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Neutrophils-related host factors associated with
severe disease and fatality in patients with
influenza infection
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Severe influenza infection has no effective treatment available. One of the key barriers to

developing host-directed therapy is a lack of reliable prognostic factors needed to guide such

therapy. Here, we use a network analysis approach to identify host factors associated with

severe influenza and fatal outcome. In influenza patients with moderate-to-severe diseases,

we uncover a complex landscape of immunological pathways, with the main changes

occurring in pathways related to circulating neutrophils. Patients with severe disease display

excessive neutrophil extracellular traps formation, neutrophil-inflammation and delayed

apoptosis, all of which have been associated with fatal outcome in animal models. Excessive

neutrophil activation correlates with worsening oxygenation impairment and predicted fatal

outcome (AUROC 0.817–0.898). These findings provide new evidence that neutrophil-

dominated host response is associated with poor outcomes. Measuring neutrophil-related

changes may improve risk stratification and patient selection, a critical first step in developing

host-directed immune therapy.
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Influenza is one of the most prevalent respiratory virus infec-
tions in the world, with one out of five people suffering from it
annually1. Severe influenza, the most serious form of influenza

infection, is characterized by lung inflammation, refractory
hypoxaemia, and respiratory failure. The change from a mild/
moderate, self-limited “flu” illness toward severe influenza
represents a critical transition point in the clinical course of
influenza infection. The initial mild “flu” begins in the upper
airway, where tissue damage is minimal and the infection is well
controlled by an effective, local immune response. The spread of
infection to the lower airway is accompanied by a dysregulated
local and systematic immune response (both innate and adaptive
immunity)2–10. The spread occurs rapidly (within days) resulting
in airway inflammation and extensive alveolar damage. When
fully developed, severe influenza leads to significant respiratory
complications, such as acute respiratory distress syndrome or
secondary bacterial pneumonia. Mortality of severe influenza is
high, ranging from to 10% (seasonal influenza) to 65% (in pan-
demic H1N1 patients needing extracorporeal membrane oxyge-
nation support)11,12. Early antiviral treatment may improve the
outcome13. However, mortality remains high in severe cases
because the influenza-related lung inflammation is driven pri-
marily by immunopathology2–10.

Host-directed therapy offers a promising new approach to
target immunopathology and may reduce the mortality of severe
influenza14,15. However, a myriad of immunological abnormal-
ities have been identified in severe influenza and it is unclear
which of these should be targeted by host-directed therapy9,16. To
identify host factors associated with severe disease, a unifying
framework of influenza host response is needed. A rational
approach to developing such framework is to use a network
analysis approach to identify all disease-relevant host factors and
rank these factors in the order of their relative contribution to
immunopathology/outcomes17. The top-ranking host factors may
then be targeted by using host-directed therapy—as has been
successfully demonstrated in HIV medicine18.

Gene-expression analysis provides a unifying framework in
understanding the host factors associated with influenza patho-
genesis. A common approach is to measure gene expression of
circulating leukocytes in infected patients19–21. Several recent
studies have adopted this approach, but these studies were limited
by including only asymptomatic individuals21, patients with mild
illness19 or those presenting in early stage of the disease20. In this
study, we use a network analysis approach to analyze the host
response of circulating leukocytes in a large cohort of moderate-
to-severe influenza patients. Using weighted gene co-expression
network analysis, we identify host factors that were statistically
significantly associated with severe influenza infection. We then
quantify each factor’s contribution to infection by ranking them
based on their strength of association with disease severity. Here,
we report that this approach produces a global overview of the
immunological landscape of the influenza infection and enable us
to identify several key biological processes that underpin the
development of severe influenza and fatality.

Results
Patient characteristics. In this prospective study, we screened
720 patients who met the World Health Organization’s criteria
for influenza-like illness. After initial evaluation, 154 patients had
clinical and virological evidence of influenza infection. Of the 154
collected blood samples, 107 samples were randomly selected for
microarray analysis; the remaining 47 samples were reserved for a
subsequent validation analysis (Fig. 1).

Of the 107 samples assigned to microarray analysis, 63 were
from patients with moderate infection who did not receive

mechanical ventilation (referred as the “moderate group”) and 44
from patients with severe infection who developed respiratory
failure requiring mechanical ventilation (referred as the
“severe group”). Samples from healthy donors were also included
(n= 52).

Initial analyses showed that patients in the severe group were
more likely to have received antiviral treatment (p < 0.0001) and
to have developed respiratory failure (p < 0.0001) (Table 1). The
severe group also had a much higher morbidity/mortality (e.g.,
organ failure, length of stay, and mortality) compared to the
moderate group. However, other than infection severity, the
moderate and severe groups did not differ significantly in factors
that might affect the gene-expression of host response, including
age, gender, pre-existing illnesses, duration of symptoms, or the
types of virus strains. (Table 1).

Host response in moderate and severe influenza infection. We
applied principal component analysis (PCA) to the blood tran-
scriptome data to visualize the overall trend in gene-expression
values across all samples. This preliminary examination suggested
that gene-expression differed between phenotypes (healthy con-
trols, moderate, and severe) (Fig. 2). We then assessed whether
this difference could be due to cell count variations between these
groups, since gene-expression difference may be attributed to
altered cell counts, altered transcripts per cell or both. This
analysis showed that the cell count did not account for the
observed difference in gene-expression since leukocytes in both
groups were within normal ranges: moderate (8.1 × 1000/mm3)
and severe (9.6 × 1000/mm3). Furthermore, leukocyte counts
between these two groups were not significantly different (p=
0.76) (Supplementary Fig. 1).

