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Abstract: Cell-based therapeutics for cardiac repair have been extensively used during the last
decade. Preclinical studies have demonstrated the effectiveness of adoptively transferred stem cells
for enhancement of cardiac function. Nevertheless, several cell-based clinical trials have provided
largely underwhelming outcomes. A major limitation is the lack of survival in the harsh cardiac
milieu as only less than 1% donated cells survive. Recent efforts have focused on enhancing cell-based
therapeutics and understanding the biology of stem cells and their response to environmental changes.
Stem cell metabolism has recently emerged as a critical determinant of cellular processes and is
uniquely adapted to support proliferation, stemness, and commitment. Metabolic signaling pathways
are remarkably sensitive to different environmental signals with a profound effect on cell survival
after adoptive transfer. Stem cells mainly generate energy through glycolysis while maintaining
low oxidative phosphorylation (OxPhos), providing metabolites for biosynthesis of macromolecules.
During commitment, there is a shift in cellular metabolism, which alters cell function. Reprogramming
stem cell metabolism may represent an attractive strategy to enhance stem cell therapy for cardiac
repair. This review summarizes the current literature on how metabolism drives stem cell function
and how this knowledge can be applied to improve cell-based therapeutics for cardiac repair.
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1. Introduction

Cardiovascular disease remains the leading cause of mortality and morbidity in the United
States and worldwide [1]. The adult human heart possesses a limited cardiomyocyte turnover rate,
which is therefore unable to respond to the massive cellular loss that underlies the development of
heart failure [2]. Cell-based therapies have been developed as an alternative strategy to support
endogenous generation of new and functional cardiomyocytes. To date, different sources of cells such
as bone-marrow derived cells, cardiac progenitor cells, embryonic and inducible-pluripotent stem
cell-derived cardiomyocytes have been evaluated in order to identify the most appropriate cell type for
cardiac repair. These cell types have been shown to confer therapeutic benefits to the injured heart
and affect endogenous cardiomyocyte renewal or directly generate new cardiomyocytes [3]. However,
the degree of new cardiomyocyte formation depends on the survival and retention of various stem cells
in the heart [3]. Several preclinical cell-based studies have shown remarkable efficacy for cardiac repair
but a similar effect was not observed in human clinical trials [4]. This lack of success has been mainly
attributed to the poor survival and minimal integration of the transplanted cells into the host tissue
as well as lack of an understanding of the mechanisms at play that regulate the benefits associated
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with cell-based therapeutics [3], which merits the need for understanding the biological properties of
stem cells.

Cell-based therapies typically rely on ex vivo expansion of cells under ambient oxygen and high
glucose levels that favor mitochondrial respiration for energy generation [5]. Upon transplantation,
donated stem cells are exposed to ischemic cardiac milieu composed of inflammatory cytokines and
reactive oxygen species (ROS), which alter metabolism. While the metabolic shift towards oxidative
phosphorylation (OxPhos) may stimulate the cells to differentiate, it may also result in increased
release of ROS, a byproduct of mitochondrial activity that subsequently leads to cellular damage and
senescence [5]. Noteworthy, energy metabolism has been reported as a key factor in essential stem cell
processes involving proliferation, self-renewal, and cell fate. Understanding stem cell metabolism may
define metabolic features of stem cells during ex vivo expansion, proliferation, and post-transplantation
survival with potential to enhance cell-based therapies. In this review, we discuss different strategies
targeting stem cell metabolism and their potential application to enhance cell survival and therapeutic
efficacy for cardiac repair.

2. Metabolism at the Heart of Stem Cells

Energy metabolism consists of oxidative processes through which cells generate energy to
fuel biochemical processes. Alterations in the microenvironment push stem cells to adopt distinct
metabolic states to generate energy by varying substrate utilizations and mitochondrial activities
(Table 1). Once viewed as a mere consequence of a specific cell state, recent studies have suggested
that metabolism is a finely regulated process that plays a critical role in dictating stem cell fate and
adaptation to their microenvironments. The following sections take an in-depth look at metabolic
adaptations in stem cells and consequences for the function of adult stem cells.

Table 1. Metabolic adaptations and functional changes of pluripotent and adult stem cells in response
to specific environmental stimuli.

