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Abstract
Background: To better understand the response of urinary epithelial (urothelial) cells to Enterococcus faecalis, a
uropathogen that exhibits resistance to multiple antibiotics, a genome-wide scan of gene expression was obtained as a
time series from urothelial cells growing as a layered 3-dimensional culture similar to normal urothelium. We herein
describe a novel means of analysis that is based on deconvolution of gene variability into technical and biological
components.

Results: Analysis of the expression of 21,521 genes from 30 minutes to 10 hours post infection, showed 9553 genes
were expressed 3 standard deviations (SD) above the system zero-point noise in at least 1 time point. The asymmetric
distribution of relative variances of the expressed genes was deconvoluted into technical variation (with a 6.5% relative
SD) and biological variation components (>3 SD above the mode technical variability). These 1409 hypervariable (HV)
genes encapsulated the effect of infection on gene expression. Pathway analysis of the HV genes revealed an orchestrated
response to infection in which early events included initiation of immune response, cytoskeletal rearrangement and cell
signaling followed at the end by apoptosis and shutting down cell metabolism. The number of poorly annotated genes in
the earliest time points suggests heretofore unknown processes likely also are involved.

Conclusion: Enterococcus infection produced an orchestrated response by the host cells involving several pathways and
transcription factors that potentially drive these pathways. The early time points potentially identify novel targets for
enhancing the host response. These approaches combine rigorous statistical principles with a biological context and are
readily applied by biologists.
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Background
Epithelia are the first line of defense against bacterial
infection. Far from being only a passive barrier, epithelia
mount a complex and sophisticated response to bacterial
infection [1] that can even include synthesis of anti-bacte-
rial peptides [2]. However, the pathogens also can exploit
host cell function [3]. In the case of the bladder, the highly
specialized and multifunctional urothelium functions
remarkably well to protect the host from urinary tract
infections. Urothelial cells form a physical barrier against
bacterial infection, trap bacteria in mucin and can desqua-
mate, carrying the bacteria out of the bladder [4]. Urothe-
lial cells mount their own immune response against
pathogens [5]. Although the response of the urothelium
to Escherichia coli has been investigated extensively at the
molecular level [6,7], the response to gram positive organ-
isms such as Enterococcus is poorly understood.

Enterococcus faecalis infection of the urinary tract and other
organs represents a growing problem. Nosocomial infec-
tions with antibiotic-resistant strains are often fatal to
hospitalized patients with compromised immune systems
[8]. The Enterococcus faecalis genome contains a number of
antibiotic resistance genes, which leads to rapid selection
for resistant strains from a population in the presence of
antibiotics and results in difficulty in treating infections
by Enterococcus [9,10]. Relatively little is known about the
defenses elicited by Gram positive organisms such as Ente-
rococcus. It is likely that some different mechanisms are
involved because Enterococci lack the same kinds of fim-
briae or pili that are important to the pathogenicity of
gram negative uropathogens such as E. coli [11,12].

Most studies of host cell response to infection are based
on a snapshot determined at a single time point with cells
grown on plastic. Cells grown on plastic are a poor model
for cells in vivo, and determining the time course will not
only define the earliest events but can establish the tem-
poral relationships of the response [1]. In this study we
followed the transcriptome of urothelial cells growing as
a multi-layer urothelial mimetic presented with an over-
whelming infection with Enterococcus faecalis in order to
map out the pathways and genes involved in response to
infection at a system level. This study used novel models
and bioinformatic approaches to build a system-level
roadmap detailing the transcriptome-level response over
time. The bioinformatics analysis used F-statistics to first
compare expression against system zero-point noise to
facilitate identification of expressed genes, then to identify
a set of HV genes showing excess variability over that
shown by genes only varying for technical reasons. These
HV genes encapsulate the response to infection. Cluster-
ing and identification of common properties such as path-
ways and common transcriptional regulatory elements
(TREs) developed an integrated picture of the host cell

response over time. The urothelial mimetic model dupli-
cates features of infection seen in vivo but not in models of
cells grown on plastic because the mimetic captures the
cell-cell interactions between cells first attacked by the
bacteria and cells responding indirectly to the attack. Fol-
lowing the time course has illuminated an orchestrated
and integrated response of the cells to infection and the
analysis presents an approach accessible to most biolo-
gists for developing a systems-level description of the bio-
logical events involved with infection. Learning how these
defenses function and whether they are different from
those elicited by E. coli could identify novel means to treat
uropathogenic infections by Enterococcus in an age of
increasing antibiotic resistance.

Results
Cell death occurs between 10 and 24 hours post infection
Examination of cell layers infected with bacteria showed
that little cell death occurred until 10 hours post infection,
at which time cells began to die in significant numbers.
Cells at the top in contact with the bacteria died first. Con-
focal images are shown in the supplemental material
(Additional file 1, image A). By 12 hours about 50% of
cells had died and by 24 hours post infection, virtually all
the cells were dead. Also shown in the supplemental
material (Additional file 1, image B) is a confocal image
of bacteria on the urothelial layer. The bacteria remained
attached to the apical surface of the layer and no evidence
for entry into cells was seen. Thus, the gene expression
response of the urothelial mimetic will represent both the
response of the cells in immediate contact with the bacte-
ria as well as cells that are connected to the outer layer and
which respond to signals from those cells that are
infected.

Determination of system-level noise, normalization and 
identification of hypervariable (HV) and very 
hypervariable (VHV) genes
The means used to analyze expression data and identify
significantly altered gene expression is based upon F-tests
against system-level noise. The assumptions behind this
approach are briefly presented here along with the results.
A fuller description is provided in Methods. This approach
allows the entire data set to be used for a global assess-
ment of noise, that is variation arising from random, tech-
nical sources, and reduces the need for replicates.
Variation in expression in excess of this technical variation
is assumed to arise from biological mechanisms. Expres-
sion data are normalized to the uncertainty in the zero
point of expression because this value determines the cer-
tainty of stating that a gene is expressed above back-
ground. Figure 1A shows the frequency histogram of all
the expression values for one array prior to normalization.
The bimodal distribution is clearly evident. The leftmost
mode is due to technical variation about the zero point
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and represents probe sequences to which nothing has
hybridized, that is the genes are not expressed, whereas
those in the rightmost mode represent probes to which
binding occurred. The stringency of the threshold for fil-
tering expression expressed is selectable. In this study, a
value of 3SD above noise was selected. Of the 21,521
unique genes, 9553 were expressed at more that 3 stand-
ard deviations (SDnoise) above noise in at least one time
point.

