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ABSTRACT It is hypothesized that the depletion of microbial members responsible
for converting primary bile acids into secondary bile acids reduces resistance to Clos-
tridium difficile colonization. To date, inhibition of C. difficile growth by secondary
bile acids has only been shown in vitro. Using targeted bile acid metabolomics, we
sought to define the physiologically relevant concentrations of primary and second-
ary bile acids present in the murine small and large intestinal tracts and how these
impact C. difficile dynamics. We treated mice with a variety of antibiotics to create
distinct microbial and metabolic (bile acid) environments and directly tested their
ability to support or inhibit C. difficile spore germination and outgrowth ex vivo. Sus-
ceptibility to C. difficile in the large intestine was observed only after specific broad-
spectrum antibiotic treatment (cefoperazone, clindamycin, and vancomycin) and was
accompanied by a significant loss of secondary bile acids (deoxycholate, lithocholate,
ursodeoxycholate, hyodeoxycholate, and �-muricholate). These changes were corre-
lated to the loss of specific microbiota community members, the Lachnospiraceae
and Ruminococcaceae families. Additionally, physiological concentrations of second-
ary bile acids present during C. difficile resistance were able to inhibit spore germi-
nation and outgrowth in vitro. Interestingly, we observed that C. difficile spore ger-
mination and outgrowth were supported constantly in murine small intestinal
content regardless of antibiotic perturbation, suggesting that targeting growth of
C. difficile will prove most important for future therapeutics and that antibiotic-
related changes are organ specific. Understanding how the gut microbiota regulates
bile acids throughout the intestine will aid the development of future therapies for
C. difficile infection and other metabolically relevant disorders such as obesity and
diabetes.

IMPORTANCE Antibiotics alter the gastrointestinal microbiota, allowing for Clos-
tridium difficile infection, which is a significant public health problem. Changes in the
structure of the gut microbiota alter the metabolome, specifically the production of
secondary bile acids. Specific bile acids are able to initiate C. difficile spore germina-
tion and also inhibit C. difficile growth in vitro, although no study to date has de-
fined physiologically relevant bile acids in the gastrointestinal tract. In this study, we
define the bile acids C. difficile spores encounter in the small and large intestines be-
fore and after various antibiotic treatments. Antibiotics that alter the gut microbiota
and deplete secondary bile acid production allow C. difficile colonization, represent-
ing a mechanism of colonization resistance. Multiple secondary bile acids in the
large intestine were able to inhibit C. difficile spore germination and growth at phys-
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iological concentrations and represent new targets to combat C. difficile in the large
intestine.

KEYWORDS: Clostridium difficile, bile acids, antibiotics, microbiota, colonization
resistance

Clostridium difficile infection (CDI) is a significant public health problem, associated
with increasing morbidity, mortality, and health care-related costs in the United

States and around the globe (1). Current treatment for patients with CDI includes the
antibiotics vancomycin and metronidazole; however, even after successful treatment,
this therapy is associated with more than 20% of cases relapsing (2–5). Even though
antibiotics are the first line of treatment, they are also key risk factors in the patho-
genesis of CDI (6, 7). Antibiotics alter the resident gut microbiota, decreasing resistance
against C. difficile colonization (8–10). However, the exact mechanism for colonization
resistance is still unknown.

By altering the gut microbiota, antibiotics ultimately change the gut metabolome
(11, 12), specifically the composition and concentration of bile acids (11, 13–15). Bile
acids are synthesized by hepatic enzymes from cholesterol and are important for
lipoprotein, glucose, drug, and energy metabolism (16, 17). Mice synthesize two
primary bile acids, cholate (CA) and �-muricholate (�MCA), whereas humans synthesize
CA and chendeoxycholate (CDCA) (18). Bile acids are further conjugated with taurine
and glycine (19). Once made in the liver, 95% of primary bile acids, both unconjugated
and conjugated, are absorbed in the terminal ileum and through the hepatic system
(16, 18). Primary bile acids that make it to the large intestine are biotransformed by
members of the gut microbiota via two enzymatic reactions, deconjugation and
dehydroxylation, into secondary bile acids, including �-muricholate (�MCA), hyode-
oxycholate (HDCA), ursodeoxycholate, (UDCA), lithocholate (LCA), and deoxycholate
(DCA) (16, 20, 21).

C. difficile is a spore-forming organism that requires specific bile acids for maximal
germination into a metabolically active vegetative cell, where it can grow to high cell
density and produce toxins (22–24). However, many microbially derived secondary bile
acids inhibit C. difficile growth (22, 25, 26). Specific bile acids are able to enhance or
inhibit C. difficile spore germination and vegetative cell outgrowth in vitro, and this is
thought to be important for colonization resistance against C. difficile. Wilson et al. first
suggested this concept in 1983, and more recent data support this hypothesis (25,
27–30). Multiple studies showing that restoration of secondary bile acids by members
of the gut microbiota help restore colonization resistance against C. difficile in humans
and in mice have been published recently (12, 28, 29). However, most studies defining
the dynamics between C. difficile and bile acids have been done in vitro, and it is not
clear how physiologically relevant this is in vivo (22). Based on our previous work and
work by others, we hypothesize that antibiotics associated with decreased colonization
resistance against C. difficile in the gut not only alter the gut microbiota but also
decrease secondary bile acid pools, allowing for C. difficile spore germination and
outgrowth. To test this hypothesis, we used a variety of antibiotics to create distinct
microbial and metabolic (bile acid) environments in the murine gut and directly tested
their ability to support or inhibit C. difficile spore germination and outgrowth ex vivo.