Stimulus Cell Type Metabolic
Change

Functional
Change

Signaling
Pathway References

Hypoxia c-kit+ CPC
HSC

↑ glycolysis
↓ oxphos

↑ stemness
↑ self-renewal HIF-1α/PDK4 [6–8]

ROS Sca1+ CPC ↓ glycolysis
↑ oxphos

↑ differentiation
↓ stemness

BMI1/epigenetic
modification [9]

Akt
overexpression MSC ↑ glycolysis ↑ survival

↓ inflammation
AKT/eNOS
signaling [10]

PIM1 kinase
overexpression

c-kit+ BMC
c-kit+ mCPC
c-kit+ hCPC

↑ glycolysis ↑ survival
↑ proliferation

AKT/eNOS
signaling [11–14]

B adrenergic
stimulation c-kit+ hCPC ↑ glycolysis ↑ survival

↑ proliferation
AKT/eNOS
signaling [15,16]

Glutamine Sca1+ CPC ↑ oxphos ↑ survival
↑ proliferation

TCA
intermediates [17,18]

Oleic Acid
Sca1+ CPC

PSC
MSC

↑ glycolysis
↑ oxphos

↑ FA oxidation

↑ survival
↑maturation
↓ apoptosis

PPARα-FA
oxidation [19–21]

Lactate PSC ↑ oxphos ↑ differentiation TCA
intermediates [22]

↑ increasing; ↓ decreasing; Abbreviations: cardiac progenitor cells (CPC), mesenchymal stem cells (MSC),
hematopoietic stem cells (HPC), bone-marrow derived cells (BMC), pluripotent stem cells (PSC).
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2.1. Quiescence

Adult stem cells are tissue resident stem cells thought to support tissue homeostasis and cellular
turnover following injury [23] (Wagers and Weissman 2004) [23]. In uninjured tissues, these cells
live in a “latent” cell cycle-arrested state known as quiescence. Although quiescent cells do not
divide, they retain the ability to re-enter the cell cycle and proliferate in response to environmental
stimuli [6,24]. Most of the adult stem cells, including hematopoietic stem cells (HSCs) and cardiac
stem/progenitor cells, are found to reside in hypoxic niches in a quiescent or slow-cycling stage [7,25–27].
This low-oxygen microenvironment is not only tolerated by these cells, but also seems to be essential
for their function. While poorly understood, survival in hypoxic niches requires significant metabolic
adaptations with the quiescent stem cell mainly operating under glycolysis that shifts to OXPHOS
once cells proliferate or commit towards cardiac lineages (Figure 1).
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Figure 1. Stem cell metabolism is dynamically modulated to control stemness, proliferation, and cell
commitment. Quiescent stem cells are mostly glycolytic due to HIF-1α activity in the hypoxic niche
with low generation of ROS to maintain stemness. Outside the hypoxic niche, the oxygen levels begin
to rise increasing the oxidative phosphorylation (OxPhos) and reactive oxygen species (ROS) levels,
which stimulate the cells to proliferate and differentiate. During proliferation, stem cells mainly rely on
glycolysis while still maintaining low OxPhos levels to fuel the cells with biosynthetic intermediates
important for cell growth. Stem cell differentiation to cardiomyocytes, however, depends on a metabolic
shift from glycolysis to OxPhos in a ROS-dependent manner.

Within the heart, the epicardium and sub-epicardium have been identified as a cardiac
hypoxic niche housing hypoxia-resistant progenitor population, which preferentially utilize glycolytic
metabolism for energy production [28]. Indeed, in microenvironments with low-oxygen tensions,
adult stem cells cannot rely on electron transport chain (ETC) activity to generate energy and rather
prefer anaerobic glycolytic metabolism [6,29]. Hypoxic c-kit+ cardiac stem cells and HSCs are known to
reduce mitochondria, mitochondrial membrane potential, oxygen consumption rate, and intracellular
ATP levels [6–8]. This metabolic state seems to be accompanied by changes in the expression of key
metabolic genes such as GLUT1, lactate dehydrogenase α (LDHA), and PDK1, contributing to the
increased uptake of glucose and disposal of pyruvate [29,30]. Recent studies have shown HIF-1α
as a master regulator of both glycolysis and mitochondrial respiration [6,28,31,32]. Under hypoxic
conditions, HIF-1α is stabilized and induces the expression of PDK2 and PDK4, which in turn prevent
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the conversion of pyruvate into acetyl-CoA by inhibiting PDH, and thus hampering mitochondrial
respiration [6,28,31,32].

Noteworthy, a reliance on anaerobic glycolysis and reduction in OxPhos is also believed to be,
at least in parts, necessary to maintain quiescence by protecting c-kit+ cardiac progenitor cells and
HSCs from ROS, a known contributor to ageing and senescence [33–35].

2.2. Proliferation

Quiescent adult stem cells are reversibly arrested in G0 to maintain their stemness [5]. However,
following stimulation or injury, quiescent cells quickly re-enter the cell cycle, proliferate, and commit
into specific tissue lineages to replace damaged cells [29]. The transition from a quiescent to a
lineage-committed state is characterized by migration from a hypoxic niche to an oxygen-rich
microenvironment [5]. In the presence of oxygen, mitochondrial activity increases, which generates
ROS, believed to induce adult stem cell proliferation but also apoptosis at elevated concentrations [24,29].
Thus, energy metabolism in proliferating cells markedly differs from that in quiescent cells.

