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A B S T R A C T   

We present an experimental investigation into the effectiveness of transfer learning and bottleneck feature 
extraction in detecting COVID-19 from audio recordings of cough, breath and speech. This type of screening is 
non-contact, does not require specialist medical expertise or laboratory facilities and can be deployed on inex
pensive consumer hardware such as a smartphone. We use datasets that contain cough, sneeze, speech and other 
noises, but do not contain COVID-19 labels, to pre-train three deep neural networks: a CNN, an LSTM and a 
Resnet50. These pre-trained networks are subsequently either fine-tuned using smaller datasets of coughing with 
COVID-19 labels in the process of transfer learning, or are used as bottleneck feature extractors. Results show 
that a Resnet50 classifier trained by this transfer learning process delivers optimal or near-optimal performance 
across all datasets achieving areas under the receiver operating characteristic (ROC AUC) of 0.98, 0.94 and 0.92 
respectively for all three sound classes: coughs, breaths and speech. 

This indicates that coughs carry the strongest COVID-19 signature, followed by breath and speech. Our results 
also show that applying transfer learning and extracting bottleneck features using the larger datasets without 
COVID-19 labels led not only to improved performance, but also to a marked reduction in the standard deviation 
of the classifier AUCs measured over the outer folds during nested cross-validation, indicating better 
generalisation. 

We conclude that deep transfer learning and bottleneck feature extraction can improve COVID-19 cough, 
breath and speech audio classification, yielding automatic COVID-19 detection with a better and more consistent 
overall performance.   

1. Introduction 

COVID-19 (COrona VIrus Disease of 2019) was declared a global 
pandemic on February 11, 2020 by the World Health Organisation 
(WHO). Caused by the severe acute respiratory syndrome coronavirus 2 
(SARS-CoV-2), this disease affects the respiratory system and includes 
symptoms like fatigue, dry cough, shortness of breath, joint pain, muscle 
pain, gastrointestinal symptoms and loss of smell or taste [1,2]. Due to 
its effect on the vascular endothelium, the acute respiratory distress 
syndrome can originate from either the gas or vascular side of the 
alveolus which becomes visible in a chest x-ray or computed tomogra
phy (CT) scan for COVID-19 patients [3,4]. Among the patients infected 
with SARS-CoV-2, between 5% and 20% are admitted to an intensive 

care unit (ICU) and their mortality rate varies between 26% and 62% 
[5]. Medical lab tests are available to diagnose COVID-19 by analysing 
exhaled breaths [6]. This technique was reported to achieve an accuracy 
of 93% when considering a group of 28 COVID-19 positive and 12 
COVID-19 negative patients [7]. Related work using a group of 25 
COVID-19 positive and 65 negative patients achieved an area under the 
ROC curve (AUC) of 0.87 [8]. 

Previously, machine learning algorithms have been applied to detect 
COVID-19 using image analysis. For example, COVID-19 was detected 
from CT images using a Resnet50 architecture with 96.23% accuracy in 
Ref. [9]. The same architecture also detected pneumonia due to 
COVID-19 with an accuracy of 96.7% [10] and COVID-19 from x-ray 
images with an accuracy of 96.30% [11]. 
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The automatic analysis of cough audio for COVID-19 detection has 
also received recent attention. Coughing is a predominant symptom of 
many lung ailments and its effect on the respiratory system varies [12, 
13]. Lung disease can cause the glottis to behave differently and the 
airway to be either restricted or obstructed and this can influence the 
acoustics of the vocal audio such as cough, breath and speech [14,15]. 
This raises the prospect of identifying the coughing audio associated 
with a particular respiratory disease such as COVID-19 [16,17]. Re
searchers have found that a simple binary machine learning classifier 
can distinguish between healthy and COVID-19 respiratory audio, such 
as coughs gathered from crowdsourced data, with an AUC above 0.8 
[18]. Improved performance was achieved using a convolutional neural 
network (CNN) for cough and breath audio, achieving an AUC of 0.846 
[19]. 

