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Abstract: Disposition of amyloid β (Aβ) into the perivascular space of the cerebral cortex has been
recently suggested as a major source of its clearance, and its disturbance may be involved in the
pathogenesis of cerebral amyloid angiopathy and Alzheimer’s disease. Here, we explored the in vivo
dynamics of Aβ in the perivascular space of anesthetized mice. Live images were obtained with two-
photon microscopy through a closed cranial window. Either fluorescent-dye-labeled Aβ oligomers
prepared freshly or Aβ fibrils after 6 days of incubation at 37 ◦C were placed over the cerebral cortex.
Accumulation of Aβ was observed in the localized perivascular space of the penetrating arteries
and veins. Transportation of the accumulated Aβ along the vessels was slow and associated with
changes in shape. Aβ oligomers were transported smoothly and separately, whereas Aβ fibrils
formed a mass and moved slowly. Parenchymal accumulation of Aβ oligomers, as well as Aβ fibrils
along capillaries, increased gradually. In conclusion, we confirmed Aβ transportation between the
cortical surface and the deeper parenchyma through the perivascular space that may be affected by
the peptide polymerization. Facilitation of Aβ excretion through the system can be a key target in
treating Alzheimer’s disease.
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1. Introduction

Amyloid β (Aβ), a 40/42 amino acid peptide, is a major component of senile plaque,
which is one of the pathological features of Alzheimer’s disease (AD) [1]. Abnormal ac-
cumulation of Aβ in the cerebral cortex is regarded as an initial event followed by tau
accumulation in the development of AD [1–3]. The possible pathways of Aβ efflux include
transcytosis through the blood–brain barrier, discharge into the perivascular space, and en-
zymatic degradation in microglia or astrocytes, although the details are still unknown [4,5].
Recently, “the glymphatic system” was proposed as a lymphatic system in the brain that
may excrete large molecules in the brain parenchyma into the cerebral spinal fluid [6]. In
support of this model, Illif et al. reported that Aβ1–40, which was labeled fluorescently or
with radioisotopes and was injected into the striatum, was observed around capillaries
and drainage veins [6]. The clearance of Aβ was decreased in AQP4 null mice, suggesting
that perivascular water-flow is involved. However, the physiological roles and detailed
mechanisms of this system still hypothetically lack dynamic data on in vivo flow [7,8].

In contrast, deposits of Aβ in the penetrating arteries and leptomeningeal arteries are
pathologically found in cases with cerebral amyloid angiopathy (CAA) [9]. CAA is an age-
related disease most often found with AD [10]. The Aβ peptide is known to be generated
by sequential cleavage of the amyloid precursor protein in neurons in the cerebral cortex
and may be transported to the penetrating arteries and leptomeningeal arteries [10]. Unlike
the senile plaques of AD, the deposits are dominated by the shorter peptide fragments,
suggesting the difference in deposition rate and transportation among peptides [11].
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In the present study, we evaluated the dynamics of Aβ oligomers or fibrils in vivo in
mice using two-photon microscopy.

2. Materials and Methods
2.1. Animal Preparation

All experiments described in this study were approved by the Osaka City University
Ethics Committee on Animal Resources (Protocol #21030). The animal experimentation
was conducted following the protocol and ARRIVE criteria.

Tie2 is a receptor of angiopoietins 1 and 2 and is expressed specifically in all endothelial
cells throughout development and in adults [12,13]. Female and male mice at the ages of
8 and 12 weeks expressing green fluorescent protein (GFP) at the vascular endothelial cell
Tie2 (STOCK Tg [Tie2-GFP] 287 Sato/J, the Jackson Laboratory, Bar Harbor, ME, USA) were
used to detect Aβ in the perivascular space. Unless otherwise noted, C57BL/6 mice (CLEA
Japan, Inc., Tokyo, Japan) were used. Mice were maintained on a 12 h light/dark cycle with
humidity and temperature controlled at normal levels and allowed food (CLEA Rodent
Diet CE-2) and water ad libitum.

In all experiments, animals were kept anesthetized with 1.5 to 2.0% isoflurane inhala-
tion. After incising the scalp and exposing the skull, a 4 mm diameter cranial window was
installed using a dental drill. A solution of Aβ (oligomers or fibrils), dextran, or both was
applied topically on the brain surface. The cranial window was closed with a cover glass,
and repeated imaging began 30 min after the application of the solution.

In all experiments described below, animals were excluded from the experiments only
when the preparation was not good enough for the observation. For experiments requiring
statistical analysis, at least 5 animals were employed (detailed number for each experiment
was described in the Section 2).