With higher oxygen tension, HIF-1 levels decrease through oxygen-mediated ubiquitination
and proteasomal degradation, which affects proliferation [5]. Levels of HIF-1α target genes, such as
PDK2 and PDK4, decrease, dephosphorylating PDH and leading to the oxidation of pyruvate into
acetyl-CoA [5]. Increased acetyl-CoA feeds the TCA cycle, increasing mitochondrial respiration
and thereby switching the metabolism from anaerobic glycolysis to OxPhos. Indeed, mesenchymal
stem cells (MSCs) cultured under normoxia have been shown to rely on OxPhos and high oxygen
consumption [36]. Additionally, these cells present an increased proliferation rate [37]. However,
the metabolic switch to OxPhos is associated with higher mitochondrial activity, which generates ROS
and over a long time leads to a significant increase in senescence, which impairs MSC stemness [37].

Studies have shown that the transition from quiescence to a more proliferative state in HSCs has
been shown to be driven by two different pathways, TSC-mTOR [38] and the mitochondrial carrier
homolog 2 (MTCH2) [39]. Disruption in one of these pathways leads to increased mitochondrial
biogenesis and size, ATP production and ROS, which drive HSCs from quiescence to a rapidly cycling
state that reduces stemness. Unlike HSCs, c-Kit+ cardiac progenitor cells (CPCs) express high levels of
GLUT1 transporter in an undifferentiated state, a feature also seen in embryonic stem cells [17,18,40],
while expressing a glutamine transporter (ASCT2) similar to HSCs, with their mitochondrial activity
responsive to glutamine (discussed later in the substrate utilization section) [17]. These findings suggest
that, while sharing metabolic characteristics with both embryonic stem cells and HSCs, CPCs present a
unique metabolic phenotype different from other stem cells. Although increasing extracellular glucose
concentration elevates glycolytic rate in CPCs, only a marginal or negative effect on proliferative states
is observed concurrent with the increase in apoptosis [17,41]. This harmful effect of high glucose
levels might be associated with an impairment in mitochondrial respiration via a Crabtree-like effect—
a phenomenon particularly observed in proliferating cells where an increase in glucose concentrations
accelerates glycolysis, reducing the need of OxPhos [17,18]. Thus, similar to HSCs and mesenchymal
stem cells (MSCs), CPCs apparently do not depend on glycolysis to proliferate under normoxia.
Glutamine-mediated mitochondrial activity, however, has been shown to be essential for both c-kit+
and Sca1+ CPC proliferation and growth suggesting that the stimulatory effect of glutamine is likely
due to anaplerosis [17].

Recently, Cited2, a protein implicated in glucose metabolism, has been shown to be important
for Sca-1+ cardiac stem cell proliferation [42]. Although the authors did not measure any metabolic
parameter, Cited2 deletion in ESCs has been shown to result in aberrant mitochondrial morphology,
reduced glucose oxidation, increased glycolysis, and defective differentiation [43]. Our recent work
has identified a novel role for uncoupling protein 2 (UCP2) in maintaining cardiac tissue-derived
stem cell (CTSC) proliferation during the transition from young to old age [44]. CTSCs from neonatal
hearts have elevated UCP2 together with increased glycolysis and reduced mitochondrial respiration,
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which promotes rapid proliferation rates. With age, UCP2 is lost, promoting a shift towards OxPhos
from glycolysis and adversely affecting proliferation [44].

Taken together, the transition from quiescent cardiac stem cells to a more proliferative state seems
to be associated with their migration to an oxygen-rich environment and a metabolic switch from
anaerobic glycolysis to a glutamine-mediated oxidative metabolism with activation of a mitochondrial
gene program.

2.3. Survival

The harsh microenvironment within the injured host myocardium is one of the major obstacles for
cell-based therapies. Low oxygen tension, high oxidative stress, inflammatory response, and deprivation
in nutrient supply together create a barrier for the successful engraftment and survival of the
transplanted stem cells.