The frequency histogram of relative standard deviations
for the 9553 expressed genes over 10 time points showed
a right-side skewed distribution (Figure 1B). The assump-
tion is that this distribution represents the contributions
of biological and technical variability and that the magni-
tude of the technical variability is represented by the left
half of the curve, which is Gaussian. The last portion of
the frequency histogram of relative standard deviation fre-
quency fitted a normal distribution with a mean of 0.065
and SDnoise of 0.015. Thus, the microarray is highly repro-
ducible with an average relative standard deviation of
only 6.5% and with 90% of measurements being within
9.5% assuming only technical variation. This value agreed
closely with the relative standard deviations of probes that
were replicated on the array. Using a value of 3 × SDnoise
to identify a threshold above which variation is identified
as arising from biological sources, 1409 genes were iden-
tified as being hypervariable, that is in expressing variabil-
ity above that due to technical reasons. The remaining
8142 genes are assumed to express only technical varia-
tion and therefore are constant in expression biologically.
Reasoning that to identify the underlying pathways that
are altered by infection a smaller number of "beacon"
genes would suffice and simplify the pathway analysis
(which can only construct pathways or networks out of 35
genes), a set of VHV genes was delineated by setting the
threshold to 0.2. This is more than 13 times SDnoise, so the
probability that these genes would be identified by chance
is p < 0.1129 × 10-20 without correction for multiple com-
parisons.

Very Hypervariable (VHV) genes show unique clustering at 
different time points
The characteristics of the 239 VHV genes are listed in
Additional file 2 sorted by clusters. K-means clustering
yielded 10 distinct clusters, with up- or/and down-regu-
lated profiles at different time points (Figure 2A). For an
enhanced version of this figure with legible gene names
refer to Additional file 3. One result of clustering the VHV
genes as opposed to the entire set of HV genes is that the
heatmaps are sharpened. The clustering clearly is driven
mostly by either an increase or a decrease in expression at
a single time point. However, a more familiar pattern is
observed when the entire 1409 HV genes are clustered.
This is illustrated in Figure 3A, which shows the cluster
equivalent to cluster 1 in Fig. 2A, but derived from the
complete set of HV genes. Clusters 1 and 2 in Figure 2A are
a subset of the cluster shown in Figure 3A, and a more
smeared picture of down regulation of expression over the
early time points is seen. The clusters can be divided into
three major groups by time. The early response group,
comprised of cluster 1–3, represented genes whose expres-
sion changed during 0–1.5 hours post-infection. The mid-
dle response group, containing clusters 4 through 7,
represented an intermediate cascade of events during 4–6

Histogram of relative standard deviation distribution of 9,553 expressed genesFigure 1
Histogram of relative standard deviation distribution 
of 9,553 expressed genes. The normal distribution of low-
variable genes determined from the left portion of the histo-
gram is superimposed on the actual histogram. SD – standard 
deviation for the normal distribution, 3*SD (white vertical 
line) – cut-off level for HV genes, red vertical line – cut-off 
for VHV genes with relative SD ≥ 0.2.
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K-means and PAINT clustering of VHV genes over the time course of infectionFigure 2
K-means and PAINT clustering of VHV genes over the time course of infection. A) Map of up- and down-regulated 
gene clusters assembled from 239 VHV genes. Red/Green mark increase/decrease in relative gene expression level referenced 
to the median of the gene over time, respectively. B) Common TREs for given clusters. Color bars at right represent different 
gene clusters. Red indicates genes sharing overrepresented (p < 0.05) TREs, grey/blue mark genes with not significantly over-
represented/underrepresented TREs, respectively. A larger version complete with gene names is provided in the Additional file 
3. A schematic diagram of the significant functions identified by IPA can be found in Figure 5.
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hours post infection. The late response group of clusters
8–10 showed responses at 8–10 hours post infection.

Genes with similar expression profiles are assumed to
share functional connections. Finding properties other
than expression profile shared by a gene cluster increases
the confidence that the clustering actually reflects a func-
tional, biological connection. Because co-regulation by
common transcriptional regulatory elements (TREs) rep-
resent a major mechanism for regulation of gene expres-
sion, the finding that particular TREs are statistically over-
represented in a gene cluster suggests that the TRE could
drive the observed clustering. Figure 2B shows the map of
TREs by clusters as identified by the Promoter Analysis
and Interaction Network Toolbox (PAINT). While several
clusters showed significant over-representation of one or
two TREs, which suggests they may play a role in organiz-
ing the clusters, other clusters, particularly the early ones,
do not show any over-representation of TREs derived
from the set of VHV genes. A second means for examining
the biological significance of clustering was to determine
whether genes forming clusters also could be organized
into plausible networks. This analysis was performed with
Ingenuity© Pathway Analysis (IPA), a network-identifying
tool that is based upon human curated literature.

Early immune, cytoskeletal and estrogen receptor 
responses immediately following Enterococcus infection
The early response group represents genes that spiked at
early time points (0–1.5 hours post infection) or dropped
immediately following the infection. Neither IPA nor
PAINT analyses identified any significant ontologies or
TREs for the VHV genes (Table 1). However, several path-
ways were identified by IPA in these very early responses
from the VHV genes. Included are early immune cell
response (PTCRA, PPIB), immune response via IL-2
(DGKE) and NF-κB (H2AFY2, PIP5K1A) pathways.
Among the induced cytokine genes was TNF, not identi-
fied as being hypervariable but present here as a driving
force for a network of genes up-regulated 1.5 hours post
infection as suggested by IPA. IL2 and TNF are both hall-
marks of NF-κB activation. Inhibition of immune
response was also suggested. PIP5K1A plays role in
cyclosporine A-mediated immunosuppression and, as
well as PPIB, in phosphoinositol activity. Cell cycle regu-
lation (MAD1L) and actin-related cytoskeleton remode-
ling linked to Rac (PIP5K1A, ACTR2, TEKT1) were also
observed. The networks found for all clusters are shown in
Additional files 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15. Addi-
tional file 16 contains the legends for the IPA generated
networks.