Since peripheral blood consists of many cell subsets (e.g.,
dendritic cells, B cells, monocytes, and CD4/CD8 lymphocytes),
the different cell compositions between moderate and severe
groups might also account for the observed gene-expression
difference. The cell subsets were not routinely measured in
clinical practice and thus were not available for analysis in this
study. To circumvent this problem, we decomposed the
peripheral blood transcriptome into relative abundances of cell
subsets by measuring gene-expression markers of 33 cell subsets
(using digital cell quantification). This analysis showed that there
were no differences in the relative abundance of cells subsets
between the moderate and severe groups, with the exception of
pro-erythroblasts (Supplementary Fig. 2). This finding, together
with no significant difference in baseline characteristics or
premorbid comorbidities (between the moderate and severe
groups) as noted earlier, indicate that the observed gene-
expression differences in PCA were mainly due to altered cellular
states associated with infection severity, rather than with cell
numbers, cellular subset composition, or patient-related factors.

Network analysis revealed five different biological themes. We
next performed weighted gene co-expression network analysis
(WGCNA) to identify disease modules associated with infection
severity (Fig. 1). The WGCNA approach takes into consideration
the inter-relationship between/within gene pathways, thus
allowing us to quantify the complex interplay between cellular
networks22. This analysis revealed 20 gene-expression modules
(Fig. 3a). Of these 20 modules, 13 were statistically significant
when correlated with infection status. Of these 13 modules, 6
modules contained more than 300 genes, which represented an
adequate number of genes suitable for further analysis.

We noted that these six modules were well separated in gene-
expression space (Fig. 3b), which suggested that the influenza
host response is driven by multiple host factors, rather than a
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single dominant process. Further examination of the genes within
these modules indicated that the modules corresponded broadly
to five different biological themes (antiviral response, immune
response, cell cycle, neutrophils, and cell metabolism) (Fig. 4).
One module, the indeterminate module, did not display a

discernible biological theme. Within each module, multiple cell
types were represented (e.g., lymphocytes, monocytes, and
natural killer cells). However, the neutrophils module was a
notable exception because most genes were neutrophil-related
(only a few genes were related to non-neutrophils leukocytes).

Patient recruitment Sample allocation

720 patients screened by WHO
criteria for flu-like illness

675 were elligible; received testing
for virus (multiplex viral PCR) and
provided blood for PAXgene tubes

154 were influenza
positive

491 were influenza
negative

Excluded

Follow-up at 3 months after initial
illness; clinical data was collected

from medical records of all patients

Two consultant physicians
independantly evaluated clinical

data and assigned severity

Presence/absence of respiratory
failure (intubation and mechanical

ventilation)

No Yes

Moderate
influenza
(n=103)

Severe
influenza
(n=51)

154 influenza
patients included in

analysis

Mortality prediction model

Validation set
Moderate (n = 41)

Severe (n = 6)

Discovery set
Moderate (n = 19)
Severe (n = 22)

Healthy controls
(n = 37)

Microarray analysis
Moderate (n = 63)
Severe (n = 44)

Microarray analysis
Healthy controls (n = 52)

Main analysis
(n = 159)

Main analysis workflow

Does data
structure
display
natural

grouping
(”modules”)?

Calculate
overall

expression
level of each

module
(”eigengene”)

Quantify
module

contribution
to infection
(”eigengene
differential”)

Identify
modules that
correlate best
with infection

severity
(”disease
modules”)

Pathway
analysis 

Weighted gene co-expression
network analysis

ANOVA with post hoc pairwise
comparison t-test

Network analysis

Fig. 1 Study scheme. Flow chart shows patient recruitment, sample allocation, and analysis workflow
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We asked whether the biological themes observed in these
modules could be related to time-dependent changes in blood
composition during infection. Influenza infection is known to be
associated with a relative lymphopenia/neutrophilia, caused by a

leukocyte redistribution between blood and peripheral compart-
ments (e.g., bone marrow). This redistribution is usually transient
and appears only during the first 2 days of influenza infection 23.
For most patients in this study, collection of blood samples
occurred between day 4 and day 6 of infection (Table 1), thus
making it unlikely that the observed biological themes were
related to leukocyte redistribution. Indeed, leukocyte differentials
in these patients did not reveal any evidence of lymphopenia or
neutrophilia. Moreover, an analysis of variance of the module
expression levels did not detect any changes related to cell count
variability (see below), further supporting our hypothesis that the
observed biological themes reflected functional changes in cell
states, rather than leukocyte redistribution or changes in blood
composition.

