brain parenchyma
to infect astrocytes and oligodendrocytes. Schematic created with BioRender.com (accessed on
18 April 2022).

9. Biogenesis of Extracellular Vesicles

Each type of EV is derived from a specific pathway within the host cell and has
an assortment of proteins critical to formation, trafficking, fusion, and release [96]. Exo-
somes are typically the smallest EVs, derived from endosomes that undergo intralumenal
vesicular budding to create multivesicular bodies (MVBs) [131,132]. MVBs are targeted
for degradation or fusion with the plasma membrane, releasing the internal vesicles to
the external space (now termed exosomes) [133]. Exosome production relies on several,
non-mutually exclusive production pathways. A well-known and often-studied pathway
involves sphingomyelinases [134–136]. Neutral sphingomyelinase 2 (nSMase2) acts at
endosomal membranes to cleave sphingomyelin to ceramide and phospholipids [134].
Ceramide molecules packed together in a membranecan induce negative membrane curva-
ture [137]. Exosomes can also rely on tetraspanins that bind and interact with one another
and other proteins [138,139]. These interactions form tetraspanin-enriched microdomains
implicated in negative membrane curvature and cargo loading [138–142]. Another exosome
biogenesis pathway includes endosomal sorting complexes required for transport (ESCRT)
proteins [143–147]. This series of five protein complexes is recruited sequentially to sort
and load cargo, induce membrane curvature, force membrane pinching, and release a
vesicle [146,147]. ESCRT proteins are also implicated in microvesicle budding [148,149].
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Autophagosomes are formed by a complex network of proteins that induce phagophore
formation and maturation. The unconventional secretion pathway targets autophagosomes
for the plasma membrane [150–153]. Proteins specific to secretory autophagosomes are
crucial in targeting and mediating fusion with the plasma membrane [154–160]. Autophago-
somes can also merge with MVBs to create an amphisome that is either targeted for degrada-
tion or fusion with the plasma membrane to release the internal contents [152,153,158–161].
Interestingly, many of these pathways and proteins are exploited by enveloped and nonen-
veloped viruses alike. Figure 4 depicts some potential virus-EV biogenesis methods.

Viruses 2022, 14, x FOR PEER REVIEW 8 of 17 
 

 

Autophagosomes are formed by a complex network of proteins that induce phago-
phore formation and maturation. The unconventional secretion pathway targets autoph-
agosomes for the plasma membrane [150–153]. Proteins specific to secretory autophago-
somes are crucial in targeting and mediating fusion with the plasma membrane [154–160]. 
Autophagosomes can also merge with MVBs to create an amphisome that is either tar-
geted for degradation or fusion with the plasma membrane to release the internal contents 
[152,153,158–161]. Interestingly, many of these pathways and proteins are exploited by 
enveloped and nonenveloped viruses alike. Figure 4 depicts some potential virus-EV bio-
genesis methods. 

 
Figure 4. Potential JCPyV(+) EV biogenesis pathways. Exosomes, microvesicles, and secretory au-
tophagosomes and their general biogenesis pathways are shown. Exosomes are produced by three 
non-mutually exclusive methods using (1) nSMase2 (top panel), (2) tetraspanins (middle panel), or 
(3) ESCRT-related proteins (bottom panel) to induce negative membrane curvature and produce 
multivesicular bodies (MVBs). MVBs can be directed for fusion with the plasma membrane by pro-
teins (including RAB27A), for degradation, or for fusion with an autophagosome, producing an 
amphisome (middle). Amphisomes may be targeted for secretion by RAB27A [158–160]. Autopha-
gosomes can be directed for secretion by the actions of RAB8A or GRASP65 (mechanism not well-
defined) or targeted for degradation [155–158]. Nuclear escape for JCPyV is unknown. Schematic 
created with BioRender.com (accessed on 18 April 2022). 