Because so many of the VHV genes in the early time points
were poorly annotated, our assumption that the statisti-
cally valid and biologically relevant networks could be

identified from the ontologies and TREs of the VHV genes
was questionable for the early time points. Moreover, the
statistical validity of canonical pathway inclusion was
weakened as well. We therefore clustered all 1409 HV
genes and identified 192 genes up-regulated at early time
points and down-regulated afterwards. A full list of the
192 HV genes in cluster 1 can be found in Additional file
17. Clustering of this expanded set of early response genes
is shown in Figure 3A. Out of 192 genes 86 were anno-
tated sufficiently for generating networks. Six networks
showed significant overrepresentation of cellular growth
and proliferation, immunologic response ontologies, as
listed in Additional file 18. Additional canonical path-
ways emerged as well as additional members in pathways
identified from the VHV genes alone. Four genes
(GTF2H3, NR0B1, POLR2K, TAF12) were significantly
overrepresented in the estrogen receptor signaling canon-
ical pathway. PAINT analysis identified four significantly
overrepresented TREs (c-Ets-1(p54), Elk-1, CRE-BP1,
AhR/ARNT) among this expanded set of genes, as shown
in Figure 3B. Of these transcription factor genes only CRE-
BP1 was not expressed above noise level. The higher reso-
lution view offered by the expanded HV gene set as well as
identification of Elk-1 and Ets-1 transcription factors sup-
port the identification of immune response as an early
event.

Dysregulated signaling during the middle time period
While up-regulation of gene expression characterized the
early response, the intermediate response (middle
response group) contained both up-and down-regulated
genes at different time points (Figure 2A). Cluster 2 con-
tained genes up-regulated at 1 hour post infection. IPA
assembled one significant ontology with cellular growth
and proliferation as the top function. Genes in this cluster
are overrepresented in chemokine signaling (ROCK2,
SRC), various complex events, from growth, differentia-
tion (EGR1), membrane trafficking and phosphatidyli-
nositol (PI) activity (ZFYVE1) to immune response via
interleukin pathways (PRDM1, TRIM5). SRC and EGR1
regulate MYC transcription factor (TF), which played an
essential role in the subsequent time period. Part of the
NF-κB signaling pathway is still seen at this time point
where IKIP (IKK interacting protein) is up-regulated. Pro-
tein ubiquitination genes (TRIM5, UBE2J2) were also
noted.

At 1.5 hours post infection time point there are two sets of
genes, clusters 3 and 4 containing up- and down-regulated
genes, respectively. While no significant transcription fac-
tors could be identified driving genes in cluster 3, IPA
built one network with genes responsible for cell death
(FAS, IL2RA, TCF3), cell cycle progression/arrest (TCF3,
APBB1) (Table 1). Most of the genes in this cluster are reg-
ulated by various interleukin signaling pathways. Down-
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regulated genes in cluster 4 were driven by the c-MYC tran-
scription factor, and the majority were assembled into one
network with cell cycle, cancer and cell morphology as the
top functions. Genes labeled by IPA as being cancer

related (COL18A1, STAT5B, CTDSPL) were also involved
with infection as were genes involved in apoptosis and
growth (CTDSPL, POLR2F, ZBTB16). Solute carrier family
genes (SLC29A2, SLC35B3) were down-regulated at this

K-means and PAINT clustering in expanded early response HV genesFigure 3
K-means and PAINT clustering in expanded early response HV genes. A) K-means clustering of 140 and 52 genes 
upregulated early and dropped afterwards. B) Common TREs for those genes, filtered by p < 0.05 and FDR < 0.3.
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and the subsequent time points. The high prevalence of
various transcription factors at this time point should be
noted (ARNTL, E2F1, TCF3, STAT5B, ZBTB16). Addition-
ally, most of the genes identified by IPA as key players,
such as FOS, EP300, RB1, TP53, TP73L, interacting with
"beacon" genes were, in fact, expressed but not VHV,
thereby supporting the networks assembled by IPA.

Clusters 5 and 6 represented genes up- and down-regu-
lated at 4 hours post infection. Up-regulation of carbohy-
drate metabolism and small molecule biochemistry were
the top functions of the network in cluster 5 while down-
regulation of amino acid metabolism, molecular trans-
port and small molecule biochemistry represented two

networks in cluster 6 (Table 1). While several genes in
cluster 5 are responsive to various interleukins (ABCA1,
PTX3, RRS1, ERBB3) they also are involved in ATP cycle
and lipid metabolism. Several genes (ABCA1, ERBB3,
PTX3, GRP132) are also involved in cell morphology (cell
spreading, transformation) and cellular assembly and
organization. Down-regulated genes in two networks in
cluster 6 relate to ATP-ADP-GTP cycle (ARL3, AARS,
RANBP1, EEF1A1, DPM1 etc.), apoptosis and cell cycle
regulation (RBL1, RAF1, MLL, WWOX, SERPINC1,
SERPINE1, GOS2, TMPO, TNC). Down-regulated
SERPINC1 and SERPINE1 were parts of interleukin signal-
ing, the former regulated IL6 and the latter regulated by
IL1B. Another solute carrier family of genes (SLC34A1,

Table 1: Genes from each cluster assembled in networks and their top functions/canonical pathways. Gene names in bold are "focus 
genes" identified as VHV and served to identify key elements in hypothetical networks constructed by IPA. Statistically significant top 
functions and canonical pathways are identified by IPA. Hypothetical networks identified by IPA as being potentially present were 
pruned to remove genes that were not identified as being expressed.

Cluster Gene names Network's top functions Canonical pathways

#1 0.5 hours post infection, up ACTR2, C12orf23, CGI-38, CPM, 
DGKE, FLJ22471, GALNT10, H2AFY2, 
LOC197350, LRRC51, MAD1L1, 
PHOSPHO2, PIP5K1A, PPIB, PTCRA, 
PTPRN2, TEKT1, TMTC4, *,* No 
significant networks assembled

Cell Cycle, Cell Death, Cell-to Cell 
Signaling and Interaction, Immune and 
Lymphatic System Development and 
Function

O-glycan biosynthesis, Phospholipid 
Degradation, Inositol Phosphate 
Metabolism, Glycerophospholipid 
Metabolism, Glycerolipid Metabolism

#2 1 hours post infection, up ACP1, AKT2, BBC3, CD19, CHGA, CKM, 
CSDA, CTSD, DDX5, EEF2, EGR1, GTF2I, 
HAS2, HOXA5, IER3, IGF1, MYC, PGK1, 
PRDM1, PRNP, ROCK2, RPS6, SRC, TLN1