In our previous work, we have also found that automatic COVID-19 
detection is possible on the basis of the acoustic cough signal [20]. Here 
we extend this work firstly by considering whether breath and speech 
audio can also be used effectively for COVID-19 detection. Secondly, 
since the COVID-19 datasets at our disposal are comparatively small, we 
apply transfer learning and extract bottleneck features to take advantage 
of other datasets that do not include COVID-19 labels. To do this, we use 
publicly available as well as our own datasets that do not include 
COVID-19 labels to pre-train three deep neural network (DNN) archi
tectures: a CNN, a long short-term memory (LSTM) and a 50-layer 
residual-based architecture (Resnet50), which uses convolutional 
layers with skip connections. For subsequent COVID-19 classifier eval
uation, we used the Coswara dataset [21], the Interspeech Computa
tional Paralinguistics ChallengE (ComParE) dataset [22] and the Sarcos 
dataset [20], all of which do contain COVID-19 labels. We report further 
evidence of accurate discrimination using all three audio classes and 
conclude that vocal audio including coughing, breathing and speech are 
all affected by the condition of the lungs to an extent that they carry 
acoustic information that can be used by existing machine learning 
classifiers to detect signatures of COVID-19. We are also able to show 
that the variability in performance of the classifiers, as measured over 
the independent outer folds of nested cross-validation, is strongly 
reduced by the pre-training, despite the absence of COVID-19 labels in 
the pre-training data. We can therefore conclude that the application of 
transfer learning enables the COVID-19 classifiers to perform both more 
accurately and with greater greater consistency. This is key to the 
viability of the practical implementation of cough audio screening, 
where test data can be expected to be variable, depending for example 
on the location and method of data capture. 

Sections 2 and Section 3 summarise the datasets used for experi
mentation and the primary feature extraction process. Section 4 de
scribes the transfer learning process and Section 5 explains the 
bottleneck feature extraction process. Section 6 presents the experi
mental setup, including the cross-validated hyperparameter optimisa
tion and classifier evaluation process. Experimental results are 
presented in Section 7 and discussed in Section 8. Finally, Section 9 
summarises and concludes this study. 

2. Data 

2.1. Datasets without COVID-19 labels for pre-training 

Audio data with COVID-19 labels remain scarce, which limits clas
sifier training. We have therefore made use of five datasets without 
COVID-19 labels for pre-training. These datasets contain recordings of 
coughing, sneezing, speech and non-vocal audio. The first three datasets 
(TASK, Brooklyn and Wallacedene) were compiled by ourselves as part 
of research projects concerning cough monitoring and cough 

classification. The last two (Google Audio Set & Freesound and Lib
rispeech) were compiled from publicly available data. Since all five 
datasets were compiled before the start of the COVID-19 pandemic, they 
are unlikely to contain data from COVID-19 positive subjects. All data
sets used for pre-training include manual annotations but exclude 
COVID-19 labels. 

2.1.1. TASK dataset 
This corpus consists of spontaneous coughing audio collected at a 

small tuberculosis (TB) clinic near Cape Town, South Africa [23]. The 
dataset contains 6000 recorded coughs by patients undergoing TB 
treatment and 11 393 non-cough sounds such as laughter, doors opening 
and objects moving. This data was intended for the development of 
cough detection algorithms and the recordings were made in a multi-bed 
ward environment using a smartphone with an attached external 
microphone. The annotations consist of the time locations and labels of 
sounds, including coughs. 

2.1.2. Brooklyn dataset 
This dataset contains recordings of 746 voluntary coughs by 38 

subjects compiled for the development of TB cough audio classification 
systems [24]. Audio recording took place in a controlled indoor booth, 
using a RØDE M3 microphone and an audio field recorder. The anno
tations include the start and end times of each cough. 

2.1.3. Wallacedene dataset 
This dataset consists of recordings of 1358 voluntary coughs by 51 

patients, also compiled for the development of TB cough audio classi
fication [25]. In this case, audio recording took place in an outdoor 
booth located at a busy primary healthcare clinic. Recording was per
formed using a RØDE M1 microphone and an audio field recorder. This 
data has more environmental noise and therefore a poorer 
signal-to-noise ratio than the Brooklyn dataset. As for the Brooklyn 
dataset, annotations include the start and end times of each cough. 

2.1.4. Google Audio Set & Freesound 
The Google Audio Set dataset contains excerpts from 1.8 million 

Youtube videos that have been manually labelled according to an 
ontology of 632 audio event categories [26]. The Freesound audio 
database is a collection of tagged sounds uploaded by contributors from 
around the world [27]. In both datasets, the audio recordings were 
contributed by many different individuals under widely varying 
recording conditions and noise levels. From these two datasets, we have 
compiled a collection of recordings that include 3098 coughing sounds, 
1013 sneezing sounds, 2326 speech excerpts and 1027 other non-vocal 
sounds such as engine noise, running water and restaurant chatter. 
Previously, this dataset was used for the development of cough detection 
algorithms [28]. Annotations consist of the time locations and labels of 
the particular sounds. 