Host response correlated with infection severity. Next, to
identify the main determinants of module’s gene expression, we
performed an analysis of variance (ANOVA) using the overall
expression level of each module (“eigengene”) as dependent
variable and host factors (infection severity, age, and cell counts)
as independent variables. This analysis showed that infection
severity, but not age or cell counts, was the main determinant of
modular expression in neutrophils, cell cycle, and immune
response modules (Fig. 5). As infection severity increased from
moderate to severe, these three modules showed statistically sig-
nificant changes in their gene-expression levels. In contrast, cell

Table 1 Demographic and clinical characteristics of the study groups

Healthy controls Moderate Severe p Valuesa

Number 52 63 44
Gender (males/females) 19/33 27/36 17/27 0.69
Age/years (mean+ SD) 43.5 (14.5) 52.6 (19) 46.5 (16) 0.11
Duration of onset 4.0 days 5.6 days 0.19
Symptoms
Cough 25 (40%) 37 (84%) <0.0001
Fever/chills 16 (25%) 32 (73%) <0.0001
Dyspnea 14 (22%) 44 (100%) <0.0001
Malaise/aches 22 (35%) 28 (64%) <0.0001

Pre-existing illnesses
Asthma 8 (13%) 9 (20%) 0.25
Chronic lung disease 7 (11%) 9 (20%) 0.12
Ischemic heart disease 12 (19%) 6 (14%) 0.45
Hypertension/previous CVA 11 (17%) 5 (11%) 0.31
Diabetes 8 (13%) 9 (20%) 0.25
Cancer/on chemotherapy 5 (7.9%) 2 (4.5%) 0.57

Virology
Positive influenza PCR 63 (100%) 44 (100%) 0.99
Influenza A subtype 53 (84%) 40 (91%) 0.19
Influenza B subtype 10 (16%) 4 (9%) 0.19
Antiviral treatment (Tamiflu) 3 (5%) 40 (91%) <0.0001

Respiratory support
Mechanical ventilation 0 (0%) 42 (95%) <0.0001
Noninvasive support (CPAP) 0 (0%) 2 (5%) <0.0001

Secondary complications
Bacterial pneumonia 0 (0%) 7 (16%) <0.0001
Shock 0 (0%) 12 (27%) <0.0001
Acute renal failure 1 (1.6%) 6 (14%) 0.0006
Multiple organ failure 0 (0%) 14 (32%) <0.0001

Outcomes
Hospitalization 45 (71%) 44 (100%) <0.0001
Admission to ICU 7 (11%) 44 (100%) <0.0001
Length of ICU stay 3.5 days 18.7 days 0.015
Length of hospital stay 1.4 days 26 days <0.0001
Death 0 (0%) 9 (20%) <0.0001

ap Values are calculated by comparing moderate and severe groups using Mann–Whitney test for continuous variables or chi-square test for categorical variables. ICU denotes intensive care unit

Group
flu_mod
flu_svre
hlty_ctrl

P
C

2:
 9

%

PC1: 18%

100

50

–50

100

–150

–200 –100 0 100

0

Fig. 2 Principal component analysis (PCA). Unsupervised principal
component analysis was performed across all samples (including healthy
controls, moderate, and severe groups) using normalized log2 gene-
expression levels. Based on two principal components (PC1 and PC2),
moderate influenza (yellow data points) and severe influenza (red data
points) showed evidence of separation in gene-expression space. The
source data are available in Gene Expression Omnibus (GSE 101702)
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metabolism, antiviral response, and indeterminate modules did
not show statistically significant changes in modular expression
(cell metabolism p= 0.12, antiviral response p= 0.11, inde-
terminate p= 1.00), indicating that these modules were not
associated with the severe infection. Put together, these findings
suggest that all six modules played a role in the onset of influenza

infection (from healthy state transitioning to moderate infection),
but only neutrophils, cell cycle, and immune response modules
were associated with severe, life-threatening illness.

To further quantify the extent of each module’s association
with severe disease, we calculated the differences in the module’s
expression levels (“eigengene differentials”) between healthy state

Statistical significance (–log p-value)

Network analysis
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Fig. 3 Main modules of host response to influenza infection. a Overview of main study findings. Weighted gene co-expression network analysis identified
20 modules. Horizontal bars represent statistical significance of eigengene values in each module, with disease severity as a factor in the ANOVA model.
Dendrogram (left and also magnified below) shows gene numbers in each module. Six modules were kept because they were statistically significant in
ANOVA model (p < 0.01) and met minimal gene number criteria (>300) for further analysis. Biological themes of these six modules are shown (right); one
module did not show clear biological theme (hence named “Indeterminate”). b Gene-expression space in the dendrogram (based on an enlarged version of
the dendrogram in above left). The statistically significant modules (n= 6) are highlighted in color; their number of genes are indicated by numbers inside
the circles (circle sizes are proportional to statistical significance). The nonstatistically significant modules (n= 14) are shown as branches without circles;
their number of genes are given at the foot of each branch. Gene-expression distance is indicated by (1) location in the dendrogram tree (modules
within the same branch are more similar than those from different branches) and (2) dissimilarity scale (left-hand side of the dendrogram), which indicates
the degree of gene connectivity between modules. c (Left) Eigengene differentials of moderate infection: eigengene differentials in each module represent
the differences of eigengene mean expression levels between moderate infection and healthy controls (graphed with an offset of 0.2). (Right) Eigengene
differentials of severe infection: eigengene differentials in each module represent the differences of eigengene mean expression levels between severe and
moderate infection (graphed with an offset of 0.2). Stars above columns indicate statistically significant differences (by pairwise t test) between the
groups. The actual levels of eigengene differentials between severe and moderate infection are also shown in an inserted table on the right. The source data
are available in Gene Expression Omnibus (GSE 101702)
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and moderate influenza, or between moderate influenza and
severe influenza (Fig. 3c). This calculation revealed that, as
infection severity increased from moderate to severe, the
neutrophils module displayed the highest increase in modular
expression. Since moderate and severe influenza patients did not
differ in their absolute neutrophil counts (Supplementary Fig. 1),
this increase likely reflected differences in neutrophil activation,
rather than changes in neutrophil cell numbers.