Cellular Growth and Proliferation, Cellular 
Development, Cell Death, Cell-to-Cell 
Signaling and Interaction, Tissue 
Development

Neuregulin Signaling, Ephrin Receptor 
Signaling, Wnt/β-catenin Signaling, PDGF 
Signaling, Integrin Signaling, ERK/MAPK 
Signaling, B Cell Receptor Signaling

#3 1.5 hours post infection, up ADK, APBB1, BTN3A3, CHST2, CLIC1, EB-
1, EI24, ENAH, F2, FARS2, FAS, FOS, 
GNPAT, GRB7, IL2RA, KAL1, NDRG1, 
PDRG1, PRKAB2, SMARCB1, TCF3, TNF, 
TP53, TP73L, TWIST2, VASP

Cellular Movement, Organismal Survival, 
Connective Tissue Development and 
Function, Cell Cycle

Apoptosis signaling, Wnt/β-catenin 
Signaling, PPAR Signaling, p38 MAPK 
Signaling, Integrin Signaling, IL-6,-2,-10 
Signaling, Death Receptor Signaling

#4 1.5 hours post infection, down AATF, AKT3, ARNTL, CENPF, COL18A1, 
CREG1, CRI1, CTDSPL, E2F1, E4F1, EP300, 
FEZ1, HIF1AN, KCNJ1, KLF5, POLR2F, 
PPT2, PRKCZ, RB1, RBBP9, SLC29A2, SRC, 
STAT5B, TBP, UMPS, ZBTB16

Cellular Growth and Proliferation, Gene 
Expression, Cellular Development, Cell 
Death, Cell Cycle

Estrogen Receptor Signaling, NF-κB 
Signaling, Neuregulin Signaling, Xenobiotic 
Metabolism Signaling, Wnt/β-catenin 
Signaling, Pyrimidine Metabolism, PTEN 
Signaling, PPAR Signaling, Jak/Stat Signaling, 
Integrin Signaling, IL-2 Signaling

#5 4 hours post infection, up ABCA1, ALPP, C7, CCNG2, ENPP1, ERBB3, 
F3, FLOT1, FPRL1, G6PD, IL1B, KLF10, 
KRT17, MEFV, NAB2, PCSK1, PTX3, RRS1, 
S100A6, SERPINH1, SLC20A1, TGFB1, 
THBD, TNFAIP2

Cellular Growth and Proliferation, 
Hematological Disease, Cellular 
Movement, Organismal Development, 
Cell-to Cell Signaling and Interaction

Complement and Coagulation Cascades, 
p38 MAPK Signaling, Xenobiotic 
Metabolism Signaling, Wnt/β-catenin 
Signaling, TGF-β Signaling, Starch and 
Sucrose Metabolism, Riboflavin 
Metabolism, Purine Metabolism, PPAR 
Signaling

#6 4 hours post infection, down ARL3, CASP14, FCER1A, FOXC1, G0S2, 
HOXA9, KIF3C, KPNA3,MLL, NDUFS4, 
NDUFV2, PEX14, RANBP9, RBL1, RFP, 
SERPINB10, SERPINC1, SERPINE1, 
SLC34A1, SLC7A1, SMYD3, TFE3, TGFB1, 
TNF, WWOX

Cellular Development, Cellular Growth 
and Proliferation, Hematological System 
Development and Function, Immune and 
Lymphatic System Development and 
Function

Ubiquinone Biosynthesis, TGF-β Signaling, 
p38 MAPK Signaling, Oxidative 
Phosphorylation, Complement and 
Coagulation Cascades, Cell Cycle G1/S 
Checkpoint Regulation, Xenobiotic 
Metabolism Signaling, Wnt/β-catenin 
Signaling, PPAR Signaling

#7 6 hours post infection, up P29, CIRH1A, KIF1B, GPR51, GPS1, 
BMPR2, THBD*,* No significant 
networks assembled

Cell Morphology, Cardiovascular Disease, 
Genetic Disorder, Nervous System 
Development and Function, Organ 
Morphology

Pentose Phosphate Pathway, EGF Signaling, 
IL-2 Signaling, Jak/Stat Signaling, Fructose 
and Mannose Metabolism, Galactose 
Metabolism

#8 8 hours post infection, up CCR2, CDC45L, CRABP2, CSF3R, DIO1, 
E2F1, EXOSC9, GBP2, IL4, IL6, INDO, 
KCNJ5, KIAA0101, MAZ, NR1H4, NUP62, 
PFKL, POLD1, PROS1, RAF1, RXRA, SP1, 
THRA

Gene Expression, Cell Death, Hepatic 
System Disease, Cellular Function and 
Maintenance, Cellular Growth and 
Proliferation

Xenobiotic Metabolism Signaling, IL-10,-6 
Signaling, PPAR Signaling, VEGF Signaling, 
Tryptophan Metabolism, TGF-β Signaling, T 
Cell Receptor Signaling, Pyrimidine 
Metabolism

#9 8 hours post infection, down ALAD, CPT2, CPT1A, CRYAB, EEF2, GAS1, 
GCK, GSK3A, INSR, MNT, MXI1, MYC, 
NDRG1, ONECUT1, PDE3B, PKLR, PTPN2, 
PTPRG, RPL5, SOCS6, SORBS1, TAT, TUB

Metabolic Disease, Cell Cycle, Connective 
Tissue Development and Function, Cellular 
Growth and Proliferation, Carbohydrate 
Metabolism

Insulin Receptor Signaling, Wnt/β-catenin 
Signaling, Purine Metabolism, Glycolysis/
Glyconeogenesis, Fatty Acid Metabolism, 
Tyrosine Metabolism

#10 10 hours post infection, down ACTN4, ADAM10, AIM1, ARID1B, COL2A1, 
CTNNB1, CTNNBIP1, CTSH, FZD8, IHH, 
LFNG, MMP2, NOTCH1, NRP2, PIN1, 
SFTPB, SLC26A2, SMARCA4, SOCS1, 
STXBP3

Organismal Development, Embryonic 
Development, Tissue Development, 
Cellular Development

Wnt/β-catenin Signaling, NOTCH 
Signaling, VEGF Signaling, Purine 
Metabolism, PI3K/AKT Signaling, Jak/Stat 
Signaling, Interferon Signaling, Integrin 
Signaling, IL-6,-4,-2 Signaling
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SLC7A5) was down-regulated. The network forms a con-
vincing picture organizing different subcellular locations
including endoplasmic reticulum and the Golgi apparatus
with functions such as protein glycosylation (DPM1,
SLC34A1, MGAT2, ST3GAL1). Likewise, signaling
through several transcription/translation regulators (MLL,
EEF1A1, SHANK3) was identified. Interestingly transcrip-
tion factors identified as over-represented TREs, namely c-
Rel (cluster 5) and NKX2-5, HNF1 (cluster 6), were found
to be expressed (but not VHV) genes, thereby providing
plausibility to the system level analysis. While cluster 7
showed a set of genes involved in cell cycle (P29, APBB2,
GPS1) and the TGFβ-pathway (BMPR2, THBD) up-regu-
lated 6 hours post infection, no concise network or signif-
icant functions/pathways could be identified (Table 1).