Here we show that susceptibility to C. difficile spore germination and outgrowth
occurs in murine small intestinal content (ileum) regardless of antibiotic perturbation.
Susceptibility to C. difficile spore germination and outgrowth in the large intestine
(cecum) was present only after specific broad-spectrum antibiotic treatment (cefopera-
zone, clindamycin, and vancomycin) and was accompanied by a loss of secondary bile
acids and significant changes to the gut microbiota. In vivo concentrations of secondary
bile acids present during C. difficile resistance were able to inhibit spore germination
and outgrowth in vitro. This study illustrates how antibiotics associated with increased
risk of CDI are able to alter the gut microbiota, which more importantly results in a loss
of secondary bile acid production, allowing for C. difficile colonization. Understanding
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how the gut microbiota regulates bile acids in both the small and large intestines is vital
for designing future therapies to restore colonization resistance against C. difficile and
for other metabolic disorders, including obesity and diabetes.

RESULTS
Small intestinal content supports C. difficile spore germination and outgrowth
before and after antibiotic treatment. Groups of C57BL/6 mice were treated with
various antibiotics (cefoperazone, clindamycin, vancomycin, metronidazole, and kana-
mycin), and some groups were allowed to recover off of the antibiotic cefoperazone for
up to 6 weeks in order to create different microbial and metabolic environments in the
small intestine (ileum) and the large intestine (cecum) (Fig. 1). At the time of necropsy
(depicted by red circles in Fig. 1), ileal and cecal contents were collected for ex vivo
C. difficile spore germination and outgrowth assays. After a 6-h incubation, C. difficile VPI
10463 spores (approximately 104 spores/ml) were able to germinate and initiate
outgrowth in ileal content from non-antibiotic-treated mice and almost all antibiotic-
treated mice (Fig. 2A). Spores added to phosphate-buffered saline (PBS [negative
control]) did not germinate or outgrow due to the lack of germinant present. The only
two metabolic environments from ileal content that were able to initiate germination
and outgrowth of spores but failed to reach significance were from mice allowed 3 and
4 weeks of recovery after cefoperazone.

Large intestinal content supports C. difficile spore germination and out-
growth only after antibiotic treatment. Unlike ileal content, C. difficile spores were
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FIG 1 Antibiotic treatment scheme and experimental design. (A) C57BL/6 mice were treated with various antibiotics that would result in different
microbial and metabolic environments. Red circles represent the time of necropsy for each group (n � 7 to 10 mice per group). (B) At the time of necropsy,
ileal and cecal contents were collected. Ex vivo germination and outgrowth of C. difficile spores were measured in paired ileal and cecal contents from
all treatment groups as well as by targeted bile acid analysis. In vitro spore germination and growth studies were done using relevant in vivo ileal and
cecal bile acid concentrations. Microbiome analysis was also done to understand the relationship between gut bacteria and bile acids using correlation
analysis. Abbreviations: noabx, no antibiotic; cef, cefoperazone; 1wk to 6wk, number of weeks off cefoperazone; 6wkC, 6 weeks off cefoperazone plus an
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only able to germinate and outgrow in cecal content from mice treated with specific
antibiotics (Fig. 2B). We previously demonstrated non-antibiotic-treated mouse cecum
does not support spore germination or outgrowth ex-vivo, whereas cefoperazone-
treated mouse cecum does (12, 31). The only metabolic environments that allowed for
significant spore germination and outgrowth in the mouse cecum ex vivo were directly
after cefoperazone, 1 and 2 weeks of recovery after cefoperazone, 6 weeks of recovery
after cefoperazone plus clindamycin, clindamycin alone, and vancomycin.

Resistance to C. difficile germination and outgrowth is associated with
secondary bile acids. Since bile acids are required for C. difficile spore germination
and are also able to inhibit outgrowth (22, 32), we defined the bile acids present in
paired ileal and cecal samples from ex vivo germination and outgrowth assays. Prior to
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FIG 2 C. difficile ex vivo spore germination and outgrowth assays in murine ileal and cecal contents. Ex vivo germination
and outgrowth of C. difficile spores were done in ileal (A) and cecal (B) contents collected from mice treated with various
antibiotics. C. difficile VPI 10463 spores inoculated into the ileal contents of mice treated with or without antibiotics
(noabx) allowed for spore germination and outgrowth after a 6-h period, whereas spores in non-antibiotic-treated cecal
content did not. Only specific antibiotic treatments (cefoperazone [cef], 1 or 2 weeks off cefoperazone, 6 weeks off
cefoperazone plus an intraperitoneal administration of clindamycin [6wkC], clindamycin [clinda], and vancomycin
[vanco]) in the cecum supported spore germination and outgrowth. Black bars represent spores only, and gray bars
represent spores and vegetative cells. Significance between groups was determined by Mann-Whitney nonparametric
t test. Error bars represent the mean � standard error of the mean (SEM) (*, P < 0.05; **, P < 0.01). n.s. not significant.

Theriot et al.