2.1.5. LibriSpeech 
As a source of speech audio data, we have selected utterances by 28 

male and 28 female speakers from the freely available LibriSpeech 
corpus [29]. These recordings contain very little noise. The large size of 
the corpus allowed easy gender balancing. 

2.1.6. Summary of data used for pre-training 
In total, the data described above includes 11 202 cough sounds 

(2.45 h of audio), 2.91 h of speech from both male and female partici
pants, 1013 sneezing sounds (13.34 min of audio) and 2.98 h of other 
non-vocal audio. Hence sneezing is under-represented as a class in the 
pre-training data. Since such an imbalance can detrimentally affect the 
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performance of neural networks [30,31], we have applied the synthetic 
minority over-sampling technique (SMOTE) [32]. SMOTE oversamples 
the minor class by creating additional synthetic samples rather than, for 
example, random oversampling. We have in the past successfully 
applied SMOTE to address training set class imbalances in cough 
detection [23] and cough classification [20] based on audio recordings. 

In total, therefore, a dataset containing 10.29 h of audio recordings 
annotated with four class labels (cough, speech, sneeze, noise) was 
available to pre-train the neural architectures. The composition of this 
dataset is summarised in Table 1. All recordings used for pre-training 
were downsampled to 16 kHz. 

2.2. Datasets with COVID-19 labels for classification 

Three datasets of coughing audio with COVID-19 labels were avail
able for experimentation. 

2.2.1. Coswara dataset 
This dataset is specifically developed with the testing of classification 

algorithms for COVID-19 detection in mind. Data collection is web- 
based, and participants contribute by using their smartphones to re
cord their coughing, breathing and speech. Audio recordings were 
collected of both shallow and deep breaths as well as speech uttered at a 
normal and fast pace. However, since the deep breaths consistently 
outperformed the shallow breaths in our initial experiments, the latter 
will not be presented in our experiments. At the time of writing, the data 
included contributions from participants located on five different con
tinents [20,21,33]. 

Figs. 1 and 2 show examples of Coswara breaths and speech 
respectively, collected from both COVID-19 positive and COVID-19 
negative subjects. It is evident that breaths have more higher- 
frequency content than speech and interesting to note that COVID-19 
breaths are, on average, 30% shorter than non-COVID-19 breaths 
(Table 2). All audio recordings were pre-processed to remove periods of 
silence to within a margin of 50 ms using a simple energy detector. 

2.2.2. ComParE dataset 
This dataset was provided as a part of the 2021 Interspeech 

Computational Paralinguistics ChallengE (ComParE) [22]. The 
ComParE dataset contains recordings of both coughs and speech, where 
the latter is the utterance ‘I hope my data can help to manage the virus 
pandemic’ in the speaker’s language of choice. 

2.2.3. Sarcos dataset 
This dataset was collected in South Africa as part of this research and 

currently contains recordings of coughing by 18 COVID-19 positive and 
26 COVID-19 negative subjects. Audio was pre-processed in the same 
way as the Coswara data. Since this dataset is very small, we have used it 

in our previous work exclusively for independent validation [20]. In this 
study, however, it has also been used to fine-tune and evaluate 
pre-trained DNN classifiers by means of transfer learning and the 
extraction of bottleneck features. 

2.2.4. Summary of data used for classification 
Table 2 shows that the COVID-19 positive class is under-represented 

in all datasets available for classification. To address this, we again apply 
SMOTE during training. We also note that the Coswara dataset contains 
the largest number of subjects, followed by ComParE and finally Sarcos. 
As for pre-training, all recordings were downsampled to 16 kHz. 

3. Primary feature extraction 

From the time-domain audio signals, we have extracted mel- 
frequency cepstral coefficients (MFCCs) and linearly-spaced log filter
bank energies, along with their respective velocity and acceleration 
coefficients. We have also extracted the signal zero-crossing rate (ZCR) 
[34] and kurtosis [34], which are indicative respectively of time-domain 
signal variability and tailedness, i.e. the prevalence of higher 
amplitudes. 

MFCCs have been very effective in speech processing [35], but also in 
discriminating dry and wet coughs [36], and recently in characterising 
COVID-19 audio [37]. Linearly-spaced log filterbank energies have 
proved useful in several biomedical applications, including cough audio 
classification [24,25,38]. 