Gradual decline of cell functions at later time points
Clusters 8 and 9, up- and down-regulated 8 hours post
infection, respectively (Figure 2A), represent a variety of
functions. Up-regulated genes in cluster 8 were bound in
one network with cell morphology, cell death/injury/
abnormalities and lipid metabolism as the top ontologies
(Table 1). Those genes significantly represented EGF- and
IL-2 signaling pathways. Several genes represented G-pro-
tein-coupled and ion receptors (KCNJ5, NR1H4,
ATP6V1D). Genes in this cluster expressed MYOD and
HNF3B as over-represented TREs. Down-regulated genes
in cluster 9 shared HAND1 as an over-represented TRE
and were bound in one network with ontologies similar
to cluster 5, 6 – carbohydrate/lipid/nucleic- & amino acids
metabolism, small molecule biochemistry (Table 1).

The last time point, 10 hours post infection, showed one
network of down-regulated genes in cluster 10 related to
cancer, carbohydrate metabolism, cell cycle and morphol-
ogy ontologies. Those genes were significantly overrepre-
sented in the following canonical pathways: interferon/
NOTCH/Interleukins/JAK/STAT signaling (Table 1). Deg-
radation processes, such as matrix breakdown, repre-
sented by COL2A1, STXBP3, ARID1B, MMP2, CTNNBIP1
genes. Two zinc finger proteins (ZNF406, ZNF444) were
also down-regulated. Various inflammation- and cell
growth/proliferation related pathways represented by
SFTPB, SOCS1 (JAK/STAT cascade), COL2A1, PIN1 genes
also were identified.

Discussion
For the first time, the response of urothelial cells growing
in a urothelial mimetic and presented with an over-
whelming Enterococcus infection was examined at the level
of gene expression from the earliest events until cell death
began to overwhelm the cells. The time course illumi-
nated a progressive and orchestrated response to bacterial
infection by the urothelial cells. At the earliest time points,
the evidence suggests the cells initiate an immune

response, cytoskeletal rearrangement and estrogen recep-
tor signaling. Numerous poorly annotated genes identi-
fied in the early time period suggest currently unknown
functions may be involved as well. The intermediate time
points from 4 to 8 hours were characterized by modula-
tion of cellular pathways that were under cellular control
but were initiated by the earliest response to Enterococcus.
In the final time points, the cells were initiating death pro-
grams and shutting down essential life processes.

Several characteristics of this model and of transcriptom-
ics in general led us to use a novel systems biology
approach to interpreting the data. First, because recent
work showing that signaling represents a highly interac-
tive cellular network [13], and even challenges the con-
cept of "pathways", key functional events might only be
observed indirectly in the transcriptome. Thus, the usual
statistical analysis of finding a few highly differentially
expressed genes is likely to be overly simplistic and inac-
curate in the absence of an expensive number of repli-
cates. Second, transcripts were derived both from cells that
were in direct contact with bacteria as well as from cells
whose contact with bacteria was indirect and through cell-
cell communication. While the top cell layer in contact
with bacteria may produce a range of responses and die
quickly, cells underneath may proliferate and respond
first to the cells above them and then to bacteria at later
time points. This is a feature of natural infection that is
captured in the model used in this paper, but the result
could be to smear out and obscure the response. Third,
most microarray results tend to over-represent high
expression genes over those that are expressed near the
background, even though the low-abundance transcripts
may represent important regulatory genes such as tran-
scription factors. Fourth, with over 21,000 different genes
being represented on the array and 10 time points, the
resulting data set consists of over 200,000 data points, and
determining whether patterns can occur by chance repre-
sents a fundamental challenge. We therefore used a very
conservative approach such that the probability of any of
the "beacon" VHV genes being identified by chance was
vanishingly small.

Because transcriptomics data are almost universally
underdetermined, there is no single solution to any data
set, and, in fact, many solutions are possible. The
approach we describe here is based upon differences in
variance that are due to technical and biological factors
and to the characteristics of microarray experiments in
general. The advantage of a variance-based approach is
that it is much less dependent upon replicates than are
methods based upon comparisons of means. The entire
experiment is a replicate for those 8142 genes for which
the technical variability exceeds that due to biological fac-
tors ("constant" genes), and their distribution of variance
Page 8 of 15
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allows estimates of the probability of the change in
expression of any single gene falling outside specified lim-
its to be made. By adjusting the thresholds of significance,
the number of "interesting" genes can be managed, either
to identify a large set encapsulating the system variance or
a small set of "beacons" that point to the pathways in
which they function. By referencing system noise in both
determination of expression and identification of "inter-
esting" genes, the signal to noise ratio can be optimized to
produce an interpretable picture of the system as a whole.
VHV genes serve as these beacons. A key to this approach
is that the analysis of array data is linked to network tools
such as PAINT and IPA and does not proceed in isolation.
That most of the genes suggested by IPA as forming net-
works with the beacon VHV or HV genes actually were
expressed validates this approach and argues against
chance variation in selection of VHV or HV genes as being
significant.

Time course data are complex because individual time
points are related to each other. Given the lack of repli-
cates, methods based on comparisons of means are not
applicable, and including 3–5 replicates of each time
point makes experiments very expensive. Thus, variance-
based analyses have an advantage in analyzing data sets
such as this one here. A recently described method [14]
compares the goodness of fit of the expression values of
each gene over time fitted to a curve or to a flat line.
Whether our and that method would yield different
results is not clear. Most likely, some genes would be iden-
tified as significant in both approaches and some only in
one. Whether a markedly different picture of pathways
and networks would result is doubtful.