Volume 1 Issue 1 e00045-15 msphere.asm.org 4

msphere.asm.org


antibiotics, ileal content contains mostly primary bile acids, specifically taurine-
conjugated and unconjugated primary bile acids, with a lesser concentration of un-
conjugated secondary bile acids (Fig. 3A). Primary bile acids taurocholate (TCA) and
cholate (CA), both germinants of C. difficile spores, are always present at high concen-
trations in the ileum (average concentrations in vivo, TCA, 0.03%, and CA, 0.05%). This
is in contrast to the cecum, where unconjugated secondary bile acids make up the
majority of bile acids prior to antibiotics (Fig. 3B). Antibiotic treatments that supported
C. difficile spore germination and outgrowth ex vivo in Fig. 2B (directly after cefopera-
zone, 1 and 2 weeks of recovery after cefoperazone, 6 weeks of recovery after
cefoperazone plus clindamycin, clindamycin alone, and vancomycin) resulted in signif-
icantly more TCA and less secondary bile acids in the cecum (Fig. 3B and susceptible in
panel C; see Fig. S1 and S2 in the supplemental material). Murine cecal contents that
did not support C. difficile spore germination and outgrowth are highlighted in the
black boxes in Fig. 3B and are associated with an increase in unconjugated secondary
bile acids (resistant in Fig. 3C) (average concentrations in vivo, �MCA, 0.004%, HDCA,
0.002%, UDCA, 0.004%, LCA, 0.001%, and DCA, 0.023%).

We previously demonstrated using untargeted metabolomics that directly after
cefoperazone treatment there was a significant decrease in unconjugated secondary
bile acids in the murine cecum, and 6 weeks later, the levels returned to baseline or
prior to antibiotic treatment (12). Here we show using a more sensitive targeted bile
acid assay that secondary bile acids start to return to baseline levels within 2 weeks of
recovery of cefoperazone, and by 6 weeks of recovery, they return to baseline levels
(see Fig. S3 in the supplemental material).

Secondary bile acids associated with resistance to C. difficile inhibit spore
germination. To define the relationship between relevant in vivo levels of secondary

bile acids and colonization resistance to C. difficile in Fig. 2, we tested the ability of these
bile acids to inhibit or enhance the first step of C. difficile colonization, spore germi-
nation. Previous studies have shown TCA is required for maximal spore germination,
and chendeoxycholate (CDCA) is able to inhibit this interaction (26). Figure 4A shows
maximal spore germination with TCA (0.1%) alone and significant inhibition of spore
germination with the addition of CDCA (0.04%). Since most bile acids are soluble in
ethanol (�MCA, HDCA, UDCA, and LCA) a positive control of TCA made with ethanol
was used for these comparisons. Secondary bile acids that significantly interfered with
TCA-mediated spore germination in a concentration-dependent manner were �MCA
(0.001% and 0.004%) and LCA (0.001% and 0.01%), whereas HDCA (0.0001% and
0.001%) enhanced spore germination at lower concentrations.

Since the concentration of TCA (average concentration in vivo TCA, 0.0001%) is not
high enough to support spore germination in the murine cecum during resistance to
C. difficile, we turned our attention to the secondary bile acid DCA, which is highly
abundant during resistance to C. difficile (average concentration in vivo DCA, 0.023%)
and is a known germinant of C. difficile spores (12, 22). In Fig. 4B, spore germination
with DCA (0.1%) alone does not reach the same maximal level of spore germination as
TCA (0.1%) alone (Fig. 4A). The addition of CDCA (0.04%) significantly interfered with
DCA-mediated spore germination as well as supplementation with �MCA (0.001% and
0.004%). Secondary bile acids present in the cecum during resistance to C. difficile
(�MCA and LCA) were able to inhibit germination of C. difficile spores.

Secondary bile acids associated with resistance to C. difficile inhibit
growth. To further characterize the dynamics between the pathogen and secondary

bile acids, we evaluated growth of C. difficile over a 24-h period in vitro in the presence
of relevant in vivo concentrations of secondary bile acids. In media supplemented with
secondary bile acids HDCA, UDCA, LCA, and DCA, C. difficile exhibited decreased growth
rates compared to controls (C. difficile alone and C. difficile with ethanol added and no
bile) without the addition of secondary bile acids. (Ethanol was added to a C. difficile
culture to account for the ethanol in the bile acids.) C. difficile growth curves with
secondary bile acids that significantly inhibited the growth rate from Fig. 5A are
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displayed in Fig. 5B (see Fig. S4 in the supplemental material). Secondary bile acids
present during resistance to C. difficile were able to inhibit growth of C. difficile.