Features are extracted from overlapping frames, where the frame 
overlap δ is computed to ensure that the audio signal is always divided 
into exactly 𝒮 frames, as illustrated in Fig. 3. This ensures that the entire 
audio event is always represented by a fixed number of frames, which 
allows a fixed input dimension to be maintained for classification while 
preserving the general overall temporal structure of the sound. Such 
fixed two-dimensional feature dimensions are particularly useful for the 
training of DNN classifiers, and have performed well in our previous 
experiments [20]. 

The frame length (ℱ ), number of frames (𝒮), number of lower order 
MFCCs (ℳ) and number of linearly spaced filters (ℬ) are regarded as 
feature extraction hyperparameters, listed in Table 3. The table shows 
that in our experiments each audio signal is divided into between 70 and 
200 frames, each of which consists of between 512 and 4096 samples, 
corresponding to between 32 msec and 256 msec of audio. The number 
of extracted MFCCs (ℳ) lies between 13 and 65, and the number of 
linearly-spaced filterbanks (ℬ) between 40 and 200. This allows the 
spectral information included in each feature to be varied. 

The input feature matrix to the classifiers has the dimension of 
(3ℳ+ 2, 𝒮) for ℳ MFCCs along with their ℳ velocity and ℳ accel
eration coefficients, as shown in Fig. 3. Similarly, for linearly spaced 
filters, the dimension of the feature matrix is (3ℬ+ 2,𝒮). 

Table 1 
Summary of the Datasets used in Pre-training. Classifiers are pre-trained on 10.29 h audio recordings annotated with four class labels: cough, sneeze, speech and 
noise. The datasets do not include any COVID-19 labels.  

Type Dataset Sampling Rate No of Events Total audio Average length Standard deviation 

Cough TASK dataset 44.1 kHz 6000 91 min 0.91 s 0.25 s 
Brooklyn dataset 44.1 kHz 746 6.29 min 0.51 s 0.21 s 
Wallacedene dataset 44.1 kHz 1358 17.42 min 0.77 s 0.31 s 
Google Audio Set & Freesound 16 kHz 3098 32.01 min 0.62 s 0.23 s 
Total (Cough) — 11 202 2.45 h 0.79 s 0.23 s 

Sneeze Google Audio Set & Freesound 16 kHz 1013 13.34 min 0.79 s 0.21 s 
Google Audio Set & Freesound + SMOTE 16 kHz 9750 2.14 h 0.79 s 0.23 s 
Total (Sneeze) — 10 763 2.14 h 0.79 s 0.23 s 

Speech Google Audio Set & Freesound 16 kHz 2326 22.48 min 0.58 s 0.14 s 
LibriSpeech 16 kHz 56 2.54 h 2.72 min 0.91 min 
Total (Speech) — 2382 2.91 h 4.39 s 0.42 s 

Noise TASK dataset 44.1 kHz 12 714 2.79 h 0.79 s 0.23 s 
Google Audio Set & Freesound 16 kHz 1027 11.13 min 0.65 s 0.26 s 
Total (Noise) — 13 741 2.79 h 0.79 s 0.23 s  
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Fig. 1. Pre-processed breath signals from both COVID-19 positive and COVID-19 negative subjects in the Coswara dataset. Breaths corresponding to inhalation are 
marked by arrows, and are followed by an exhalation. 

Fig. 2. Pre-processed speech (counting from 1 to 20 at a normal pace) from both COVID-19 positive and COVID-19 negative subjects in the Coswara dataset. In 
contrast to breath (Fig. 1), the spectral energy in this speech is concentrated below 1 kHz. 

Table 2 
Summary of the datasets used for COVID-19 classification. Cough, breath and speech signals were extracted from the Coswara, ComParE and Sarcos datasets. 
COVID-19 positive subjects are under-represented in all three.  

Type Dataset Sampling Rate Label Subjects Total audio Average per subject Standard deviation 

Cough Coswara 44.1 kHz COVID-19 Positive 92 4.24 min 2.77 s 1.62 s 
Healthy 1079 0.98 h 3.26 s 1.66 s 
Total 1171 1.05 h 3.22 s 1.67 s 

ComParE 16 kHz COVID-19 Positive 119 13.43 min 6.77 s 2.11 s 
Healthy 398 40.89 min 6.16 s 2.26 s 
Total 517 54.32 min 6.31 s 2.24 s 

Sarcos 44.1 kHz COVID-19 Positive 18 0.87 min 2.91 s 2.23 s 
COVID-19 Negative 26 1.57 min 3.63 s 2.75 s 
Total 44 2.45 min 3.34 s 2.53 s 