As previously discussed, when cultured under normoxia, cardiac stem cells adapt their metabolism
shifting towards oxygen dependent OxPhos, which inadvertently compromises cell survival following
transplantation into a hypoxic/ischemic environment typical of cardiac injury. This “metabolic
shock” can be attenuated by activating glycolytic pathways through preconditioning cardiac stem
cells in hypoxia prior transplantation, which has indeed been shown to improve survival in the
myocardium [45–47], although the metabolic adaptations were not addressed in these studies. Similarly,
preconditioning of cardiosphere-derived cells (CDCs) in hypoxia has been shown to induce glucose
uptake, lactate production and decrease cellular oxygen respiration, suggesting metabolic adaptation
towards glycolysis and reduced dependence on OxPhos [48]. Mechanistically, metabolic changes
were linked to stabilization of HIF1-α even when oxygen was present. HIF1-α stabilization led to
the expression of gene targets that inhibit the formation of acetyl-CoA and the subsequent TCA cycle
activity, forcing the cells to rely mostly on glycolysis and preserve stemness. In CPCs, increased
extracellular glucose concentrations lead to diminished proliferation, lower survival [40], and reduced
ability to repair the injured myocardium [49], suggesting that CPCs are susceptible to hyperglycemic
injury [17]. Interestingly, the increase in apoptosis in both CPCs cultured in high glucose media
or isolated from diabetic hearts seems to be associated with a deficiency in the pentose phosphate
pathway (G6PD) [17,41]. Reactivation of the G6PD pathway in vivo and in vitro by supplementation
with benfotiamine rescues CPC survival and function, an effect that is abrogated by G6PD silencing
by siRNA [41]. Thus, G6PD seems to play a crucial role in CPC survival under diabetic conditions,
a feature that has also been also reported in cardiomyocytes [50]. Our recent work regarding the
RNA-sequencing approach demonstrated survival signaling pathways to be significantly altered in
cardiac-derived stem like cells (CTSC) after loss of mitochondrial uncoupling protein 2 (UCP2) together
with decreased glycolysis, thereby identifying a novel role for UCP2 in CTSC survival [44].

Similarly, mimicking hypoxia by either preconditioning MSCs with prolyl hydroxylase
inhibitors [51] or shRNA knock down [52] leads to increased survival and angiogenesis following
transplantation into ischemic hearts. Furthermore, hypoxia-induced HIF-1α upregulation was also
shown to stimulate glucose uptake and upregulate expression of glycolytic genes, which promotes
MSC survival in response to long-term ischemia and enhances therapeutic efficacy [53]. Taken together,
HIF-1α upregulation either by hypoxia or prolyl hydroxylase inhibition improves adult stem cell
survival and therapeutic efficiency, at least in parts, by promoting metabolic adaption to low oxygen
environments such as ischemic myocardium [31]. However, to maintain anaerobic metabolism
for long-term survival in hypoxic conditions, a persistent glucose supply is required. The use of
glucose-loaded scaffolds has been shown to lead to a five-fold enhancement of MSC survival rate
post implantation together with increased HIF-1α expression [54]. Although anaerobic glycolysis is
critical for cells to generate ATP under ischemia, MSC survival seems to be dependent on glycolysis
rather than OxPhos, not only in hypoxia, but also in normoxia. In line with the previous discussion,
disruption of the ETC by either antimycin A or malanate under low oxygen levels [55] or inhibition
of OxPhos under standard culture conditions does not impair MSC metabolism nor increase the cell
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mortality rate up to 72 h post treatment [56]. However, inhibition of glycolysis resulted in a significant
decrease in cell viability as early as 24 h after treatment [55,56], suggesting only glycolysis is essential
for MSC survival.

2.4. Stem Cell Commitment

Egress from the hypoxic niche is accompanied by stem cell proliferation and commitment or
apoptosis, dependent on the local stimuli. Although there is a large body of evidence regarding
metabolic transitions underlying ESC and induced pluripotent stem cell (iPSC) differentiation into
cardiomyocytes, not much is known about adult stem cells. The energetic requirements of proliferating
adult stem cells and mature cardiomyocytes are believed to be different since cardiomyocytes no longer
need to sustain high proliferation rates and therefore have lower anabolic demands. However, the lower
requirement for anabolic precursors enables cardiomyocytes to catabolize substrates in a more energy
efficient manner within the TCA cycle, yielding large amounts of energy to fuel sustained contraction.

As discussed previously, increase in oxygen tension is a key process regulating CPC proliferation
and lineage commitment through degradation of HIF-α, which subsequently allows pyruvate to
be converted into acetyl-CoA to fuel the TCA cycle. In CPCs, downregulation of HIF-1α leads to
a metabolic shift from glycolysis to mitochondrial OxPhos, resulting in loss of the uncommitted
state [28]. Interestingly, this HIF-α-induced commitment seems to favor cardiomyocyte and endothelial
lineage commitment over smooth muscle or fibroblast generation [28]. Similarly, Sca1+ CPCs undergo
metabolic shift towards OxPhos together with a reduction in glucose consumption, lactate release,
and glycolysis related genes such as GLUT1, MCT4, and PFK2, and an increase in mitochondrial
content, and respiration rate [18].