Members of the Lachnospiraceae and Ruminococcaceae families in the
large intestinal microbiota are positively correlated with secondary bile acids.
Since many secondary bile acids shape resistance to C. difficile, and members of the gut
microbiota are responsible for the biotransformation of primary bile acids to secondary
bile acids, we defined the microbiome of each ileal and cecal sample (see Fig. S5 and
S6 in the supplemental material). To examine the relationship between members of the
gut microbiota and bile acids, we calculated the Spearman’s rank correlation coefficient
for all operational taxonomic units (OTU) within the microbiome and bile acids using
data from the mouse ileum and cecum (Fig. 6). To visualize these correlations, we
performed unsupervised clustering of OTU and bile acids from all groups, which
revealed three distinct OTU clusters (O1 to O3 in Table S1 in the supplemental material)
and two bile acid clusters (B1 and B2). The organization of the correlation revealed
distinctive relationships between OTU and bile acids in the different groups. OTU in the
first OTU cluster (O1) were positively correlated with bile acids in the first bile acid
cluster (B1) and negatively correlated with most of the bile acids in cluster B2, which
contains all of the secondary bile acids (black boxes in Fig. 6). The OTU in cluster O1
include many members from the Proteobacteria and Firmicutes phyla, more specifically
from the Enterobacteriaceae and Lactobacillaceae families (see Table S1). Many of these
bacteria were present in samples that supported C. difficile germination and outgrowth.
This is in contrast to the relationship between clusters O2 and B2, which has a positive
correlation. O2 is made up of members from the Firmicutes phylum: specifically, these
Lachnospiraceae and Ruminococcaceae family members are positively correlated with
all secondary bile acids (see Table S1). Many of these bacteria were present in samples
that provided resistance against C. difficile germination and outgrowth. Cluster O3 is
made up of many members from the Bacteroidetes phylum, from the Porphyromon-
adaceae family (see Table S1) and is positively correlated with all bile acids from clusters
B1 and B2.

DISCUSSION

Using a targeted metabolomics approach, we defined the in vivo concentrations of bile
acids before and after various antibiotic treatments in the murine small and large
intestines. C. difficile spores were able to germinate and outgrow in most ileal content
and cecal content that was depleted of secondary bile acids and had significant
alterations to the microbiome. To further define the mechanism of colonization resis-
tance against C. difficile, we conducted in vitro studies to show that in vivo concentra-
tions of secondary bile acids were able to inhibit spore germination and growth in the
large intestine. Previous in vitro studies looking at the interaction between bile acids
and C. difficile spore germination and growth observed inhibition of germination with
�MCA, LCA, and UDCA and inhibition of growth with �MCA, LCA, and DCA (12, 22, 25,
26, 28, 32, 33). However, they were not based on in vivo bile acid levels in the
gastrointestinal (GI) tract. Newer, more sensitive mass spectrometric technology has
allowed us to define the real-time physiological concentrations in vivo as opposed to
untargeted metabolomic approaches, which only yield relative abundance (34). Defin-
ing the composition and concentration of bile acids that are able to inhibit or enhance
C. difficile spore germination and outgrowth in the gut is critical for the development
of targeted bacterial therapeutics to prevent C. difficile.

Interestingly, we observed that C. difficile spores were able to germinate in ileal
content of the mouse before and after antibiotic treatment. Germination has been

FIG 3 Targeted bile acid metabolomics of murine ileal and cecal contents. Bile acids were analyzed by LC-MS from paired ileal (A) and cecal (B) contents
from ex vivo spore germination and outgrowth assays. A heat map shows the bile acid concentration present in micrograms per 100 mg of gut content,
ranging from 1 to 120,000. The black boxes represent samples that did not reach significance in supporting spore germination and outgrowth of C. difficile
spores in Fig. 2. (C) Bile acids present in cecal content that did not support spore germination and outgrowth in the black bars (resistance) or were able
to support germination and outgrowth (susceptible) are compared. Significance between groups was determined by Mann-Whitney nonparametric t test.
Error bars represent the mean � SEM (****, P < 0.0001).
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demonstrated in the small intestine in other rodent models (31, 35, 36). Although
primary bile acids are absorbed in the small intestine, it is likely that sufficient levels are
present to allow some level of spore germination. We detected consistently high levels
of the germinants TCA and CA, even in the absence of antibiotic treatment, a finding
that has been reported previously (14). It is hard to say what the concentration of
primary bile acids is in the human small intestine because collection of such samples
is difficult, although we know that human serum is rich in primary bile acids, which are
mostly absorbed in the small intestine (37).

It is also challenging to say what the oxygen content is in the small intestine.
Multiple studies measuring oxygen tension in the small intestine of rats, sheep, ducks,
and mice show a spatial distribution, where the mucosa is more oxygen rich and the
lumen is more anaerobic (38–40). More recent literature using sensitive oxygen-
measuring imaging found the ileum in a mouse, which is relevant to our model, to be
quite anaerobic and to resemble that of the colon (38). Similarly, the oxygen concen-
trations in the duck small intestinal lumen measured by microelectrodes were 25 mm
Hg closest to the villi and �0.5 mm Hg in the center of the lumen (39). This further
supports that the luminal content of the ileum is anaerobic. This study and our previous
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FIG 4 Secondary bile acids present during C. difficile resistance inhibit spore germination. In vitro spore germination inhibition assays were
performed with C. difficile strain VPI 10463 to assess if the secondary bile acids �-muricholate (�MCA), hyodeoxycholate (HDCA),
ursodeoxycholate (UDCA), lithocholate (LCA), and deoxycholate (DCA) were able to inhibit spore germination with known germinants TCA
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ethanol (EthOH) (red bars). A negative control was also used: BHI plus TCA supplemented with CDCA (0.04%) or BHI plus DCA supplemented
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DCA. The data presented represent the mean � standard deviation (SD) from triplicate experiments and were significant compared to the
positive controls (A) TCA alone or (B) DCA alone (Student’s t test, *, P < 0.05; **, P < 0.01; ***, P < 0.001).
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work also suggest that spores will always germinate to some degree in small intestinal
content (31). Therefore, prevention of C. difficile from growing in the cecum and large
intestine will be critical.

