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Abstract

Mitochondrial DNA (mtDNA) mutations frequently manifest with 
multisystem disease, including cardiomyopathy (CM). Various stud-
ies described mutations in protein-encoding mtDNA genes, such as 
cytochrome-b, manifesting with CM. A detailed clinical, biochemical, 
and molecular genetic analysis was performed in a 40-year-old male 
with dilated CM (DCM) to detect the underlying mtDNA defect. Mus-
cle biopsy showed complex-III deficiency, and sequencing of the cy-
tochrome-b gene revealed the pathogenic variant m.14757T>C in MT-
CYB, resulting in the replacement of the hydrophobic methionine by the 
polar threonine (M4T). By application of the PolyPhen algorithm the 
variant was predicted as pathogenic. The mutation was not found in 100 
healthy controls and never reported as a neutral polymorphism despite 
extensive sequencing of the cytochrome-b gene in 2,704 normal healthy 
controls from different ethnic backgrounds. In conclusion, the novel 
variant m.14757T>C in MT-CYB is associated with DCM suggesting a 
pathophysiologic role of the variant in the development of DCM.
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Introduction

Dilated cardiomyopathy (DCM) is characterized by widening 
of the cardiac cavities, reduced systolic function, and normal 
coronary angiography [1]. DCM is frequently associated with 
heart failure, cardiac rhythm abnormalities and intra-ventricular 
thrombus formation. If heart failure is intractable to drug thera-
py, heart transplantation is indicated. The particular pathophysi-

ological mechanism leading to ventricular dilatation and systolic 
dysfunction is poorly comprehended. During the last few years, 
however, attention has been focused on abnormalities of contrac-
tile and structural myocardial proteins and on disorders of the 
mitochondrial energy metabolism [1]. A number of CMs were 
attributed to abnormal respiratory chain functions, particularly 
those caused by mitochondrial DNA (mtDNA) mutations [2-4].

The heart contains abundant mitochondria, which constitute 
approximately 40% of total cardiomyocyte volume [5]. Their 
major function is the provision of energy in terms of adeno-
sine triphosphate (ATP) by the oxidative phosphorylation sys-
tem (OXPHOS). ATP is required by the actomyosin adenosine 
triphosphatase (ATPase) for contraction and relaxation of car-
diomyocytes. Additionally, membrane-bound ATPase utilizes 
ATP for depolarization and repolarization of cell membranes. 
Decreased ATP levels may thus not only impair contractility 
but may also lower the mitochondrial membrane potential and 
thus impair impulse generation and conduction along the car-
diac conduction system, manifesting as arrhythmias [6]. Energy 
production in mitochondria involves five oligomeric com-
plexes which are embedded within the inner mitochondrial 
membrane. Bc1 is one of these complexes and composed of 
three catalytic subunits (cytochrome-b, cytochrome-c1, and 
the Rieske iron-sulfur protein) and seven or eight non-catalytic 
subunits [6]. Cytochrome-b plays a crucial role for the activity 
of the bc1 complex since it harbors two b-hemes and deter-
mines the shape of the two ubiquinone fixation sites. It is the 
only subunit of bc1 encoded by an mtDNA located gene. The 
cytochrome-b gene (MT-CYB) is located at nucleotide position 
14747-15887, and is flanked by the tRNA genes for glutamic 
acid and threonine. It encodes a protein of 380 amino acids 
(AAs) [7]. Mutations in MT-CYB resulting in decreased com-
plex-III-activity have been frequently described in humans [8] 
and experimental models [9-13] of CM or heart failure. In or-
der to elucidate the cause of DCM in a patient with a complex-
III defect, MT-CYB was screened for pathogenic mutations in 
the proband and 100 healthy controls.

Case Report

Investigations

The patient is a 40-year-old male in whom DCM was diag-
nosed upon clinical, echocardiographic, and angiographic 
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investigations, carried out in the Department of Cardiology, 
Rabta University Hospital, Tunis, Tunisia. Transthoracic echo-
cardiography revealed a left ventricular end-diastolic diameter 
(LVEDD) of 65 mm; a fractional shortening (FS) of 23%; and 
an ejection fraction (EF) of 48%. Coronary angiography was 
normal. The control group comprised 100 healthy adult sub-
jects. The study was approved by the Ethical Committee of the 
University of Tunis (SN745556).