Since mitochondria mass represents up to 40% of the volume of a mature cardiomyocyte [57],
mitochondrial biogenesis is undoubtedly a crucial process during differentiation and defects in
mitochondria have been shown to impair CPC commitment leading to cell death [58]. Mitochondrial
biogenesis-related gene PGC-1α is upregulated during CPC commitment [18], and its activation by
resveratrol [59] or oleic acids [19] has been shown to improve commitment and enhance reparative
properties of CPCs following acute myocardial infarction. Alternatively, increased mitochondrial
biogenesis was not observed in Sca1+ CPCs after pharmacological activation of the AMPK/PGC-1α
pathway during commitment [18]. In MSC, AMPK activation led to an increase in the expression
of mitochondrial biogenesis markers; however, it was not sufficient to drive their metabolism to
OxPhos [60]. Taken together, these results suggest that, although essential, mitochondrial biogenesis
may not be sufficient to trigger adult stem cell commitment, suggesting a role for additional
molecular processes.

Recently, mitochondrial autophagy (or simply mitophagy), an important process for mitochondrial
reorganization, has also been implicated in CPC commitment [61]. Mitophagy is rapidly induced
upon initiation of cardiac commitment and seems to be required for the formation of a functional
interconnected mitochondrial network by eliminating impaired and immature mitochondria [61].
Furthermore, impairment of mitophagy resulted in mitochondrial fission, increased susceptibility to
oxidative stress-mediated cell death, and reduced CPC retention in vivo [61].

2.5. Substrate Utilization

The adult heart is known as a metabolic “omnivore” able to utilize a wide range of substrates for
energy production. Factors including nutrient availability, developmental/disease stage, and cell-specific
preferences influence substrate choice, which may impact cellular function. For example, PSCs utilize
mostly glucose while fully differentiated CMs generate 70% of their ATP through fatty acid (FA)
oxidation [62]. This shift in substrate utilization seems to be essential for CM differentiation, and
maturation, and is also believed to play a role in CM cell cycle arrest [63].

Cardiac progenitor cells are primarily dependent on glutamine [17,18]. After treatment with
different substrates, Salabei and colleagues [17] showed that stimulation of Sca1+ CPCs with glutamine
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was the most effective to support mitochondrial respiration, cell proliferation and viability. The effects
were reversed by treating the cells with rapamycin, leading to an 80% reduction in glutamine-induced
proliferation [17]. The beneficial effects of glutamine utilization on CPCs are related to the generation
of byproducts of glutamine oxidation. Supplementation with cell permeable α-KG was sufficient
to stimulate both mitochondrial activity and cell proliferation, while inhibiting glutaminolysis led
to a significant decrease in CPC proliferation [17]. A recent study has reported that both glutamine
and glucose together are necessary for the growth and proliferation of Sca1+ CPCs [18]. Similar to
CPCs, many other proliferating cells, such as MSCs [64], utilize glutamine as a source for biosynthesis.
Rather than being a substitute fuel for energy generation, glutamine can supply the TCA cycle with
intermediates that can be used to synthesize new macromolecules that support cell growth [65].
Taken together, these findings suggest that interventions to increase glutamine availability, uptake or
consumption might increase the proliferative and survival capability of stem cells and potentially
impact cardiac repair after transplantation.

Although the influence of fatty acid utilization in PSC and CM metabolism and function is
well-documented, little is known about their role in adult stem cells. This is of critical importance since
adult stem cells are usually expanded in a culture medium containing high levels of glucose and no
fatty acids, whereas after transplantation, plasma levels of glucose are generally low and enriched in
fatty acids. This difference in substrate availability may cause the cells to experience a metabolic shift
and potentially impact their reparative capacities. In this regard, Malandraki-Miller and colleagues [19]
showed that the addition of oleic acid into the culture medium enhanced the maturation of the Sca1+

CPCs by stimulating the PPARα-fatty acid oxidation pathway. Furthermore, the authors observed
an increase in glycolytic metabolism, mitochondrial membrane potential, and glucose and fatty acid
oxidation [19]. In MSC, treatment with physiological levels of different fatty acids revealed that oleic
acid does not impact on cell viability; however, it does protect the cells against palmitate-induced
apoptosis and decreased proliferation [21]. Interestingly, palmitate-induced apoptosis seems to be
associated with a reduction in fatty acid oxidation rates, which was prevented by the addition of oleic
acid [21]. Since MSCs primarily rely on glycolysis for ATP production (97%) [21], the impact of reduced
fatty acid oxidation on proliferation and survival is unlikely to be related to a depletion in energy
production, which suggests an alternate mechanism.

These studies demonstrate how substrate utilization can drive phenotypic changes in stem and
progenitor cells, which may lead to effective strategies to enhance stem cell therapy for cardiac repair.