2.2. Aβ and Dextran Solutions

HiLyte Fluor 647-labeled Aβ1–40 was obtained from AnaSpec (San Jose, CA, USA)
and kept frozen at −20 ◦C. Aβ solution was prepared on ice, first with 0.1% NH4OH to
1 mM and then with phosphate-buffered solution (PBS) to a final concentration of 100 µM.
After preparation, the solution was aliquoted in 10 µL portions on ice and immediately
frozen at −80 ◦C as a sample for the Aβ oligomer. The Aβ fibril samples were prepared
by shaking the Aβ solution at 37 ◦C for 6 days at 1000 rpm. TRITC-dextran (40 kD), FITC-
dextran (40 kD) (TdB Labs, Ultuna, Sweden), and TRITC-dextran (4.4 kD) (Sigma–Aldrich,
St. Louis, MO, USA) were dissolved in PBS to 10–100 µM.

Fibril formation of Aβ1–40 was confirmed with transmission electron microscopy
(TEM). The solution was dropped on Formvar/Cu grids with mesh 200 (VECO GRID H200,
VECO, Eerbeek, The Netherlands). After 3 min, the grids were cleaned in water for 60 s and
then negatively stained with 1% (w/v) uranyl acetate for 60 s. Images were taken with TEM
(Talos F200CG2, ThermoFisher Scientific, Waltham, MA, USA) at an acceleration voltage
of 80 kV.

2.3. In Vivo Observation with Two-Photon Microscopy

The dynamic movement of Aβ oligomers/fibrils was observed with a two-photon laser
microscope (A1RMP+1080, Nikon, Tokyo, Japan) equipped with a pulse laser, Chameleon
Vision II (Coherent, Santa Clara, CA, USA), of which the pulse width was 140 fs and the
repetition rate was 80 MHz. Mice were immobilized on the stage below the microscope
under isoflurane anesthesia. Fluorescent images were obtained with green (center wave-
length 525 nm, bandwidth 50 nm) and pink (center wavelength 629 nm, bandwidth 56 nm)
bandpass filters with an excitation wavelength of 920 nm.

Dynamic three-dimensional images were taken at 30 min intervals from 30 min to
180 min after the amyloid solution was placed. Three-dimensional images were recon-
structed with NIS-Elements software (Nikon, Tokyo, Japan).
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Capillary accumulation of Aβ oligomers/fibrils was measured at depths of 50, 100,
and 150 µm from the cortical surface. The number of Aβ-positive capillaries was counted
in a 509 µm square and statistically analyzed following the methods described below (n = 5
for each condition). To elucidate specific Aβ dynamics in the cerebral parenchyma, the
accumulation of dextran of different sizes (4.4 kD and 40 kD) was also measured.

2.4. Statistical Analysis

The number of Aβ-positive capillaries was counted at depths of 50, 100, and 150 µm
at 30 min intervals from 30 min to 180 min (n = 5 for each condition). Normality of the
data obtained for each condition was evaluated with a Shapiro–Wilk test using IBM-SPSS
(Tokyo, Japan). After confirming normal distribution in all datasets, two-way repeated
measures analysis of variance was used to evaluate time-dependent accumulation of Aβ

together with effect of observation depths.

3. Results
3.1. Fibril Formation of Aβ1–40

SDS–PAGE of Aβ1–40 solution immediately after being prepared with silver staining
on ice showed strong bands at MW 10–16 kD, suggesting a low number of oligomers,
especially monomers, dimers, and trimers (Figure 1A(a)). TEM of the same solution
showed granular structures of 9.0–13.8 nm in diameter (Figure 1B). In contrast, SDS–PAGE
of the solution after incubation for 144 h showed a strong band at MW 250 kD or higher
(Figure 1A(b)). TEM of the solution showed a fibrous structure approximately 25 nm in
diameter (Figure 1C).
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Figure 1. Fibril formation of Aβ1–40. (A). SDS–PAGE of Aβ1–40 solution immediately after being pre-

pared with silver staining on ice (a) or solution after incubation for 144 h (b). Fresh sample (a) 
Figure 1. Fibril formation of Aβ1–40. (A). SDS–PAGE of Aβ1–40 solution immediately after being
prepared with silver staining on ice (a) or solution after incubation for 144 h (b). Fresh sample (a)
showed strong bands at MW 10–16 kD, suggesting a low number of oligomers, especially monomers,
dimers, and trimers, whereas incubated sample (b) showed a strong band at MW 250 kD or higher.
TEM of the fresh solution showed granular structures of 9.0–13.8 nm in diameter (B), whereas that of
the incubated solution showed a fibrous structure of approximately 25 nm in diameter (C). Scale bar:
(B) 100 nm; (C) 500 nm.
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3.2. Perivascular Distribution of Aβ1–40