In the cecum, we observed that specific antibiotic treatments (cefoperazone, van-
comycin, and clindamycin) altered the gut microbiome and decreased the secondary
bile acid load, allowing C. difficile to germinate and outgrow. Some of these antibiotics
are associated with susceptibility to CDI, with the highest risk associated with cepha-
losporin, clindamycin, penicillin, and fluoroquinolones (7, 41, 42). Interestingly, vanco-
mycin is the preferred treatment for CDI but has been shown to alter the microbiome,
bile acid metabolism, and host physiology in both mice and humans (13, 15, 43–45).

In our study, bacterial members from the Firmicutes phylum, specifically the Lach-
nospiraceae and Ruminococcaceae families, were positively correlated with secondary
bile acids in the cecum and resistance to C. difficile. A small subset of spore-forming,
anaerobic members of the class Clostridia are able to perform enzymatic reactions on
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conjugated bile acids, including deconjugation and 7�-dehydroxylation, which is a
multistep biotransformation from CA to DCA and CDCA to LCA (16, 17, 20, 46).
Well-characterized bacteria that have 7�-dehydroxylation activity are from the Clostrid-
ium species and include Clostridium scindens, Clostridium hiranonis, Clostridium hylem-
onae, and Clostridium sordellii, which belong to the Blautia, Ruminococcaceae, and
Lachnospiraceae families (46–48). Most recently there is renewed interest in C. scindens
because of its high 7�-dehydroxylation activity and its presence in patients’ resistant to
C. difficile (25, 28). Future therapies to restore colonization resistance against C. difficile
could potentially include targeted bacterial cocktails that are able to restore the level
of secondary bile acids in the large intestine to inhibit C. difficile (28, 49). Much attention
has focused on increasing DCA levels in the gut. However, increased levels of DCA are
associated with an increased risk of colon cancer (50, 51). This study identifies new
secondary bile acid targets (LCA, UDCA, HDCA, and �MCA) at inhibitory concentrations,
which could be produced by bacterial therapies to inhibit C. difficile.

Bacterial members from the Proteobacteria and Firmicutes phyla, more specifically
from the Enterobacteriaceae and Lactobacillaceae families, were negatively correlated
with secondary bile acids in this study. This is consistent with another study in which
blooms of proinflammatory Enterobacteriaceae were found in cirrhotic patients and
corresponded with a decrease in fecal bile acid levels (52). It is not known whether
members from the Proteobacteria phylum are sensitive to the antimicrobial properties
of secondary bile acids, but it has been suggested that they may limit their growth in
the gut. Members of the Lactobacillaceae family include many Lactobacillus species, and
they contain potent bile salt hydrolases, which are able to deconjugate glycine- or
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taurine-conjugated bile acids into unconjugated bile acids (53, 54). The lack of bacteria
able to make secondary bile acids after antibiotics would cause a buildup of primary
bile acids like TCA and CA, which are germinants of C. difficile spores.

More recently, human studies have shown recovery of fecal secondary bile acids,
and members from the class Clostridia, including members from the Lachnospiraceae
family, were associated with successful fecal transplantation in patients with recurrent
CDI (29, 55). Even though this is promising, spore germination and colonization occurs
upstream of the feces. The current standard of measuring the gut microbiota structure
is via feces collection, and it is difficult to collect samples from the more relevant upper
human GI tract for studying C. difficile. Although the bile acid profile of mice differs from
that of humans, an animal model of CDI allows for the assessment of bile acid
concentrations throughout the GI tract (31). More promising is the observation that
more sensitive bile acid metabolomics, such as liquid chromatography-tandem mass
spectrometry (LC-MS/MS) assays, are seeing similar bile acid species in both human and
mouse sera (37), suggesting the usefulness of this mouse model.

Finally, there are potential limitations to the present study, including the use of
C. difficile VPI 10463, which is still used in many studies today, although it is not a
clinically relevant strain (8, 28, 31). This strain still provides us with a reproducible model
of C. difficile infection in the mouse. Moving forward, these observations need to be
validated with clinically relevant strains as they use a wide range of bile acids for
germination (56, 57). The ex vivo approach we used is powerful, but it does not account
for transit time in the GI tract, as it is a static sample. Even though bile acids are able
to inhibit spore germination and the growth rate of C. difficile in the gut, bile acids do
not represent the sole mechanism for colonization resistance against C. difficile. Other
factors that could contribute to colonization resistance in the gut and in our ex vivo
samples include competition for nutrients by other members of the gut microbiota.

Since alterations in the gut microbiome and bile acid metabolism are associated
with many diseases, including diabetes, obesity, cancer, and metabolic syndrome (21,
50, 51, 58), further investigation is needed to understand the complex relationship
between the gut microbiota, bile acids, and host physiology.

MATERIALS AND METHODS
Ethics statement. The University Committee on the Use and Care of Animals (UCUCA) at the University
of Michigan approved this study. The University of Michigan laboratory animal care policies follow the
Public Health Service Policy on Humane Care and Use of Laboratory Animals (59). Animals were assessed
twice daily for physical condition and behavior, and those assessed as moribund were humanely
euthanized by CO2 asphyxiation. Trained animal technicians performed animal husbandry in an AAALAC-
accredited facility.