2.6. Redox Homeostasis

Reactive oxygen species (ROS) are mainly generated because of electron leak from the electron
transport chain during mitochondrial oxidative metabolism. ROS have been known to promote
widespread damage in several cellular components such as DNA, proteins, and lipids. Although initially
recognized as harmful, new evidence suggests that ROS are key regulators of stem cell biology.
This double-edged role seems to be dependent on the amount of ROS that are produced. High levels
are associated with stem cell senescence, premature exhaustion, and apoptotic death while low levels
can modulate the balance between self-renewal and lineage commitment to cardiomyocytes [9,66,67].
Therefore, understanding the fine balance required for maintenance of intracellular ROS and regulation
of adult stem cell function potentially holds significance for cardiac reparative processes [68].

As previously discussed, adult cardiac stem cells are maintained in a quiescent state within
a hypoxic niche, which helps shield them from oxidative stress. In HSC, Meis1 appears to play
a critical role in this process towards transcriptional activation of HIF-1α and HIF-2α, and thus
activating cytoplasmic glycolysis, and antioxidant defense mechanisms to suppress ROS production [29].
Furthermore, treatment with ROS scavengers seem to revert cells back to quiescence [69], suggesting
hypoxic niche favors quiescence via activation of HIF-1-mediated metabolic shift, which reduces
mitochondrial OxPhos, the main source of ROS, and enhances anaerobic glycolysis.



Cells 2020, 9, 2490 8 of 17

As a byproduct of ETC utilization, the increase in ROS production is critical for stem cell
commitment. In Sca1+ CPCs, ROS were directly linked with cardiomyocyte-related gene expression
in vivo while antioxidant treatment partially blocked ROS-mediated commitment. Furthermore,
authors suggested that ROS act, at least in part, through epigenetic modifications related to the
polycomb repressive complex component (BMI1), an important player in DNA repair and redox
regulation [9]. BMI1 was shown to repress a cardiogenic differentiation program. However, an increase
in intracellular ROS modifies BMI1 activity, suppressing target genes related to cell fate decisions [9],
implying ROS levels as key for the balance between stemness and cell fate.

Preconditioning of MSCs with 1-[2,3,4-trimethoxybenzyl]piperazine (TMZ), a drug used to reduce
tissue demand for oxygen, resulted in significant protection against H2O2-induced stress, membrane
damage, and oxygen metabolism. Following adoptive transfer, TMZ-preconditioned MSCs resulted in
an improved heart function and decreased myocardial fibrosis [70]. Although the glycolytic flux was
not assessed in this study, TMZ is believed to act by stimulating anaerobic glucose oxidation in the
ischemic myocardium [71].

Although mitochondria are the main sources of ROS in most cells, NADPH oxidase enzymes
(Nox) are another major contributor. Nox is believed to be an essential component of the cardiac
redox system by generating the necessary amount of ROS to drive cardiomyogenesis. During c-kit+
CPCs commitment, Nox2 and Nox4 levels are low under basal conditions but increase over the course
of commitment, parallel with ROS levels [72]. Interestingly, knocking down Nox4 in either c-kit+
CPCs [72] or ES cells [73,74] was shown to reduce generation of beating cardiomyocytes while exposure
to low levels of ROS by exogenous H2O2 administration seems to revert it, enhancing commitment [73].
Moreover, NADPH oxidase seems to be involved in a feed-forward regulation of ROS generation since
protein levels increase when the cells are treated with ROS [66,74,75].

In addition to changes in ROS production, alterations in the antioxidant balance may also be
involved in regulating cardiomyocyte commitment. Comparing freshly isolated c-kit+ CPCs with
cardiomyocytes, a set of 27 redox genes were divergent, including upregulation of the superoxide
dismutase (Sod1, Sod2) and peroxiredoxin (Prdx2, Prdx3, Prdx5, Prdx6) families, and downregulation
of pro-oxidant p67phox [72]. A separate study identified APE1/Ref-1—a protein involved in DNA repair
and redox balance—maintaining redox status and survival of cardiac stem cells [66]. Furthermore,
Sca1+ CPCs overexpressing APE1/Ref-1 were resistant to oxidative stress, reduced fibrosis and
enhanced cardiac repair 28 days after myocardial infarction [76]. In line, CSCs pre-conditioned
with resveratrol, a natural antioxidant present in red wine, were also shown to increase APE1/Ref-1
expression. Transplantation of these cells leads to enhanced cell survival and engraftment, and
ultimately improved cardiac function up to 4 months after transplantation [77].