10. Virus-EV Biogenesis Pathways 
Enveloped viruses regularly use an assortment of EV related proteins to help in pack-

aging, budding, and targeting during their life cycles [110]. For instance, several ESCRT 
related proteins are implicated in HIV budding and cytomegalovirus maturation [162–
164], tetraspanins play a role in HIV, herpes simplex virus-1, and influenza virus infec-
tions [113,165,166], and β-coronaviruses like SARS-CoV-2 were recently shown to use se-
cretory autophagy pathways for cellular escape [115]. Importantly, there are instances of 
viral proteins, mRNA, and microRNAs disseminated in EVs to uninfected cells 

Figure 4. Potential JCPyV(+) EV biogenesis pathways. Exosomes, microvesicles, and secretory
autophagosomes and their general biogenesis pathways are shown. Exosomes are produced by three
non-mutually exclusive methods using (1) nSMase2 (top panel), (2) tetraspanins (middle panel), or
(3) ESCRT-related proteins (bottom panel) to induce negative membrane curvature and produce mul-
tivesicular bodies (MVBs). MVBs can be directed for fusion with the plasma membrane by proteins
(including RAB27A), for degradation, or for fusion with an autophagosome, producing an amphi-
some (middle). Amphisomes may be targeted for secretion by RAB27A [158–160]. Autophagosomes
can be directed for secretion by the actions of RAB8A or GRASP65 (mechanism not well-defined) or
targeted for degradation [155–158]. Nuclear escape for JCPyV is unknown. Schematic created with
BioRender.com (accessed on 18 April 2022).

10. Virus-EV Biogenesis Pathways

Enveloped viruses regularly use an assortment of EV related proteins to help in
packaging, budding, and targeting during their life cycles [110]. For instance, several
ESCRT related proteins are implicated in HIV budding and cytomegalovirus matura-
tion [162–164], tetraspanins play a role in HIV, herpes simplex virus-1, and influenza
virus infections [113,165,166], and β-coronaviruses like SARS-CoV-2 were recently shown
to use secretory autophagy pathways for cellular escape [115]. Importantly, there are
instances of viral proteins, mRNA, and microRNAs disseminated in EVs to uninfected
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cells [110,116,118–120,167–171]. Many research groups are pushing to understand which
EV biogenesis pathways are exploited by viruses and how viral cargo is packaged into EVs.

Our lab identified that SVG-A released JCPyV(+) EVs are heterogeneous populations
including exosomes and secretory autophagosomes. Using chemical and genetic methods,
we demonstrated that JCPyV(+) EVs were dependent on nSMase2, tetraspanins CD9 and
CD81, small GTPases RAB27A and RAB8A, and the Golgi restacking protein 65 (GRASP65,
also known as GoRASP1). Chemical inhibition or genetic depletion of nSMase2 reduced
JCPyV spread. Knockdown or knockout nSMase2 cells decreased EV-mediated infection
compared to control cells with no change to internalization by target cells. Knockdown of
CD9 or CD81 similarly reduced viral spread, decreased EV-mediated infection, but inter-
nalization by target cells was unaffected. Knockdown of RAB8A, RAB27A, or GRASP65
reduced viral spread and decreased infectious EV production without differential uptake
compared to controls, suggesting secreted autophagosomes contribute to the JCPyV(+) EV
population [172]. Figure 5 outlines the proteins and their associated EV pathway.
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autophagosomes directed by RAB8A and/or GRASP65 produce JCPyV(+) EVs. RAB27A is important
in JCPyV(+) EV biogenesis, either in targeting amphisomes and/or MVBs.

Interestingly, seven ESCRT-related proteins were tested independently, none of which
demonstrated an important role in EV-mediated infection. In fact, it seemed the full com-
plement of ESCRT proteins did more to control JCPyV infection. Finally, it was noted that
depletion of single proteins from any pathway did not alter virus-EV spatial relationships
or size distribution of released EVs [172]. It is crucial to recognize that despite the current
findings across the literature, many of these proteins may act across multiple EV biogenesis
and secretion pathways. This implies there are multiple pathways JCPyV exploits for
virus-EV biogenesis that may include complementary and/or compensatory mechanisms.

11. JCPyV and EV Purification and Characterization Methods

JC polyomavirus can spread as free virus, EV-associated, or cell-to-cell [15,16,39,173].
With virus receptor-dependent and -independent mechanisms possible, careful purification
methods are required to ensure alignment between expectations and realities of viral entry
research. JCPyV purification must be centered around complete removal of contaminating
lipids, proteins, and DNA from the cell lysate. Typical methods include some combination
of detergents, sonication, neuraminidase cleavage of sialic acid-attached glycolipids and/or
glycoproteins, DNase digestion, lipid extraction(s), concentration through sucrose, and final
separation through a gradient like iodixanol or cesium chloride [174–176]. It is important
to note that concentrating through sucrose may remove some impurities, but extracellular
vesicles and virus both pellet through a typical sucrose step [177,178]. Gradients can
separate virus particles from EVs, but incomplete purification and separation may lead to
misinterpreted results. Important characterization methods include electron microscopy,
genome sequencing, and titer evaluation.