Neutrophil module showed neutrophil activation and migra-
tion. Further examination of the neutrophils module confirmed
the presence of neutrophil activation, as evidenced by the
detection of a neutrophil transcriptomic signature that is typically
found in activated neutrophils homing toward infected lung tis-
sue in acute lung injury24. This “activation” signature included an
increased expression in genes involved in delayed apoptosis
(BCL2A1 and SMPD3), activated inflammatory pathways
(CLEC4D, GPR84, S100A12, and S100A8) and increased neu-
trophil extracellular traps (GADD45A, HIST1H4H, and HIS-
T2H2AA4) (Fig. 4a).

Activated neutrophils usually migrate toward the infected lung
after influenza infection25. Consistent with this, we detected genes
within the neutrophils module that are involved in chemotaxis,
neutrophil–endothelium interaction and transendothelial migra-
tion. These migration genes, include CD177 (neutrophil adhesion
to endothelium and transmigration), PVRL2 (transendothelial
migration), VNN1 (hematopoietic cell trafficking), GPR84
(neutrophil chemotaxis), MMP9 (neutrophil activation and

migration), S100A8 and S100A12 (neutrophil recruitment,
chemotaxis and migration) (Fig. 4a).

Since an increased neutrophil activation is sometimes asso-
ciated with a cytokine-mediated inflammation in influenza
infection26, we searched for transcriptomic evidence of “hyper-
cytokinaemia”, a phenomenon frequently reported in severe
influenza patients14. We did not find strong evidence of
hypercytokinaemia on a gene-expression level (Fig. 4d). The
absence of pro-inflammatory gene upregulation might be related
to the sampling method used in this study, in which only
peripheral blood was measured (whereas the infected lung is
thought to be the main source of inflammatory cytokines).

Immune response module revealed broad downregulation. In
contrast to the neutrophils module, the immune response module
showed a broad downregulation in gene expression (Figs. 4b and 5).
This downregulation included key genes involved in innate and
adaptive immunity, such as GZMH, KLRB1, SH2D1B (NK cells
function), CCR7 (T cells activation/homing), TCF7 (T cell differ-
entiation), IL2RB (T cell-mediated immunity), CX3CR1 (lympho-
cyte migration and monocytes survival), GNLY (T cell cytotoxicity),
GZMB (cytotoxic lymphocyte-induced apoptosis of infected cells),
KLRG1 (NK cells-mediated activation of virus-specific CD8 lym-
phocytes), and FGFBP2 (cytotoxic lymphocyte-mediated
immunity).

Downregulation of gene expression was also observed in genes
associated with CD4/CD8 T cells, which are critical cells required
for viral clearance. This downregulation was more marked in the
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severe group than the moderate group (Supplementary Fig. 3). In
addition, a number of genes related to T cell receptor signaling
were also downregulated (Supplementary Fig. 4).

The above findings indicated reduced expression across both
innate and adaptive immunity, a phenomenon typically observed
in patients with severe infection27. HLADR downregulation, a
well-established marker of immune downregulation28, showed
that this downregulation was more marked in the severe group
than the moderate group (Supplementary Fig. 5). This finding
was also consistent with the ANOVA analysis above (Fig. 5) and
was confirmed by pathway analysis (see below). It was also in
keeping with our observation that severe influenza patients had a
significantly higher incidence of secondary complications known
to be associated with immune suppression, including bacterial co-
infection and multiple organ failure 29 (Table 1).

Cell cycle pathway suggested host–virus interaction. The cell
cycle module displayed the second highest increase in modular
expression from moderate-to-severe influenza. Examination of
the genes within this module revealed changes in several critical

transition points in cell cycle pathways (Fig. 6), which were
previously identified in influenza infection30–32. These changes,
included delayed transition of host cell from G0 to G1 phase and
downregulation of Cycling D, a key regulator of early cell cycle
G1 phase31,32. These changes are in keeping with findings of
several previous studies, which showed that cell cycle transition
points could be manipulated by influenza virus to facilitate viral
survival and to escape host inhibition30–32.

Pathway analysis confirmed module biological themes. Pathway
analysis was performed in all 6 modules, including the neu-
trophils (783 genes), cell cycle (408 genes), immune response
(2759 genes), cell metabolism (645 genes), antiviral response (522
genes), and indeterminate (325 genes) modules. This analysis
confirmed our earlier findings in that the neutrophils module
showed neutrophil migration toward injury (e.g., chemotaxis,
neutrophil–endothelium interaction, and transendothelial
migration), the immune response module showed downregulated
immune pathways, the cell cycle module, and the antiviral
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module showed upregulated pathways (Fig. 6, Supplementary
Fig. 6).

The pathway analysis revealed a marked concordance between
our observations and influenza-related mechanisms previously
reported, including changes in a large number of interferon-
derived genes (Figs. 4c and 5). In addition to the interferon
pathways, the pathway analysis identified other pathways that
have been previously reported, including increased IL-10
signaling33, reduced innate immunity7, impaired CD4 and CD8
response4–6 and reduced natural killer cell function8. The
pathway analysis also identified several mechanisms that have
not been previously reported, including downregulation of several
key T cell functions (e.g., cell activation/differentiation and Th1/
Th2 differentiation) and reduced antigen presentation (MHC
class II), both of which were consistent with our earlier findings
of downregulated immune function.