3. Metabolism and Cellular Reprogramming

The reprogramming of a fully differentiated somatic cell into iPSC involves profound changes
in several cellular processes including the transcriptome, epigenome, morphological, and functional
programs. In addition, reprogramming requires major metabolic changes to meet the different energetic
and functional requirements of the iPSC (Figure 2). As discussed previously, increased glycolytic
flux of PSCs is important to maintain stemness, while upregulation of OxPhos is necessary for cell
differentiation. Thus, the general trend during reprogramming involves shifting the metabolism back
to a more “primitive” state by decreasing OxPhos and increasing glycolysis [78–80].

During the early phase of reprogramming, the increase in glycolysis is accompanied by a transient
burst in OxPhos activity to promote a temporary hyperenergetic state induced by transient expression
of ERRα, ERRβ, and PGC1α/β [81]. These findings agree with a previous study showing transient
elevation of mitochondrial proteins in cells undergoing reprogramming, and a progressive increase in
glycolysis [82]. One possible mechanism to explain an oxidative burst in the early stages is through
the increase in one of the OxPhos byproducts, ROS. In this respect, Hawkins and colleagues [83]
showed early OxPhos burst increases ROS levels leading to an activation of HIF1-α and subsequently
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promoting a glycolytic shift and glucose redistribution to the pentose phosphate pathway in a process,
at least in part, controlled by KEAP1 and NRF2. Additionally, HIF1-α and HIF2-α activation has
been reported to be required for human fibroblast reprogramming into iPSC [84]. This metabolic shift
seems to be crucial for acquisition of pluripotency since it occurs in the early stages and precedes
expression of pluripotent genes [78,84,85]. At least in part, this metabolic shift may be induced
by some key reprogramming factors such as c-Myc and LIN28, which are known regulators of
energy metabolism and have been shown to enhance glycolysis [86–88] and suppress OxPhos [88].
Moreover, the function of c-Myc in inducing pluripotency can be replaced by the overexpression
of enzymes involved in glycolysis such as LDHA and PKM2, suggesting one of the main roles of
the reprogramming factors is to enhance glycolysis [86]. In the latter stages of reprogramming,
the oocyte factors Tcl1 and Tcl1b1 play an additional role in supporting the metabolic shift and their
upregulation enhances reprogramming efficiency [89,90]. Mechanistically, Tcl1 increases Akt1 activity,
further increasing expression of glycolytic enzymes, while Tcl1b1 inhibits OxPhos and mitochondrial
biogenesis by suppressing mitochondrial localization of the polynucleotide phosphorylase (PnPase).
Thus, contributing to the switch from oxidative metabolism to glycolysis during reprogramming [89].
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Figure 2. Somatic cell reprogramming to induced pluripotent stem cell (iPSC) involves a metabolic
shift from OxPhos to glycolysis. The early expression of ERRα, ERRβ, and PGC1α/β precedes a
metabolic burst leading the cells to a hyper-energetic state, which is followed by a progressive increase
in glycolysis and decrease in OxPhos.

Mitochondria biology that regulates cellular metabolism also has a fundamental role in
reprogramming. Along with a reduction in OxPhos, mitochondrial mass and enzymes involved in the
ETC gradually decrease during the course of reprogramming [82,91]. Morphologically, mitochondria
shift back to a more ESC-like phenotype, altering from an elongated tubular shape with well-developed
cristae to a smaller sized and spherical form with poor-developed cristae [92]. In addition, mitochondria
cellular distribution changes from a complex mitochondria network distributed within the cytoplasm
to a primarily peri-nuclear localization [92]. The mechanisms underlying this mitochondria remodeling
remain unclear and appear contradictory in some ways. Mitophagy, for example, has been shown to
play an important role by selectively clearing mature mitochondria as new immature mitochondria are
produced [91,93,94]. The mitophagy process is governed in either an Atg-dependent manner through
the repression of mTOR [93] or in an Atg-independent manner through the activation of AMPK [91].
On the other hand, the decrease in mitochondria size has been credited to mitochondria fragmentation,
which was attributed to mitochondrial fission through the expression of pro-fission dynamin-related
protein 1 (DRP1), induced by ERK1/2 in early reprogramming [95]. In a more recent study from the same
authors, c-Myc was shown to indirectly induce phosphorylation of DRP1, resulting in mitochondrial
fission and the hybrid energetic state seen in the early stage of induction of pluripotency [96].

Taken together, energy metabolism is emerging as more than a mere consequence, but a critical
driver in somatic cell reprogramming into iPSC. In addition, a metabolic shift from OxPhos to glycolysis
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is crucial not only in maintaining stemness (as previously discussed), but it is also essential in the
acquisition of pluripotency and may have profound implications for iPS-based therapeutics for
cardiac repair.