There are many EV purification methods and choosing the right method is challenging.
Optimal EV methods sacrifice yield, purity, cost, and/or time depending on the sam-
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ple [179]. Basic EV purification is based on either density or size. Common EV separation
techniques include differential centrifugation, size exclusion chromatography, filtration,
flow-field filtration, gradients, or a combination of methods [178–182]. Many labs use
differential centrifugation to separate different sized EVs for ease of use, low cost, increased
sample volume processing, and high yield, but sacrifice purity and time [180]. Samples
are subjected to increasing centrifugal forces to clear debris and separate apoptotic bodies,
large EVs, and small EVs [178]. After EV purification the sample must be characterized
by several methods to confirm appropriate size distributions, concentration, morphology,
and presence of EV markers and absence of contaminants [181,182]. Methods include
nanoparticle tracking analysis, electron microscopy, and Western blot analysis [178,181,182].
Omics applications (e.g., proteomics, transcriptomics, metabolomics, and lipidomics) and
functional studies help define content of EVs and functionality in other cells [181–185].

While JCPyV is typically purified from whole cell lysate and EVs from supernatant,
there is still overlap of vesicle associated virus in lysate and free virus in the supernatant.
With current technology, separation of virus and EVs can be cumbersome, imperfect, and
result in low yield [186]. Overall, until new separation and purification methods are created
and accessible, careful management and characterization of samples paired with clever
functional studies help demonstrate validity of subsequent experimental results.

12. Discussion

Research has conclusively demonstrated JCPyV uses both virus receptor dependent
and independent entry mechanisms. Receptor dependent entry requires the sialic acid
containing attachment receptor LSTc followed by entry receptor(s) 5-HT2R. While recent
work points to other potential receptors that may contribute to infection for different
virus genotype backgrounds and/or cell types (i.e., types 1, 2, or 3 and gangliosides vs.
APMAP), further work is needed to define these additional virus-receptor interactions and
determine relevance to disease progression. Extracellular vesicles mediate a novel virus
receptor-independent mechanism of JCPyV spread. EVs may be key to immune evasion,
neuroinvasion, and infection of virus receptor-lacking oligodendrocytes and astrocytes.
Further work examining nuclear escape or cargo loading mechanisms will be key to fully
understanding JCPyV pathogenesis and may reveal druggable viral targets that would
prevent EV association and decrease infectious JCPyV(+) EV production from host cells.
It is also important to look at other virus models and understand how prevalent this
potential viral dissemination mechanism might be. It was recently demonstrated that
BK polyomavirus are found inside EVs and are internalized independently of sialic acid,
suggesting BKPyV(+) EVs can also infect independently of viral receptors [14]. Interestingly,
BKPyV EV-mediated infection was neutralized by patient-derived anti-BKPyV serum [14].
The work from our lab used rabbit-derived anti-JCPyV antisera, so it will be interesting
to evaluate if JCPyV(+) EVs are neutralized by patient-derived serum and/or antibodies.
Further research exploring potential associations between viruses and extracellular vesicles
and the effect on virus propagation in vivo will be important to understanding the overall
impact of EVs.

Importantly, the recognition that JCPyV (and other viruses) may undergo virus
receptor-dependent and -independent infection points to a need for meticulous purification
methods. Virus-specific purification methods are vital to understanding and appropriately
interpreting virus-host interactions such as receptor binding, infectious entry, and early
trafficking. At the same time, we must still consider the EV associated viral population
that may play important roles in vivo [90,187]. JCPyV can exist in both nonenveloped and
quasi-enveloped forms within a host and ignoring either population of JCPyV reduces the
chances of discovering effective therapeutics for preventing and treating JCPyV-induced dis-
ease [130,188]. Overall, the association of nonenveloped viruses and extracellular vesicles
blurs the line between enveloped vs. nonenveloped classification. Defining the interplay
between JCPyV and EVs is central to appreciating viral pathogenesis, disease progression,
and development of therapeutics.
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