Internal and external validation. We performed leave-one-out
cross-validation of three main modules (neutrophils, cell cycle,
and immune response) (Supplementary Method). To be con-
sistent with the original analysis, all samples included in the
WGCNA (63 moderate influenza and 44 severe influenza sam-
ples) were also used in the cross-validation. The correct classifi-
cation rate (i.e., predicting whether an unidentified sample
belongs to a moderate or severe patient) was computed during the
cross-validation. To ensure the findings were not affected by the
choice of the prediction algorithm, we deployed seven machine-
learning algorithms during the cross-validation process (Supple-
mentary Table 1). The results of this cross-validation showed that
all three modules performed well in predicting class membership
(moderate vs. severe). Notably, most algorithms consistently
identified the neutrophils module as the best performing module
in distinguishing between moderate influenza and severe influ-
enza samples (Supplementary Table 1).

We performed RT-PCR validation of the microarray findings
on a small number of selected genes (see Supplementary
Method). The RT-PCR measurements showed that, on these
selected genes, microarray data correlated well with PCR data
(Supplementary Fig. 8). We also assessed the protein expression
of the CD177 gene, the most upregulated differentially expressed
gene in patients with severe influenza (Fig. 7a). Blood samples
from influenza infected patients in a separate study (n= 26) were
used for this purpose. Using flow cytometry analysis (Supple-
mentary Method), we found that CD177 protein expression in
blood also distinguished between moderate and severe influenza
(p= 0.038) (Supplementary Fig. 9).

We performed external validation by downloading the full
microarray dataset of a similar study (GSE 111368). This external
dataset was comparable to our study in terms of sample size (107
vs. 109) and infection severity (severe, moderate, and healthy
controls). Because the two datasets used different microarray
platforms (Agilent vs. Illumina), we restricted our analysis to the
probes represented in both microarray platforms. This analysis
revealed three major findings. Firstly, among the 20 most highly
upregulated, differentially expressed genes (moderate vs. severe),
there was 80% concordance between the two datasets (Supple-
mentary Table 2). Notably, many of these concordant genes
encode proteins relating to neutrophil functions, indicating there
was biological similarity between the two datasets among the top-
ranking genes. Secondly, among all the differentially expressed
genes common to both datasets (a total of 356 upregulated and
downregulated genes), pathway analysis revealed two major
themes similar to our original finding—for the upregulated genes,
the main biological theme in both datasets was excessive
neutrophil activation, and for the downregulated genes, the main

biological theme in both datasets was a reduced immune response
(Supplementary Table 3). Thirdly, representative genes related to
these two themes (neutrophils and the immune response)
discriminated between moderate and severe influenza in both
datasets (Supplementary Fig. 10).

Neutrophil activity predicted patient outcome. The findings
presented heretofore indicate that, among the six main modules, the
neutrophils module showed the strongest association with disease
severity (Figs. 3c and 5). Recent animal studies suggest several
possible mechanisms to explain this strong association, including
the possible role of neutrophils extracellular traps (NETs) in causing
lung injury in influenza25,34. In keeping with this, we found that the
top 30 differentially expressed genes (Supplementary Fig. 7) con-
tained many NETs-related genes, including defensin, myeloperox-
idase, elastase, neutrophil gelatinase and cathepsin, all of which are
well-known markers of NETs 35.

Given the prominent roles displayed by neutrophil-related genes
in our data, and the previously reported etiological link between
neutrophil activity and influenza severity25,34, we hypothesized that
changes in neutrophil state could predict patient outcome. To test
this hypothesis, we performed a separate study to evaluate whether
changes in neutrophil gene expression could accurately predict
influenza mortality in our patients. CD177 was selected as a
representative gene of neutrophil activation state because CD177 is
a neutrophil-specific marker 36 and importantly, it was the most
highly differentially expressed gene in severe infection (Fig. 7a). The
association between CD177 expression levels (measured by real-
time quantitative PCR) and patient outcomes (e.g., mortality) was
measured by area-under-the receiver–operator curve, using the
established method37. Two independent datasets were used in this
analysis; a “discovery set” consisted of 41 patients from the original
microarray analysis (the other remaining samples did not contain
enough RNA), and a “validation set” consisted of 47 patients for
whom blood samples were not used in the original analysis (Fig. 1,
Supplementary Table 4).

This analysis showed that the CD177 gene had a significantly
higher expression in nonsurvivors than survivors (Fig. 7b).
Furthermore, nonsurvivors had a significantly higher number of
neutrophils in their peripheral blood (Fig. 7c), and this was
associated with a greater degree of oxygenation failure in their lung
(Fig. 7d). Importantly, area under the curve (AUC) analysis of the
receiver operating characteristic curve (Fig. 7e, f) showed that
CD177 expression predicted influenza-related deaths in both the
discovery set (AUC 0.817, 95% confidence interval: 0.602–0.921)
and the validation set (AUC 0.898, 95% confidence interval:
0.769–0.957). Based on Youden index, CD177 displayed sensitivity
0.80 (95% confidence interval 0.28–0.99), specificity 0.75 (95%
confidence interval 0.58–0.88), positive predictive value 0.31 (95%
confidence interval: 0.18–0.48), and negative predictive value 0.96
(95% confidence interval 0.82–0.99). In addition, CD177 expression
better discriminated survivors vs. nonsurvivors than the traditional
clinical score APACHE (AUC 0.625, 95% confidence interval:
0.230–0.843) (Fig. 7g, h). Collectively, these findings support our
hypothesis that an excessive neutrophil activation state was linked
to a poor outcome in influenza infection.