The unsupervised clustering organizes the data based on
the observed expression pattern whereas the pathway tool
examines the genes in the clusters in light of what is
known in the literature. Often, as in the present case little
literature about the function of genes in urothelium is
available, and therefore functions are inferred from other
contexts (T-cell development, for example, in the case of
PTCRA discussed below). However, the observed expres-
sion data represent the functioning of these genes in the
context of urothelium responding to Enterococcus, and it
may be that genes function differently in different con-
texts. In some cases so little is known about the function
of a particular gene and the interaction partners of its pro-
tein product that Ingenuity doesn't even recognize it.
Thus, failure of a gene to be recognized as fitting into a
network may simply reflect lack of information about the
function of the gene within the current context or any con-
text (e.g. the open reading frame). Therefore genes that do
not fit into networks should not be discarded arbitrarily as
"false positives," they could be considered as representing
completely novel findings. Thus, these networks represent

only first approximations of the actual networks that rep-
resent the underlying biology. Inevitably the question of
confirmation arises, but this is a far more complex ques-
tion than is generally considered [15]. Given the generally
high correlation between different array platforms and
PCR, the value of confirming RNA levels by PCR is limited
[16]. Ultimately, the only real confirmation is at the func-
tional protein level in hypothesis-driven experiments. The
purpose of the system-level examination of complex proc-
esses is to generate hypotheses by identifying previously
unrecognized connections among genes and suggesting
how genes might function as a system rather than as iso-
lated genes or even canonical pathways. Unfortunately,
further investigation is often hampered by a lack of suita-
ble reagents.

During the early period post infection, most of the VHV
beacon genes were up-regulated with the exception of one
small cluster of genes that was down-regulated 1.5 hours
post-infection and a few genes that were expressed at high
levels in the control and immediately down-regulated.
None of the first three clusters showed any common tran-
scriptional regulatory elements or convincingly suggested
ontologies. The higher resolution picture produced by
including the entire set of HV genes clarified the picture
and identified important functions and pathways that are
triggered by interaction with the bacteria. Enterococcus fae-
calis expresses 41 proteins that could interact with urothe-
lial cells or their local matrix and thereby alter gene
expression [17]. In depth analysis showed two were likely
enzymes with catalytic activities toward carbohydrates,
including hyaluronan and chondroitin sulfate. Because
urothelium expresses a dense network of surface chon-
droitin sulfate that acts as a protective element for the
urothelium [18], inactivation of this layer may be
required before infection can proceed. The very early
cytoskeleton organization response in the host cells could
result directly from interactions with these bacterial pro-
teins.

One strongly represented element in the early response
genes was initiation of an immune response at the earliest
time points. Urothelium, like many epithelia, is capable
of mounting an innate immune response [5]. The early
immune response is shown clearly by PAINT, which iden-
tified the two immune function transcription factors Elk-1
and Ets-1 from their TREs as well as by identification of a
number of genes in immune response networks by IPA;
one example is shown in Figure 4. While several of these
genes bear names suggesting a specific function in another
cell type (e.g. PTCRA, or pre T-cell antigen receptor alpha)
our data show they are expressed in urothelial cells.
Whether they play the same role in urothelial cells as in T-
cells respectively remains to be established. Interestingly,
four estrogen receptor signaling genes were identified.
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Estrogen receptor signaling plays a much wider role than
the classical estrogen response element signaling [19].
Urothelial cells bear both androgen and estrogen recep-
tors without regard to the sex of the donor [20]. The early
responses therefore may represent a fruitful target for
interfering with bacterial infection and deserve deeper
investigation, particularly because so many of the HV and
VHV genes are so poorly annotated. Novel functions and
processes are likely to be identified.

The middle time period, 4 to 8 hours post infection repre-
sents an active response to infection from endogenous cel-
lular networks. The cells respond by continuing the
immune response, up-regulating metabolism, cellular
proliferation and development, and cell-cell signaling.
Relatively few genes are down-regulated during this
period. Two plausible networks were assembled; one net-
work characterized by up-regulation of the focus genes
and the other by down-regulation. Interestingly, both
include TGFβ as an extracellular cytokine. The up-regu-
lated network also contains TGFβ, but IL1B is present as
well, whereas the down-regulated cluster contains TNF.
Interestingly, the signaling molecules are all expressed at
low levels, but consistently above the background. Of
considerable interest is the presence of SERPINC1 in the
down-regulated network. This gene is more familiar as

antithrombin III, a regulator of serine proteases in the
coagulation cascade in the presence of heparin-like mole-
cules. SERPINC is responsible for the puzzling function of
"hematologic diseases" in Table 1. Yet, it also is expressed
above background. This gene could represent an addi-
tional element of protecting the surface glycosaminogly-
can layer. Wnt signaling also seems to be a target during
this time period. This signaling pathway plays a major role
in organization of epithelial cells [21]. Inflammatory
response pathways driven by NF-κB [22-26] and a variety
of interleukins [27,28] (IL2 in particular) can also be seen
early and continuously throughout the timecourse. The
NF-κB pathway is activated via Toll-like receptors [26,29],
especially in bacterial infection [30-32]. We did not
observe significant expression of TLRs although some of
them (TLR 6, 7, 8, 10) were expressed close to or slightly
above the 3 SD background cut-off. This is in accordance
with another study of Enterococcus infection [33].

Several transcription factors were implicated by PAINT as
controlling individual clusters. In the middle time period,
Cluster 4 shows an over-representation of genes contain-
ing a TRE for c-Myc, and Cluster 5 contains an over-repre-
sentation of the inflammation-related c-Rel. Cluster 6 is
enriched in the Nkx-2-5 TRE, as well as HNF-1, Olf-1 and
VBP. The Nkx-2-5 is most likely a regulator of urothelial
genes in general [23] and is expressed in all clusters. Clus-
ter 7 shows an over-abundance of genes containing Pax-4,
CPD and USF TREs. In the late time points, HNF-3β,
MyoD, Hand-1, which also likely is a driver of urothelial
genes in general [23], FoxJ2 and Staf are over-represented.
Although PAINT and IPA operate by different principles,
nonetheless several of these TREs were implicated by both
methods, thereby further supporting their importance.
The transcriptional regulatory networks implicated by
TRE analysis could help identify networks of genes oper-
ating together in bladder that have not been identified to
date.