Diagnosis

Muscle histopathological and biochemical studies

Muscle specimens were obtained by open biopsy, frozen, and 
stored in liquid nitrogen. Biochemical measurement of the 
ubiquinone oxidoreductase (NADH) dehydrogenase (com-
plex-I), succinate-cytochrome-c-reductase (complex-II and 
complex-III), cytochrome-c-oxidase (complex-IV) and citrate 
synthase activities were done as described previously [14].

Cytochrome-b gene analysis

Total DNA was extracted from lymphocytes or from muscle 
tissue according to established methods. The fragment that 
overlapped the entire sequence of MT-CYB (14747-15887) 
was attained by using a polymerase chain reaction (PCR) assay 
with cytb-1F as the first forward primer (nucleotides 14667-
14687), cytbTB-1R as the first reverse primer (nucleotides 
15289-15269), cytb-2F as the second forward primer (nucleo-
tides 15189-15209) and cytb-2R as the second reverse primer 
(nucleotides 15941-15921). PCR amplification was performed 
in a 50 volume containing 100 ng DNA, 10 pmol of each prim-
er, 4 µL MgCl2, 5 µL dNTP, and 0.2 µL Taq polymerase. Con-
ditions for DNA fragment amplification included 3 min at 94 
°C, 30 cycles of 30 s at 94 °C, 60 s at 52 °C, 1 min 30 s at 72 
°C, and 10 min at 72 °C.

Direct sequencing of PCR-amplified fragments

Direct sequencing of PCR fragments was conducted using an 
ABI 3730 automated DNA sequencer (Applied Biosystems) 
by using a Big Dye Terminator V.3.1 cycle sequencing kit 
(Applied 4337455 (100 reactions)) according to the manufac-
turer’s recommendations. All sequences were numbered ac-
cording to the L-strand (the coding strand) of the Cambridge 
reference sequence [7].

Prediction data

Mutated protein structures change due to biochemical differ-
ences of the AA variants (acidic, basic, hydrophobic) or due 
to the variant changing the protein sequence and affecting the 
tertiary or quaternary structure or the active site. To distinguish 
deleterious from functionally neutral mutations we used the 

PolyPhen algorithm, which predicts the pathogenicity of a 
specific variant by using a set of empirical rules, based on se-
quence, phylogenetic and structural information characterizing 
the variant. In addition to sequence alignments, PolyPhen uti-
lises protein structure databases, such as the Protein Data Bank 
(PDB), Protein Quarternary Structure (PQS), Dictionary of 
Secondary Structure in Proteins (DSSP), or three-dimensional 
structure databases to assess if a variant affects the protein’s 
secondary structure, the interchain contacts, functional sites, 
or the binding sites.

Biochemical studies of the muscle homogenate revealed 
low activities of complex-II and -III but virtually normal com-
plex-I and complex-IV activities (Table 1) indicating a com-
plex-III defect. Molecular analyses of muscle and lymphocyte 
mtDNA revealed the transition thymine for cytosine at np14757 
(Fig. 1), changing medium size and hydrophobic methionine 
(M) to medium size and polar (hydrophilic) threonine (T) 
(M4T). This mutation was not found in lymphocyte mtDNA 
of 100 healthy subjects without comorbidities or known ge-
netic defect. A substitution of adenine for guanine at np15326, 
changing medium size and hydrophilic threonine (T) to small 
size and hydrophobic alanine (A) (T194A), was considered a 
neutral polymorphism based on previous reports [15].

Treatment

The patient benefited significantly from conventional treat-
ment recommended for heart failure.

Follow-up and outcomes

Short-term follow-up after 8 weeks showed complete recovery 
of heart failure.

Discussion

DCM is not only due to nDNA gene mutations expressed in 
the myocardium [16], but also due to mtDNA mutations [17]. 
Accordingly, several studies found reduced activities of respira-

Table 1.  Activities of Respiratory Chain Enzymes in the Muscle 
Extract of the Described Patient

Enzymes Patient Controls
Complex-I 30 19 - 43
Complex-III 51 91 - 161
Complex-II + III 13 14 - 30
Complex-IV 40 34 - 80
Citrate synthase 125 101 - 225
SDH 28 20 - 38
NADH dehydrogenase 170 209 - 383