Discussion
Numerous host factors contribute to the pathogenesis of influenza
infection. However, the relative contribution of individual host
factor remains poorly defined9. This uncertainty represents a major
roadblock in the design of host-based drug therapy, which has long
been recognized as a priority in the global effort to reduce
influenza-related mortality. Here, we assembled a large cohort of
influenza-patients with well characterized phenotypes in whom we
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identified six modules of the systemic host response associated with
influenza infection. Three of the six modules (neutrophils, cell cycle
and immune response) showed an association with disease severity.
Of these three modules, the neutrophils module displayed the
highest correlation with disease activity. Within the neutrophils
module, we identified several key pathogenic pathways in circu-
lating neutrophils, including neutrophil extracellular traps forma-
tion and neutrophil-inflammation, both of which have been
previously implicated in the pulmonary pathogenesis of severe
influenza25,34. Furthermore, we found that excessive neutrophil
activity was present in patients with severe respiratory failure and
that increased expression of neutrophil activation marker could
predict influenza-related fatality. Collectively, these findings provide
a clinically relevant framework to better understand influenza

pathogenesis and revealed a previously under-appreciated link
between neutrophils and severe influenza infection.

An important caveat is warranted in the interpretation of our
findings—that causality cannot be inferred from our findings.
This is due to two main reasons. First, this is a single time point
study; no longitudinal data is provided. Second, the patients were
recruited relatively late in the course of their illness; patients from
an early phase of the infection were under-represented in the
cohort (since symptoms were not severe enough or the patient
had not sought medical attention). Due to these reasons, it
remains impossible to conclude whether the observed findings
(e.g., neutrophil activation) were a cause or a consequence of
severe disease. A longitudinal analysis could address these issues
since samples can be collected at symptom onset and
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continuously until respiratory failure occurs (from subclinical
state, to symptom development and finally to respiratory failure).
This approach captures the time-dependent dynamics of the host
response, which may be more informative.

The study findings highlight the dichotomous roles of host
response and add nuance to our current understanding of influenza
infection. Immunologists have long agreed that the same host fac-
tors responsible for lung injury are also critical for efficient control
of influenza virus replication2. For example, excessive neutrophil
response is associated with severe influenza, as observed in our
study and in previous reports25. However, a robust neutrophil
response is also a necessary part of the host defense35. Indeed, this
study shows that patients with moderate influenza had evidence of
neutrophil activation, albeit only modestly. This finding con-
solidates the current view that the host response operates on a
continuum (from benefit to harm), and that preserving some degree
of a beneficial host response along this continuum should be an
important consideration in the design of host-directed therapy.

The main strengths of this study are its large sample size, its
relevant clinical context and the global view of the host response
generated from within this context. The large sample size enabled
us to examine the full spectrum of infection severity, ranging
from moderate influenza to severe influenza-induced lung injury.
The use of whole blood sampling helped us generate an integrated
view of the leukocyte-mediated host response by preserving the
interactions between different leukocyte subsets, which provides a
realistic measure of how immune cells interact during infection.
The transcriptome analysis provided a broad coverage of gene
functions, thereby allowing a systematic interrogation of many
pathways (although we are cognizant of the limitations of tran-
scriptomic analysis, including the need for further validation on a
protein level). Collectively, these study design features allowed us
measure influenza host response in a clinically relevant context
across a broad array of immune cells.

The findings of this study are in line with previous animal
studies, which suggested that neutrophils play a prominent role in
causing severe disease in influenza infection25,34. However, neu-
trophils are unlikely to be the only host factors that influence
disease severity; a more plausible scenario is that severe disease
results from the interplay between neutrophils and other host
factors38. In this study, we attempted to capture this interplay by
using an “unsupervised” network analysis approach (WGCNA).
Typically, an “unsupervised” approach does not use a priori
phenotype information (e.g., infection severity) or prior
assumption about the underlying biology39. Thus, it allowed the
generation of an unbiased view of all pathways expressed in
circulating leukocytes. Another advantage of the WGCNA
approach is that it treats the host response as a “whole system”,
rather than individual components with few interconnectivities.
With these methodological considerations, an integrated, global
view of host factors was generated from our analysis allowing us
to identify the main host factors associated with disease severity.

This global analysis allowed us to identify neutrophils as the
dominant host factors associated with patient outcome. Similar
findings have been provided by studies conducted in animal
models25,34. It remains an intriguing question to ask whether
modulation of these host factors, such as the neutrophil response,
could modify disease outcome. This question has recently been
investigated in an animal model40; but a randomized controlled
clinical trial in humans would provide the most definitive answer.