Aβ1–40 oligomer solution labeled with HiLyte Fluor 647 was placed on the cortical
surface (n = 5). After 60 min, Aβ was found around penetrating arteries and veins in a
Tie2-GFP mouse (Figure 2A,B). Most notably, Aβ accumulated at only part of the vessel
wall, not at the entire circumference, in all vessels observed. Capillary accumulation of Aβ

was also noticed, suggesting parenchymal transportation of Aβ, as there is no perivascular
space around the capillary.
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Figure 2. Distribution of tracers transported from the cortical surface. (A,B): The Hilyte Fluor 647-
labeled Aβ1–40 oligomer was found around a penetrating artery (A(a)), a penetrating vein (A(b)),
and a capillary (A(c)) in a Tie2-GFP mouse. (B(a–c)) are enlarged images of red squares (A(a–c)),
respectively. Notably, Aβ accumulated at only part of the vessel wall, not at the entire circumference,
in all vessels observed. (D) enlarged from a red square in (C): FITC-dextran of 40 kD distributed over
the entire circumference of a penetrating artery as well as in the parenchyma (D(b)). A double barrel
was also observed (arrowhead). In contrast, the accumulation of Aβ oligomer was localized to part of
the circumference (D(c)), which is evident in a merged image (D(a)). (F) enlarged from a red square
in (E): Massive accumulation of Aβ fibrils was noticed at a penetrating vein (F(c)), whereas 40 kD
dextran was distributed more widely (F(a,b)), a merged image of (F(b,c)). Scale bar: (A,C,E) 100 µm;
(B,D,F) 10 µm.

Coadministration of Aβ1-40 oligomers and 40 kD dextran (n = 6) showed that Aβ

accumulation was localized to part of the circumferential perivascular space, whereas
dextran was distributed over the entire circumference, including the double barrel structure,
as well as in the cortical parenchyma (Figure 2C,D). Compared to Aβ1–40 oligomers, Aβ

fibrils accumulated more locally in a large mass (n = 12) (Figure 2E,F).
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3.3. Dynamic Perivascular Transportation of Aβ

As shown in Figure 3A,C, accumulated Aβ oligomers/fibrils moved along the pene-
trating vessels in the perivascular space. The speed of its transportation was mostly very
slow, less than 10 µm/min. In addition, accumulated Aβ changed its shape and size,
suggesting assembly and disassembly of Aβ molecules to the mass over time. Separation
and fusion of the accumulated Aβ mass may also suggest loose binding of the masses. In
addition, transportation along the penetrating vessels was slower, and the transformation
of its shape was less prominent in fibrils than in oligomers (Figure 3A,C).
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Figure 3. Dynamic perivascular transportation of HiLyte Fluor 647-labeled Aβ1–40 oligomers (A,B)
and fibrils (C,D). The perivascular distribution of Aβ was captured in horizontal planes (B,D) and re-
constructed in 3 dimensions every 30 min (A,C). FITC-labeled dextran at 40 kD was distributed in the
entire circumference of penetrating vessels, whereas Aβ accumulated in only localized perivascular
spaces (B,D). The accumulated mass of Aβ oligomers moved around the vessel wall and separated
(A). Aβ fibrils formed a large mass and elongated in the direction of a penetrating vessel (C). Scale bar:
(B,D) 10 µm. Three-dimensional images and dynamic motion are shown in Supplementary Videos.

3.4. Capillary Accumulation of Aβ in the Parenchyma

As shown in Figure 4, both Aβ oligomers and fibrils accumulated progressively in
parenchymal capillaries. In contrast with the planar distribution of Aβ in the penetrating
vessels, Aβ accumulated in a spot along the capillaries. Although progressive accumulation
was significant both in the oligomers (p < 0.001) as well as in the fibrils (p < 0.05), the speed
of accumulation was generally faster in oligomers than in fibrils (Figure 4). Effect of
observation depths in the two-way ANOVA was not statistically significant, suggesting
that the Aβ accumulation measured at three depths was not different between them.
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Figure 4. Both Aβ oligomers (A) and fibrils (B) accumulated progressively in parenchymal capillaries.
The number of capillaries with Aβ accumulation, indicated with squares in Panels (a,b), in a 509 µm
square was counted at depths of 50, 100, and 150 µm every 30 min from 30 min (a) to 150 min (b). In
contrast with the planar distribution of Aβ in the penetrating vessels, Aβ accumulated in a spot along
the capillaries. Progressive accumulation was significant both in the oligomers (p < 0.001) and in the
fibrils (p < 0.05) (A(c,d),B(c,d)). (A(c),B(c)) are box-and-whisker plots of data shown in (A(d),B(d)),
respectively. The speed of accumulation was faster in oligomers than in fibrils. The Aβ accumulation
measured at 3 depths was not statistically different between them. Scale bar: (A) 100 µm.