Patient values are expressed in nmol/min/mg. SDH: succinate dehy-
drogenase; NADH: ubiquinone oxidoreductase.
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tory chain complexes in patients with DCM, where complex-III 
being the most frequently decreased [18-21]. Most frequently 
cytochrome-b gene mutations were shown to be responsible for 
DCM, as confirmed by the regularly updated database Mitomap 
[15]. Myocardial tissue from the index patient was not available 
for molecular genetic analysis, but screening of MT-CYB in skel-
etal muscle revealed a novel modification from the Cambridge 
mtDNA sequence (M4T) with slightly reduced complex-III ac-
tivity. The mutation was absent in the control population and 
was not reported as neutral polymorphism despite sequencing 
of MT-CYB in 2,704 normal individuals from different ethnic 
backgrounds [15]. The physico-chemical properties of M and 
T residues are dissimilar. Methionine is medium hydrophobic 
and threonine is medium polar. The genetic code seems to have 
evolved towards minimising changes of the physico-chemical 
properties and to favor the rate of synonymous substitutions 
[22], suggesting that AA replacements resulting in a dissimilar 
AA are generally more deleterious than replacements resulting 

in an AA with similar properties.
We predicted the possible effect of the mutation on the 

structure and function of complex-III by using Polyphen [23]. 
As shown in Table 2, the substitution was predicted as “pos-
sibly damaging”, suggesting that codon-4 might be under evo-
lutionary selective pressure and that the 4M variant is likely to 
be functional.

The exact effects of the M4T mutation on the enzyme ac-
tivity were difficult to elucidate. Previously reported missense 
mutations in MT-CYB impaired the assembly or stability of 
the complex, thus leading to either a dramatic decrease in the 
amount of assembled enzyme or to reduced catalytic activity 
of the complex with little effect on its assembly [24]. Some 
mutations in MT-CYB were investigated in the yeast system. 
In humans, the G34S mutation has been reported in a patient 
suffering from exercise intolerance [25] and the substitution of 
the corresponding glycine by aspartate led to extinction of the 
bc1 complex activity [26]. The G339E mutation manifested 

Table 2.  Prediction Data of Mutations Detected in the Index Patient

Mutation AA1 AA2 Prediction Available 
data

Predic-
tion basis Substitution effect Prediction data

M4T Medium Possibly 
damaging

Alignment 
structure

Structure 1.1.1: structural effect, 
buried site, hydrophobicity 
change at buried site

PSIC score difference: 0.810. 
Normed accessibility: 0.13. 
Hydrophobicity change: 0.77

T194A Benign Alignement Sequence 
annotation

N/A PHAT matrix element 
difference: 0

AA: amino acid; PSIC: position-specific independent counts; PHAT: predicted hydrophobic and transmembrane matrix.

Figure 1. Upper panel: (a) muscle biopsy section stained for Gomori’s trichrome shows muscle fibers with normal distribution of 
mitochondria (magnification × 40). (b) Succinate dehydrogenase (SDH) staining shows a similar picture with some low dark blue 
fibers (magnification × 40) compared to a healthy control (c). Lower panel: automated sequence analysis of the region encom-
passing the m.14757T>C mutation of the proband’s mtDNA in muscle.
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as myopathy and the same mutation abolished the bc1 com-
plex assembly in yeast [27, 28]. The G251D mutation, which 
substitutes a glycine by aspartate at np251 of MT-CYB, causes 
histiocytoid cardiomyopathy. This mutation is located in the 
intermembrane space loop connecting the fifth and sixth trans-
membrane segments. Analyses of myocardial mitochondria re-
vealed a defect of the succinate cytochrome-c-oxidoreductase 
activity and of the cytochrome-b assembly, documenting the 
importance of residue 251 for proper bc1 function [29, 30].

Limitations of the study were that the mechanism by 
which the mutation determined the phenotype could not be 
demonstrated and that the OXPHOS enzyme analysis was not 
carried out in myocardial tissue.

In conclusion, the variant M4T in MT-CYB was considered 
pathogenic because it was consistent with the biochemical com-
plex-III defect, it was not found in 100 healthy controls, and be-
cause it has not been reported as neutral polymorphism despite 
extensive sequencing of MT-CYB in 2,704 healthy individuals 
from different ethnic backgrounds. Future studies of transgenic 
mice with defined mutations may help assessing their contribu-
tion to the pathophysiological background of DCM.
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