4. Metabolic Reprogramming as a Strategy for Cardiac Repair

The role of metabolism in regulating the function of stem cells has opened new avenues to
enhance the effectiveness of cell therapy for cardiac repair. Strategies to mitigate the metabolic shock
experienced by stem cells after transplantation, as well as to enhance their adaptation to a new ischemic
environment, can potentially alleviate cell death and improve success of the therapy (Figure 3).
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Figure 3. Cell-based therapies typically rely on isolating highly glycolytic stem cells from hypoxic
niches followed by ex vivo expansion under high oxygen and glucose levels, which shifts energy
generation towards a more oxidative metabolism. Upon transplantation, however, donated stem cells
are exposed to an ischemic cardiac milieu characterized by an intense deprivation in oxygen and
glucose essential for mitochondrial activity. This rough transition from in vitro to in vivo leads the cells
to experience a metabolic stress driving transplanted cells towards apoptosis. Thus, the enhancement
of stem cell metabolism holds a great promise towards promoting metabolic flexibility and improving
cell survival and therapeutic efficacy.

One of the first studies to modify stem cell metabolism to improve cardiac function after injury
was published in 2003 by Mangi and colleagues [10]. In this study, the authors transplanted genetically
engineered MSCs overexpressing Akt into an ischemic myocardium resulting in improved cardiac
function and decreased inflammation, fibrosis, and hypertrophy, which was associated with a higher
MSC survival and retention [10]. Akt is known to regulate glycolysis in stem cells [66,89,97] and
MSCs overexpressing Akt have also been shown to have increased glucose metabolism [98]. Thus,
overexpressing Akt may push the cells to exhibit an increased glycolytic state, enhancing survival in
the ischemic myocardium.

Downstream Akt, Pim-1 kinases have been reported to regulate energy metabolism and cell
growth by increasing the protein levels of both c-Myc and PGC-1α [99]. Interestingly, overexpression
of Pim-1 either in c-kit+ bone-marrow derived cells (BMCs) [11], c-kit+ mCPCs [12], or c-kit+ hCPCs
isolated from patients with heart failure [13,14] has been shown to enhance cardiac repair in both
rodent and porcine models of myocardial infarct. In each case, overexpression of Pim-1 resulted
in a significant increase in cell survival and proliferation leading to improved cardiac function and
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structure after transplantation into the infarcted heart. Among the possible mechanisms involved in the
salutary effect of Pim-1 overexpression, the authors showed a progressive enhancement in metabolic
activity [11–13].

As previously discussed, stem cells are typically expanded under normoxia and subsequently
transplanted into an ischemic tissue leading to a metabolic shock, which negatively impacts cell
retention. Preconditioning MSCs in hypoxic conditions prior to transplantation has been shown to
improve cell survival and retention [100]. The beneficial effect of the hypoxic treatment was mainly
credited to changes in cell metabolism towards a more glycolytic state, and subsequent alteration of
several metabolites [100]. Indeed, inhibition of mitochondrial respiration leads to a compensatory
increase in glycolytic and colony forming capacities in human HSCs and BMCs, independent of ATP
production [101].

However, key considerations must be made regarding the therapeutic approach for patients with
underlying metabolic dysfunction. Derlet and colleagues [101] have shown that the glycolytic capacity
of bone marrow cells derived from chronic heart failure (CHF) patients is reduced compared to healthy
controls, impacting the colony forming ability and proliferation rates. Moreover, ex vivo inhibition of
glycolysis further reduced the pro-angiogenic activity of transplanted cells in a hind limb ischemia
model in vivo [101]. Similarly, induction of diabetes profoundly impacts functional characteristics of
Sca-1+ CPCs and, importantly, cellular metabolism. Diabetic Sca-1+ CPCs exhibited impaired pentose
phosphate pathway (PPP), and inhibition of the Akt/Pim-1/Bcl-2 signaling pathway along with reduced
abundance and proliferation. Pharmacological restoration of PPP resulted in improved survival and
functional ability of the cells, suggesting metabolic reprogramming as a strategy for enhancement of
diabetes affected cell function [41].

As an emerging field, only a few studies are currently available, and more research is still needed on
how metabolism can be explored to enhance stem cell function and improve therapy for cardiac repair.

5. Conclusions

Beyond fueling cells with ATP, energy metabolism has emerged as a key process in supporting
stem cell function and commitment, playing an important role in both the acquisition and maintenance
of stemness. The balance between glycolytic and oxidative metabolism involves a complex network
regulation that connects the nucleus, cytoplasm, and mitochondria and provides a wide arsenal
of molecules that can be manipulated to help stem cells survive the ischemic environment. Thus,
reprogramming stem cell metabolism represents a new frontier to enhance stem cell therapy for
cardiac repair.
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