Animals and housing. Five- to 8-week-old C57BL/6 wild-type (WT) mice (male or female) were
obtained from a breeding colony at the University of Michigan that was originally established using
animals purchased from Jackson Laboratories (Bar Harbor, ME). Mice were housed with autoclaved food,
bedding, and water. Cage changes were performed in a laminar flow hood. Mice had a 12-h cycle of light
and darkness.

Antibiotic treatment of animals and sample collection. Groups of C57BL/6 WT mice (male and
female) ranging from 5 to 8 weeks in age were treated with a variety of antibiotics (Fig. 1). Groups of mice
(n � 7 to 10 per group) were given cefoperazone (0.5 mg/ml) in sterile drinking water for 10 days
followed by a recovery period of 2 days and 1, 2, 3, 4, 5, and 6 weeks with regular drinking water. Three
additional groups of mice were treated with a 5-day course of vancomycin (0.5 mg/ml), metronidazole
(0.5 mg/ml), or kanamycin (0.5 mg/ml) in their drinking water followed by a 2-day recovery period with
regular drinking water. Mice treated with clindamycin were given a subcutaneous injection of 1 mg/ml
clindamycin solution so that each mouse received 10 mg/kg of body weight followed by a 1-day
recovery. An additional group of mice was given an injection of clindamycin after 6 weeks of recovery
from a 10-day treatment with cefoperazone (0.5 mg/ml) followed by a 1-day recovery after the
clindamycin injection. Non-antibiotic-treated controls for this experiment included mice given sterile
drinking water during the duration of these experiments. After each treatment, mice were euthanized,
and at the time of necropsy, ileal and cecal contents were collected, flash-frozen in liquid nitrogen, and
stored at �80°C until further analysis.

Bile acid analysis of mouse ileal and cecal contents. (i) Sample preparation. A two-step
extraction of gut content with ethanol and 1:1 chloroform-methanol was done with isotope-labeled
internal standards spiked in. Extraction solvent was added to gut samples for homogenization with a
probe sonicator. Homogenized samples were kept on ice for 10 min and centrifuged at 45°C at
13000 rpm for 10 min. Supernatants containing metabolites were transferred to another tube, and pellets
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were extracted with 1:1 chloroform-methanol. Supernatants from the two steps were combined and
dried under vacuum at 45°C by using a vacuum centrifuge. Dried samples were reconstituted in 50:50
methanol-water for LC-MS analysis. A series of calibration standards were prepared and analyzed along
with samples to quantify metabolites.

(ii) LC-MS analysis. An Agilent 1290 liquid chromatograph (Agilent, Santa Clara, CA) and waters
Acquity BEH C18 column with 1.7-�m particle size (2.1 by 100 mm; Waters, Milford, MA) was used for
chromatographic separation. Mobile phase A (MPA) was 0.1% formic acid in LC-MS-grade water. Mobile
phase B (MPB) was 0.1% formic acid in acetonitrile. The mobile phase gradient consisted of 0 to 0.5 min
of 5% MPB, 3 min of 25% MPB, 17 min of 40% MPB, and 19 to 21 min of 95% MPB and was run on an
Agilent 6490 triple-quadrupole mass spectrometer (Agilent, Santa Clara, CA). Data were processed by
MassHunter workstation software, version B.06. Table 1 lists the bile acids detected by name and
abbreviation as well as their MRM transitions (i.e., parent m/z¡daughter m/z).

C. difficile spore preparation. C. difficile VPI 10463 spores were prepared as described in previous
studies (12, 60).

Ex vivo spore germination and outgrowth studies in mouse ileal and cecal contents. C. difficile
spores were subjected to heat treatment (65°C for 20 min) prior to use for these studies. Mouse ileal and
cecal contents (non-antibiotic treated and antibiotic treated) were weighed and passed into an anaerobic
chamber, diluted at a 1:1 ratio with PBS, and spun down for 5 s in a microcentrifuge. Approximately 103

C. difficile spores (104 spores/ml) were added to diluted ileal content, cecal content, and a PBS-only
control at a final volume of 0.1 ml and then incubated at 37°C anaerobically for 6 h. After incubation,
bacterial enumeration was done on taurocholate-cycloserine-cefoxitin-fructose agar (TCCFA) selective
medium (12). The remaining ileal and cecal contents were heat treated at 65°C for 20 min to kill off any
vegetative cells, and a subsequent bacterial enumeration was done. Samples plated prior to heating
represent spores and vegetative cells (germination and outgrowth). Samples plated after heat treatment
represent the spores remaining.

C. difficile in vitro germination assays with secondary bile acids. Spores were subjected to heat
treatment (65°C for 20 min) prior to use for these studies. Sterile bile acid solutions dissolved in either
water or ethanol were prepared and passed into an anaerobic chamber and added to brain heart infusion
(BHI) plus 100 mg/liter L-cysteine broth with either 0.1% taurocholate (TCA) or 0.1% deoxycholate (DCA)
as a positive control. C. difficile spores were added to broth and allowed to incubate for 30 min at 37°C
anaerobically. Bacterial enumeration of the samples was performed on both BHI plates (vegetative cells)
and BHI agar supplemented with 0.1% TCA (total CFU). Since 0.04% chendeoxycholate (CDCA) is a known
inhibitor of TCA-mediated spore germination, this was used as a negative control in this assay (32). TCA
at 0.1% and DCA at 0.1% made in water or ethanol (10%) were used as positive controls of spore
germination. The percentage of germination of the positive controls TCA and DCA alone was calculated
as [(CFU on BHI)/(CFU on BHI � TCA or DCA)] � 100. Inhibition of germination with TCA with the addition
of secondary bile acids �MCA, HDCA, UDCA, LCA, and DCA was calculated as [(CFU on BHI � TCA �
secondary bile acids)/(CFU on BHI � TCA alone)] � 100. Inhibition of germination with DCA with the