Connecting clusters across time with IPA suggested some
information flow across time from the earliest time points
as summarized in Fig. 5. While these comparisons were
complicated by the general paucity of detailed annota-
tions of the early response genes, the limited annotations
suggest PTCRA is linked to TCF3 in cluster 3, which is up-
regulated 1.5 hours post infection. This points to Wnt/β-
catenin, which is a transcription cofactor with TCF/LEF.
Expression of CTNNB1 (β-catenin), albeit low, tracks the
time course of TCF3 expression. Other components of this
pathway are all either expressed at constant levels or have
similar temporal profiles. A second theme is rearrange-
ment of the cytoskeleton as representing an early
response, as shown by finding ACTR2, TEKT1, CDH24,
and RPH3AL as VHV genes. A third theme across time is
Ephrin signaling. This may be part of a more global picture

Example of first plausible network of genes in enhanced clus-ter 1Figure 4
Example of first plausible network of genes in 
enhanced cluster 1. All other networks of interacting 
genes in this and other clusters are listed in the Additional 
files 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16.
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of cell structural remodeling, where Wnt/β-catenin acts
along with ephrin/IL2/neuregulin signaling cascades.

The final time period is predominately characterized by
down-regulation, with the exception of up-regulation of
genes responsible for cell death. Overall the process of
degradation can be seen in down-regulation of Wnt path-
way, metabolism and interleukin signaling concluding
cascade of events leading to cell death after Enterococcus
infection.

While the number of system level studies of host-patho-
gen interactions currently is small and even smaller when
only epithelial cells are considered, the number is growing
[1]. However, comparing studies will be complicated by
the context problem, and therefore we should perhaps not
expect to find much correspondence in individual genes.
Common pathways may emerge if they represent core
functions (e.g. cell cycle, immune response or apoptosis),
and correspondence with previous studies showing these
pathways are involved in the host response was observed
[1]. Each bacterial system is unique in what it secretes and
how it affects the host. Each host cell also has its own
unique response system [1]. Until the literature is more
comprehensive, comparing studies will be complicated.

Our study for the first time maps the response of human
urothelial cells to infection by Enterococcus at the tran-
scriptome level from the earliest responses to the initia-
tion of cell death. A novel bioinformatics approach was
used that combined rigorous statistical tools in a biologi-
cal framework to bring out a systems level picture.
Although a picture involving reasonably well understood
processes could be assembled, the finding that so many
early response genes are poorly annotated suggests that
the picture of the host cell response is nonetheless very
incomplete at the system level. Understanding the early
events could yield important clues for preventing infec-
tion as well as identify currently unrecognized responses
of the cellular network.

Methods
Bacterial strains and cell growth
The SV40-immortalized human urothelial cell line HUC-
BC(ATCC) was infected with the retrovirus pLEGFP
(Clontech, Mountain View, CA) and cells stably express-
ing green fluorescent protein (GFP) were selected with
flow cytometry. Cells infected with the retrovirus pDsRed
(Clontech, Mountain View, CA) thus expressing dsRED
were used for cross-section visualization. Small intestine
submucosa (SIS) membranes encased in plastic inserts
(Cook Biotech, West Lafayette, IN) were equilibrated with
3 washes of Hanks Balanced Salt Solution (Invitrogen –
Gibco, Carlsbad, CA). After washing, the SIS inserts were
incubated in Ham's F12 solution(Invitrogen – Gibco,
Carlsbad, CA) with 10% FCS (fetal calf serum) (Invitro-
gen – Gibco, Carlsbad, CA) for at least 3 hours before cells
were placed on membranes. Each SIS insert was placed in
an individual well of a 6-well plate (BD Falcon, Bedford,
MA) with care taken to ensure air is not captured under
the membrane and full contact with the Ham's F-12
media is made. All but 2.5 ml of the media is removed as
well as the media on top of the membrane itself. GFP
expressing HUC-BC cells were typsinized and brought up
in media at a concentration of 150,000 cells/50 μl, and 50
μl seeded onto a membrane surface with area of 50.3
mm2. This cell number is sufficient to cover the mem-
brane with a monolayer of cells in a volume sufficient to
keep cells within the membrane insert. Cells were grown
for 7 days in Ham's F-12 medium containing 10% FCS
changed every 2 or 3 days. At day 6, cells were trypsinized
from one membrane to obtain a cell number so that the
concentration of Enterococcus faecalis bacteria would have
a multiplicity of infection (MOI) of 10. Enterococcus faeca-
lis (strain W32944, UTI isolate) cells from an overnight
culture in Brain Heart Infusion were pelleted by centrifu-
gation at 4000 × g for 10 min, washed once with Ham's F-
12 medium containing 10% FCS and resuspended in the
same medium. For infection, appropriate numbers of cells
in 50 μL volume were was layered onto each HUC-BC/SIS
membrane and incubations of 0 minutes, 30 minutes, 60

Schematic diagram of significant functions identified by IPA analysis of clusters shown in Fig. 2Figure 5
Schematic diagram of significant functions identified 
by IPA analysis of clusters shown in Fig. 2. Functions 
associated with genes that were up-regulated are shown in 
red and those that were down-regulated are shown in green.
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minutes, 90 minutes, 2 hours, 4 hours, 6 hours, 8 hours,
10 hours, and 24 hours were carried out at 37°C in a 5%
CO2 incubator. Control membranes received 50 μL of
Ham's F-12 medium containing 10% FCS.

Visualization
Two HUC-BC/SIS membranes from each time point
within the infection time course were visualized with con-
focal fluorescence microscopy to determine the time
points for microarray analysis. Propidium iodide (Invitro-
gen – Gibco, Carlsbad, CA) was used to indicate dead
cells. Bacteria were labeled with GFP for cross-section vis-
ualization in conjunction with HUC cells expressing
dsRED.

RNA isolation and microarray analysis
RNA was isolated at each time point with RNAeasy kit
(QIAGEN Inc., Valencia, CA). Cy3 labeled cDNA was syn-
thesized and hybridized onto glass arrays spotted with
22,464 long oligos (~70 mers) from the UniGene data-
base of functionally known genes.