As with all observational studies, this study could be biased due
to additional confounders. Patient level confounders were likely;
however, in our analysis, both the moderate and severe groups
were well balanced in baseline characteristics. Cell level con-
founders were also possible; however, our analyses had carefully
considered and allowed for the possible bias introduced by cell

number variability. As a further step to minimize bias, we
included total leukocyte counts and neutrophil counts in the
ANOVA model, which showed that cell counts had no effect on
gene-expression levels. Another potential limitation of this study
was that pulmonary leukocytes were not measured in our
patients; this measurement would have expanded the insights
gained. However, it is worthwhile pointing out that performing
bronchoscopy in these patients (in order to retrieve pulmonary
leukocytes in infected lung) was difficult to justify on ethical
grounds because these patients were critically ill and were at a
high risk of rapid decompensation during bronchoscopy.

In conclusion, this study helps identify a previously under-
appreciated link between neutrophils and severe disease in
influenza infection. Further mechanistic study is needed to
unravel the mechanism underlying the neutrophil-related host
response and thus help identify novel therapeutic target.

Methods
Study design and participants. We recruited patients from 20 hospitals (Aus-
tralia, Canada and Germany) during the period from 2009 to 2016 (Fig. 1). The
eligibility criteria, included (1) age greater than 18 years and (2) World Health
Organization definition of influenza-like illness (fever of 38 °C or higher, cough
and illness onset within the last 10 days). All eligible patients were assessed by an
admitting physician for likelihood of influenza infection. Patients with a high
likelihood of infection, based on history and clinical features, were enrolled into the
study. Airway samples (nasopharyngeal swab, throat sample or sputum) and a
2.5 ml peripheral blood sample (into PAXgene tubes) were obtained from each
study participant. Routine investigations were performed, as determined by the
admitting physician. Airway samples were tested for bacterial pathogens and
common respiratory viruses. Blood samples in PAXgene tubes were later processed
for microarray analysis (Agilent 8× 60k Human V3). The study was approved by
the institutional review board of each participating institution. Informed consent
was obtained from all participants.

Microbiological and virology testing. Nasopharyngeal, sputum, urine, and blood
samples were obtained at admission. In patients admitted to intensive care unit,
additional respiratory samples were obtained from bronchoalveolar lavage or tra-
cheal aspirates. Standard microbiological testing was performed in these samples,
including sputum Gram stain and culture. Testing for atypical respiratory patho-
gens (Chlamydophila pneumoniae, Mycoplasma pneumoniae, and Legionella
pneumophila) was performed in selected patients at the discretion of treating
physicians. All patients were tested for respiratory viruses using nucleic acid PCR.
The PCR panel included primers for influenza A, influenza B, respiratory syncytial
virus, rhinovirus, parainfluenza virus, and human metapneumovirus. Only patients
who were positive for influenza virus were included in the main analysis.

Case definitions. Influenza infection was defined as the identification of either
influenza A (H1N1 or H3N2) or influenza B using nucleic acid amplification (real-
time PCR) in a participant with clinical features consistent with influenza infection.
Moderate influenza infection was defined as disease with significant symptoms
resulting in presentation to an emergency department, but without the need for
invasive respiratory support. Severe influenza infection was defined as influenza
infection with significant respiratory failure requiring endotracheal intubation and
mechanical ventilation. Case assignment (moderate or severe group) was done
retrospectively, based on a full review of clinical features, virology testing and
laboratory investigations, and was performed by two consultant physicians inde-
pendent of those physicians admitting the participants. Discrepancies in phenotype
assignments were resolved by a third physician.

RNA extraction, normalization, and microarray analysis. In each sample, whole-
blood RNA was extracted from PAXgene tubes as per manufacturer’s protocol
(QIAGEN PreAnalytiX—Blood RNA version 2; 2015). After checking RNA
integrity on Bioanalyzer (Agilent Technologies; Waldbronn, Germany), 100 ng of
total RNA were applied for Cy3-labeling reaction using the one color Quick Amp
Labeling protocol (Agilent Technologies; Waldbronn, Germany). Labeled cRNA
was hybridized to Agilent 8 × 60k Human V3 (Design ID: 072363) microarrays for
16 h at 68 °C and scanned using the Agilent DNA Microarray Scanner. Microarray
data were then analyzed using the R software package (version 3.1.3). Preproces-
sing steps included background correction, adding an offset of 50, quantile nor-
malization and annotation using the limma package and Agi4x44PreProcess
packages. Multigroup comparisons and identification of differentially expressed
probe sets were performed using limma with Benjamini and Hochberg correction
for multiple testing. Differentially expressed genes were identified based on an
adjusted p value of <0.05, and exhibiting more than a twofold difference in
expression levels ([log2] > 1). Full dataset of the gene-expression data is available at

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-11249-y ARTICLE

NATURE COMMUNICATIONS |         (2019) 10:3422 | https://doi.org/10.1038/s41467-019-11249-y | www.nature.com/naturecommunications 11

www.nature.com/naturecommunications
www.nature.com/naturecommunications


the National Centre for Biotechnology Information Gene Expression Omnibus
(GEO accession number GSE101702).