TABLE 1 Bile acids identified by LC-MS analysis

Name Abbreviation MRM transitiona

�-Muricholate �MCA 407.3¡407.3
�-Muricholate �MCA 407.3¡407.3
�-Muricholate �MCA 407.3¡407.3
Hyocholate (�-muricholate) HCA (�-MCA) 407.3¡407.3
Cholate CA 407.3¡407.3
Chenodeoxycholic acid CDCA 391.3¡391.3
Deoxycholic acid DCA 391.3¡391.3
Ursodeoxycholic acid UDCA 391.3¡391.3
Hyodeoxycholate HDCA 391.3¡391.3
Glycocholic acid GCA 464.3¡74.0
Glycochenodeoxycholate GCDCA 448.3¡74.0
Glycodeoxycholate GDCA 448.3¡74.0
Glycoursodeoxycholate GUDCA 448.3¡74.0
Glycohyodeoxycholate GHDCA 448.3¡74.0
Glycolithocholate GLCA 432.3¡74.0
Lithocholic acid LCA 375.3¡375.3
Taurocholic acid TCA 514.3¡80.0
Taurochenodeoxycholate TCDCA 498.3¡80.0
Taurodeoxycholate TDCA 498.3¡80.0
Tauroursodeoxycholate TUDCA 498.3¡80.0
Taurohyodeoxycholate/tauroursodeoxycholate THDCA/TUDCA 498.3¡80.0
Taurolithocholate TLCA 482.3¡80.0
Tauro-�-muricholic acid T-�MCA 514.3¡80.0
Taurohyocholate THCA 514.3¡80.0
Tauro-�-muricholic acid T�MCA 514.3¡80.0
Glycohyocholic acid GHCA 464.3¡74.0
aParent m/z¡daughter m/z.
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addition of secondary bile acids �MCA, HDCA, UDCA, and LCA was calculated as [(CFU on BHI � DCA �
secondary bile acids)/(CFU on BHI � DCA alone)] � 100. Germination under each condition was
performed in triplicate. Controls were always used and compared to the proper bile acid backgrounds
of water or ethanol.

C. difficile in vitro growth curves with secondary bile acids. C. difficile VPI 10463 was cultured
overnight at 37°C in BHI plus 100 mg/liter·L-cysteine broth in an anaerobic growth chamber (Coy labs).
After 14 h of growth, C. difficile was subcultured 1:10 into BHI plus 100 mg/liter·L-cysteine and allowed
to grow for 3 h anaerobically at 37°C. The culture was then diluted in fresh BHI so that the starting optical
density at 620 nm (OD620) was 0.01. The cell suspension was added to a 96-well plate at a final volume
of 0.2 ml. Sterile bile acid solutions were added to the wells in triplicate. Cell density (OD620) was
monitored every 30 min for 24 h, shaking the plate for 90 s before each reading, in a Tecan plate reader
(reference no. 16039400) inside an anaerobic chamber. The specific growth rate was determined as � �
ln(X/Xo)/T, where X is the OD620 value during the linear portion of growth and T is time in hours. Values
given are representative of the mean � values from two independent cultures done in triplicate. The
growth curve data in Fig. S5 in the supplemental material start at an OD of 0.1 because BHI medium
alone has a starting OD620 of 0.1.

The bile acids used in all in vitro assays include taurocholic acid sodium salt hydrate (TCA) (Sigma-
Aldrich, CAS no. 345909-26-4), sodium deoxycholate (DCA) (Sigma-Aldrich, CAS no. 302-9504), cheno-
deoxycholic acid (CDCA) (Alfa Aesar, CAS no. 474-25-9), lithocholic acid (LCA) (Sigma-Aldrich, CAS no.
434-13-9), ursodeoxycholic acid (UDCA) (Sigma-Aldrich, CAS no. 128-13-2), �-muricholic acid (�MCA)
(Steraloids, catalog ID no. C1888-000), hyocholic acid (HCA) (Steraloids, CAS no. 547-75-1), and hyode-
oxycholic acid (HDCA) (Steraloids, CAS no. 83-49-8). TCA and DCA were soluble in water, and the rest of
the bile acids were soluble in ethanol.