Data normalization and identification of hypervariable 
genes
Data were normalized as was described previously [34]
using an approach that takes advantage of the statistical
and biological properties of microarray experiments to
reference expression data and perform classifications and
filtering with reference to the variability inherent in the
data set as a whole. Removal of duplicate, "Blank" and
"Control" values yielded 21,521 unique genes. In order to
facilitate identification of genes that are expressed a cer-
tain level above background, expression was normalized
to the variability of unhybridized probes as described
[35]. Briefly, a frequency histogram of the un-normalized
expression values yielded a bimodal, right-skewed curve
(Figure 1A). The distribution around the first mode was
normally distributed, providing a measure of the variabil-
ity around zero. The expression of all genes was then nor-
malized to this value after subtraction of the zero point.
The arrays were then adjusted to each other by robust lin-
ear regression, which assumes that the expression of most
genes is not altered in the experiment and down-weights
the effect on global expression of those that do change.
The data set was then filtered to remove all genes showing
less that a value of 3.0 for expression. This is equivalent to
setting a threshold of 3 SD above background for deciding
that a gene is expressed. While this choice is arbitrary, it
means that out of roughly 10,000 expressed genes, about
13–14 would represent false positives at any one time
point. By requiring expression at more than one time
point for inclusion reduces the probability of falsely scor-
ing a gene as expressed to virtually zero. Next, the techni-
cal variability in the system was identified from a
frequency histogram of relative standard deviation of all

the measurements of each gene (Figure 1B). Given that
most genes vary only for technical and not biological rea-
sons [34], the standard deviation determined from the
normally distributed portion of this histogram defines the
system noise in measurement of individual gene expres-
sion values. These genes whose variance is normally dis-
tributed provide an internal standard of measurement
noise (ISMN) [34]. Genes with variances 3SD above the
mean of ISMN express more variability than is expected
from the internal consistency of the data. These are
selected as hypervariable (HV) genes and comprised a
total of 1409 genes. While this number captures the excess
variability over system noise, it is inconveniently large.
The set of HV genes was further filtered to select only those
genes with relative standard deviations greater than 0.2.
The probability of any of these genes being selected by
chance also is vanishingly small. This produced 239 very
hypervariable (VHV) genes used for further analysis.
These genes serve as "beacons" with which to identify
pathways and networks that are perturbed by the process
of infection over the time course. We emphasize that it is
not necessary to identify at this point every gene that
shows a statistically increased probability of modulation.
The expression levels of all 21,521 genes are listed on the
public database GEO (Series GSE5988).

Hierarchical clustering
The expression values of 239 VHV genes were clustered by
Cluster 3.0 program [36], the next generation of the Clus-
ter program developed by M. B. Eisen [37]. Genes were
median-centered and organized into 10 clusters by K-
means clustering with 1000 number of runs. The similar-
ity metric was selected as Correlation (uncentered). The
results were visualized with Java TreeView program, also
the next generation of TreeView program originally devel-
oped by M. B. Eisen.

All 1409 HV genes were clustered by K-means clustering
with 1000 runs using the Euclidian similarity metric.
Genes up-regulated at early time points that then dropped
below noise afterwards were identified manually because
genes expressed at only 1 time point would otherwise be
filtered.

Pathway and promoter sequence binding analysis
Biologically relevant networks were assembled from sets
of genes in each cluster with IPA, a web-based pathway
analysis program [38]. IPA uses a genome-scale biological
knowledge base, and generates multiple biological net-
works with associated ontologies from a list of focus
genes, in this case the genes in clusters identified by hier-
archical clustering. This analysis enables assembly and vis-
ualization of direct and indirect physical and biological
interactions among a given gene set (focus genes) and
other genes that are inferred from literature reports of con-
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nections. Each gene identifier was mapped to its corre-
sponding gene object in the Ingenuity© Pathways
Knowledge Base. Genes were not weighted by expression
levels, and biological networks were built on this assump-
tion. Each network was assigned a significance score cal-
culated as the negative log of the probability of
assembling N genes that form a network from a random
sampling of the transcriptome. Networks with scores
above 3 are considered significant at p < 0.001. The func-
tional analysis of networks identified the biological func-
tions and/or diseases that are most significant to the genes
in the network. Canonical pathways analysis identified
the most significant known biological pathways for a
given set of genes. These networks are not equivalent to
canonical pathways because they are based on literature
reports of interactions that can be direct or indirect, which
is both their strength and weakness. Because these hypo-
thetical networks infer the presence of genes not in the
focus gene list, it is necessary to remove genes that are not
expressed. This was done in all our pathway figures (Addi-
tional files 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15), ontolo-
gies and canonical pathways. Thus, every gene that is
shown is expressed at least 3 SD above the background
noise. These pathways, such as shown in Figure 4 are then
designated as "plausible" networks because all the mem-
bers are expressed at the RNA level, at least.

TREs upstream of the clustered VHV genes were identified
using the web-based program PAINT [39,40]. PAINT que-
ries the Transfac™ database and calculates the probability
that the TREs identified in a given list of genes differ from
a random sample of TREs. In this case, the validity of par-
titioning into clusters was tested by comparing the TREs
found in each cluster against the entire list of VHV genes.
This provided a map of TREs significantly overrepresented
in a given cluster against a significance threshold of p <
0.05. For more reliable results filtering with FDR < 0.3 cri-
terion was used, when specified. It should be noted that a
random collection of genes will not form statistically sig-
nificant pathways or networks. Neither will they contain
over-represented TREs. Thus the finding that a set of genes
contain common TREs or fit into known networks sup-
ports that they are neither randomly selected by chance or
the product of technical error.
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Additional file 10
Plausible network for Cluster 3, 1.5 hours post infection, up-regulated
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Additional file 11
Plausible network for Cluster 4, 1.5 hours post infection, down-regulated
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Additional file 12
Plausible network for Cluster 5, 4 hours post infection, up-regulated
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Additional file 13
Plausible network for Cluster 6, 4 hours post infection, down-regulated
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Additional file 14
Plausible network for Cluster 8, 8 hours post infection, up-regulated
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-8-S7-S2-S14.jpg]

Additional file 15
Plausible network for Cluster 9, 8 hours post infection, down-regulated
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Additional file 16
Legends for IPA generated networks
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Additional file 17
Full list of 192 HV genes in cluster 1. GenBank accession numbers, gene 
names and description provided.
Click here for file
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Additional file 18
Genes from expanded cluster 1 assembled in networks and their top 
functions/canonical pathways. Gene names in bold are "focus genes" 
identified from clusters formed from VHV genes. Non-expressed genes 
were manually removed from the networks. Statistically significant top 
functions and canonical pathways are identified by IPA.
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