Weighted gene co-expression network analysis. Overview of weighted gene co-
expression network analysis (WCGNA)—to identify groups of co-regulated genes
(“modules”) associated with infection severity, we applied unsupervised hier-
archical clustering across microarray data of all samples (Fig. 1). WGCNA was
used as a clustering method. The main advantage of WGCNA is that it takes into
account the inter-relationship between and within networks, thereby allowing a
more biologically meaningful interpretation41. WGCNA organizes the tran-
scriptome into tightly correlated sets of transcripts. It first generates a pairwise
similarity matrix based on expression correlation, which is transformed into an
“adjancy matrix”. This results in a highly modular network topology. Hierarchical
clustering (using average linkage) is then used to define modules within this net-
work. The overall expression of a given module is summarized by the “eigengene”
(the first principle component of the gene-expression matrix). We used the
eigengene values to calculate the “eigengene differentials” (the difference in
eigengene values between illness severity), which quantifies each module’s asso-
ciation with severe disease. ANOVA was used to determine the association between
the eigengene (dependent variable) and infection severity, age, gender, and cell
counts (independent variables). Modules that were significantly associated with
disease severity were further investigated by pathway analysis (see below).

Procedure of WCGNA—we used the R package WGCNA (version 1.5.1) and we
selected the top 10,000 most variant probesets as input and applied a soft threshold of
10 for network construction. This allows the construction of Pearson’s correlation
matrices for all pairs of genes. The correlation matrices were then transformed into an
adjacency matrix using a power function f(x)= xβ. The parameter β of the power
function was determined such that the resulting adjacency matrix was scale free. The
adjacency matrix was transformed into a topology overlap, which measures the
connectivity among all the genes in the network. Based on this topology overlap,
hierarchical average linkage clustering was then used to construct the dendrogram
and identify gene co-expression modules that contain the maximal sets of inter-
connected genes. More detailed information regarding the WCGNA procedure can be
found in WCGNA website: (https://labs.genetics.ucla.edu/horvath/
CoexpressionNetwork/). In this study, the following parameters were used for
WCGNA analysis: TOMType: unsigned network, minModuleSize: 30,
reassignThreshold: 0.25, power: 10 and reassignThreshold: 0.

Pathway analysis. We identified the biological theme in each module by per-
forming a pathway analysis using the MetaCore (https://portal.genego.com/).
MetaCore is a web-based, integrated software suite for functional analysis of omics
data. It uses a topology approach (similar to WCGNA), which takes into account
the interaction between and within pathways, the position of the genes within each
pathway and the interaction between genes. We uploaded genes from each module
(identified earlier in WCGNA) into MetaCore and used the pathway enrichment
analysis option within the software. The enrichment analysis identifies coordinated
changes in gene-expression in a predefined group of functionally related pathway
genes, based on a curated database of known protein–protein interaction, signaling
and metabolic pathways. To ensure our results were biologically meaningful,
pathway analysis was restricted to modules which contained at least 300 genes.

Digital cell quantification. We inferred the immune cell quantities in each blood
sample using the decomposition-based digital cell quantification (DCQ) method,
which has been previously validated in influenza infection4. DCQ uses a large
reference library (“immune cell compendium”) consisting of the transcriptional
profiles of a predefined set of genes that encode cell surface markers (i.e., that
identify immune cell types by fluorescence-activated cell sorting). Here, we used
the DMAP expression data for the immune cell compendium and the R package
ComICS for DCQ analysis (https://cran.r-project.org/web/packages/ComICS/
index.html). The DCQ output was visualized as a heatmap (Supplementary Fig. 2),
which provides a quantitative measure of the “relative” abundance of each immune
cell types, namely the change in cell quantity between a sample of a given phe-
notype (e.g., severe influenza) and a sample in steady state (e.g., healthy control).

Sample size calculation. The sample size was chosen to have 90% power in
detecting differentially expressed genes between severity groups (moderate vs.
severe), assuming a false-discovery rate of 0.05. Based on gene-expression variance
and effect size estimated from our previous studies42,43, we calculated that a sample
size of 46 in each severity group would be required. In total, 750 individuals with
flu-like illness were needed to obtain 46 influenza-positive subjects in each severity
group (moderate or severe), based on the estimation that (1) only 25% of flu-like
illness individuals would be test-positive for influenza virus (estimated from our
pilot data), and (2) among those positive for influenza, 13% would develop
moderate or severe influenza infection (based on publicly available data of 70,000
laboratory confirmed hospitalized patients with influenza infection44).

Statistical analysis. Comparisons between two severity groups (moderate vs.
severe) were calculated using the unpaired two-tailed Student’s t test or the non-
parametric Mann–Whitney U test where appropriate. To assess outcome

prediction in the independent validation study, area-under-curve (and its con-
fidence interval) was calculated using the receiver–operator-characteristic curve
analysis, as implemented in NCSS software (2018, Utah, USA, ncss.com/software/
ncss). General statistical analyses were performed using PRISM and R software
package, and bioinformatic analyses were performed using R software package.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Microarray data underlying Figs. 2, 3, 4, 5, 6, 7a and Supplementary Figs. 2, 3, 4, 5, 6, 7,
10, 11 are available at Gene Expression Omnibus (Accession numbers: GSE 101702 and
GSE 111368); [https://www.ncbi.nlm.nih.gov/geo/]. Source Data underlying Fig. 7b–h
and Supplementary Figs. 1, 8 are provided as Source Data file. All other data are available
from the corresponding author upon reasonable requests.

Code availability
Codes and derived data used for the analysis of the microarray expression (normalized
data matrix, derived data, PCA, WGCNA, heatmaps, volcano plots, DCQ analysis,
boxplots for gene expression, scatter plots, boxplots for module eigengenes, VENN
diagrams for modules) is publicly available at [https://doi.org/10.22000/152].
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