Illumina MiSeq sequencing of bacterial communities. Microbial DNA was extracted from mouse
ileal and cecal tissue snips that also included luminal content using the PowerSoil-htp 96-well soil DNA
isolation kit (Mo Bio Laboratories, Inc.). The V4 region of the 16S rRNA gene was amplified from each
sample using a dual-indexing sequencing strategy (61). Each 20-�l PCR mixture contained 2 �l of 10�
Accuprime PCR buffer II (Life Technologies), 0.15 �l of Accuprime high-fidelity Taq (catalog no. 12346094)
high-fidelity DNA polymerase (Life Technologies), 2 �l of a 4.0 �M primer set, 1 �l DNA, and 11.85 �l
sterile double-distilled water (ddH2O) (free of DNA, RNase, and DNase contamination). The template DNA
concentration was 1 to 10 ng/�l for a high bacterial DNA/host DNA ratio. PCR was performed under the
following conditions: 2 min at 95°C, followed by 30 cycles of 95°C for 20 s, 55°C for 15 s, and 72°C for
5 min, followed by 72°C for 10 min. For low-biomass samples (ileal content), a “touchdown PCR” protocol
was performed. Each 20-�l PCR mixture contained 2 �l of 10� Accuprime PCR buffer II (Life Technol-
ogies), 0.15 �l of Accuprime high-fidelity Taq (catalog no. 12346094) high-fidelity DNA polymerase (Life
Technologies), 2 �l of 4.0 �M primer set, 1 �l DNA, and 11.85 �l sterile ddH2O (free of DNA, RNase, and
DNase contamination). The template DNA concentration was 1 to 10 ng/�l for a high bacterial DNA/host
DNA ratio. PCR was performed under the following conditions: 2 min at 95°C, followed by 20 cycles of
95°C for 20 s, 60°C for 15 s, and 72°C for 5 min (with a 0.3°C increase of the 60°C annealing temperature
each cycle), followed by 20 cycles of 95°C for 20 s, 55°C for 15 s, and 72°C for 5 min, followed by 72°C
for 10 min. Libraries were normalized using a Life Technologies SequalPrep normalization plate kit
(catalog no. A10510-01) following the manufacturer’s protocol. The concentration of the pooled samples
was determined using the Kapa Biosystems library quantification kit for Illumina platforms (KapaBiosys-
tems KK4854). The sizes of the amplicons in the library were determined using the Agilent Bioanalyzer
high-sensitivity DNA analysis kit (catalog no. 5067-4626). The final library consisted of equal molar
amounts from each of the plates, normalized to the pooled plate at the lowest concentration.

Sequencing was done on the Illumina MiSeq platform, using a MiSeq reagent kit V2 with 500 cycles
(catalog no. MS-102-2003) according to the manufacturer’s instructions, with modifications (61). Libraries
were prepared according to Illumina’s protocol for preparing libraries for sequencing on the MiSeq (part
15039740 Rev. D) for 2 or 4 nM libraries. The final load concentration was 4 pM (but it can be up to 8 pM)
with a 10% PhiX spike to add diversity. Sequencing reagents were prepared according to Illumina’s
protocol for 16S sequencing with the Illumina MiSeq personal sequencer (61). (Updated versions of this
protocol can be found at http://www.mothur.org/wiki/MiSeq_SOP.) Custom read 1, read 2, and index
primers were added to the reagent cartridge, and FASTQ files were generated for paired-end reads.

Microbiome analysis. Analysis of the V4 region of the 16S rRNA gene was done using mothur
(version 1.33.3) (61, 62). Briefly, the standard operating procedure (SOP) at http://www.mothur.org/wiki/
MiSeq_SOP was followed to process the MiSeq data. The paired-end reads were assembled into contigs
and then aligned to the SILVA 16S rRNA sequence database (63, 64) and were classified to the
mothur-adapted RDP training set v9 (65) using the Wang method and an 80% bootstrap minimum to the
family taxonomic level. All samples with �500 sequences were removed. Chimeric sequences were
removed using UCHIME (66). Sequences were clustered into operational taxonomic units (OTU) using a
3% species-level definition. The OTU data were then filtered to include only those OTU that made up 1%
or more of the total sequences. The percentage of relative abundance of bacterial phyla and family
members in each sample was calculated. A cutoff of 0.03 (97%) was used to define operational taxonomic
units (OTU) and used to calculate the inverse Simpson index as a measure for diversity. Standard
packages in R were used to create average heat maps per mouse treatment group and changes in the
inverse Simpson index per treatment group (see Fig. S5 and S6 in the supplemental material).

Correlation analysis. We computed the Spearman’s rank correlation coefficients (r) for all pairs
among the 26 bile acids and 121 OTU (Fig. 6) using “method � ‘spearman,’ use � ‘pairwise.comple-
te.obs’” in R package as seen in reference 12.
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Statistical analysis. Statistical tests were performed using Prism version 6.00d for Mac Os X
(GraphPad Software, La Jolla, CA, USA). Significance between groups of ex vivo spore germination and
outgrowth studies was done by Mann-Whitney nonparametric t test (Fig. 2). Significance between
controls and all other groups in in vitro germination and growth studies were calculated by Student’s
parametric t test (Fig. 4 and 5). The Kruskal-Wallis one-way analysis of variance test followed by Dunn’s
multiple comparison test was used to calculate the significance of bacterial diversity of non-antibiotic-
treated controls compared to all other groups in Fig. S6 in the supplemental material. Statistical
significance was set at a P value of �0.05 for all analyses.

SUPPLEMENTAL MATERIAL
Supplemental material for this article may be found at http://dx.doi.org/10.1128/
mSphere.00045-15.

Figure S1, EPS file, 1.9 MB.
Figure S2, EPS file, 1.7 MB.
Figure S3, EPS file, 1.5 MB.
Figure S4, EPS file, 1.3 MB.
Figure S5, JPG file, 0.9 MB.
Figure S6, EPS file, 1.5 MB.
Table S1, XLS file, 0.05 MB.
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