3.5. Perivascular Flow of Large Dextran

The dynamic transportation of TRITC-dextran at 4.4 kD (n = 6) and 40 kD (n = 6) was
measured in a Tie2-GFP mouse (Figure 5). Progressive accumulation of 40 kD dextran in
the perivascular space was observed (B), whereas 4.4 kD dextran reached a plateau within
30 min following topical application (A).
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(B), whereas 4.4 kD dextran reached a plateau within 30 min after topical application (A) ((a) 30 min,
(b) 90 min, (c) 120 min after the dextran administration). Fluorescent intensity of squares in
(A(a)),(B(a)) was periodically measured ((C,D), respectively). Scale bar: (A(a),B(a)) 100 µm.

4. Discussion

In the present study, we demonstrated that Aβ placed on the cortical surface was
slowly transported to the deeper parenchyma through the perivascular space. These re-
sults suggest that Aβ peptide, generated by sequential cleavage of the amyloid precursor
protein in neurons in the cerebral cortex, can be transported to the penetrating arteries
and leptomeningeal arteries. Facilitation of Aβ excretion through the system may pre-
vent oligomerization of Aβ or formation of senile plaque in the cortex, preventing the
development of AD. Until now, inhibition of Aβ production by γ-secretase inhibitors was
unsuccessful [14], whereas therapies utilizing antibodies to Aβ have been only partially
successful [15]. As oligomerization of Aβ is now regarded as the first step in AD develop-
ment, enhanced wash-out of Aβ from the cerebral cortex through the perivascular space
might reduce toxicity of the Aβ [16].

Compared to 40 kD dextran, which was distributed in the entire circumference of the
vessels, Aβ was found to be localized to part of the perivascular space. Previous reports
suggested that Aβ may be transported via the perivascular space without clear images
demonstrating a detailed distribution [6,17]. The present study is the first to show with live
imaging that Aβ may locally accumulate in the perivascular space of both the penetrating
artery and vein.

We also demonstrated that the accumulated Aβ mass moves along the penetrating
vessels, changing its shape with separation and fusion. The speed of Aβ mass transportation
is very slow and can sometimes even move backward. Aβ is known to polymerize easily
with alterations in rheological characteristics [18]. The assembly and disassembly of Aβ

molecules may be involved in the change in Aβ mass form.
In the present study, the direction of Aβ transportation was not steady, with both

penetrating arteries and veins involving Aβ accumulation from the surface. The direction
of perivascular flow is controversial; some suggest arterial influx and venous efflux [6] and
others suggest efflux in both arteries and veins [19].

The difference in the direction and speed of perivascular flow and in the detailed
structural pathway may depend on the molecules used in the experiments, i.e., dextran [6],
ovalbumin [6], and QDot655 [20]. Their molecular weight is 0.58 to 45 kD without the capa-
bility of polymerization. In the present study, dextran at 4.4 kD and 40 kD was compared to
Aβ, showing that small tracers can diffuse through the parenchyma. At the same time, large
molecules may be transported from the subarachnoid space through the circumferential
perivascular space along penetrating vessels to the parenchyma. Polymerization with high
shear stress may involve the difference in transportation and distribution of Aβ and other
tracers. The larger mass and slower transportation in Aβ fibrils than in Aβ oligomers in
the present study may support this hypothesis.

We also demonstrated that Aβ increasingly accumulated around the capillary in the
cortical parenchyma. Since capillaries have no perivascular space, the result may indicate
that Aβ may be transported from the perivascular space to the parenchyma, indicating that
the reversed flow may be involved in the physiological clearance of Aβ.

The limitations of the present study include the following: (1) general anesthesia with
isoflurane, which is known to increase intracranial pressure and suppress perivascular
transportation [21], was used, (2) transportation of Aβ from the parenchyma to the cortical
surface was not assessed, (3) the initial period immediately after Aβ application was not
evaluated, (4) labeling with fluorescent dye may affect the physical character of Aβ and
(5) Aβ1-42 compared to Aβ1–40 may behave differently. Although none of these limitations
affected the significance of the present study, further studies are warranted.

In conclusion, the present study demonstrated that Aβ placed on the cortical surface
was slowly transported to the deeper parenchyma through the perivascular space. The
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first-ever visualization of Aβ transportation indicates that loose polymerization may affect
its transportation.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijms23126422/s1.
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