Breath Coswara 44.1 kHz COVID-19 Positive 88 8.58 min 5.85 s 5.05 s 
Healthy 1062 2.77 h 9.39 s 5.23 s 
Total 1150 2.92 h 9.126 s 5.29 s 

Speech Coswara (normal) 44.1 kHz COVID-19 Positive 88 12.42 min 8.47 s 4.27 s 
Healthy 1077 2.99 h 9.99 s 3.09 s 
Total 1165 3.19 h 9.88 s 3.22 s 

Coswara (fast) 44.1 kHz COVID-19 Positive 85 7.62 min 5.38 s 2.76 s 
Healthy 1074 1.91 h 6.39 s 1.77 s 
Total 1159 2.03 h 6.31 s 1.88 s 

ComParE 16 kHz COVID-19 Positive 214 44.02 min 12.34 s 5.35 s 
Healthy 396 1.46 h 13.25 s 4.67 s 
Total 610 2.19 h 12.93 s 4.93 s  
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We will refer to the features described in this section as primary 
features (PF) to distinguish them from the bottleneck features (BNF) 
described in Section 5. 

4. Transfer learning architecture 

Since the audio datasets with COVID-19 labels described in Section 
2.2 are small, they may lead to overfitting when training deep archi
tectures. Nevertheless, in previous work we have found that deep ar
chitectures perform better than shallow classifiers when using these as 
training sets [20]. In this work, we consider whether the classification 
performance of such DNNs can be improved by applying transfer 
learning. 

To achieve this, we use the datasets described in Section 2.1 con
taining 10.29 h of audio, labelled with four classes: cough, sneeze, 
speech and noise, but that do not include COVID-19 labels (Table 1 in 
Section 2.1). This data is used to pre-train three deep neural 

architectures: a CNN, an LSTM and a Resnet50. The feature extraction 
hyperparameters: ℳ = 39,ℱ = 210 and 𝒮 = 150 delivered good per
formance in our previous work [20] and thus have also been used here 
(Table 4). 

The CNN consists of three convolutional layers, with 256, 128 and 64 
(2 × 2) kernels respectively, each followed by (2,2) max-pooling. The 
LSTM consists of three layers with 512, 256 and 128 LSTM units 
respectively, each including dropout with a rate of 0.2. A standard 
Resnet50, as described in Table 1 of [39], has been implemented with 
512-dimensional dense layers. 

During pre-training, all three networks (CNN, LSTM and Resnet50) 
are terminated by three dense layers with dimensionalities 512, 64 and 
finally 4 to correspond to the four classes mentioned in Table 1. Relu 
activation functions were used throughout, except in the four- 
dimensional output layer which was softmax. All the above architec
tural hyperparameters were chosen by optimising the four-class classi
fiers during cross-validation (Table 4). 

After pre-training on the datasets described in Section 2.1, the 64 and 
4-dimensional dense layers terminating the network were discarded 
from the CNN, the LSTM and the Resnet50. This left three trained deep 
neural networks, each accepting the same input dimensions and each 
with a 512-dimensional relu output layer. The parameters of these three 
pre-trained networks were then fixed for the remaining experiments. 

In order to obtain COVID-19 classifiers by transfer learning, two 
dense layers are added after the 512-dimensional output layer of each of 
the three pre-trained deep networks. The final layer is a two- 
dimensional softmax, to indicate COVID-19 positive and negative clas
ses respectively. The dimensionality of the penultimate layer was also 
considered to be a hyperparameter and was optimised during nested k- 
fold cross-validation. Its optimal value was found to be 32 for all three 
architectures. The transfer learning process for a CNN architecture is 
illustrated in Fig. 4. 

5. Bottleneck features 

The 512-dimensional output of the three pre-trained networks 
described in the previous section has a much lower dimensionality than 
the (3ℳ+ 2, 𝒮) i.e. (3 × 39 + 2) × 150 = 17 850 dimensional input 
matrix consisting of primary features (Table 4). Therefore, the output of 
this layer can be viewed as a bottleneck feature vector [40–42]. In 
addition to fine-tuning, where we add terminating dense layers to the 
three pre-trained networks and optimise these for the binary COVID-19 
detection task as shown in Fig. 4, we have trained logistic regression 
(LR), support vector machine (SVM), k-nearest neighbour (KNN) and 
multilayer perceptron (MLP) classifiers using these bottleneck features 
as inputs. Bottleneck features computed by the CNN, the LSTM or the 
Resnet50 were chosen based on the one which performed better in the 
corresponding transfer learning experiments. Since the Resnet50 ach
ieved higher development set AUCs than the CNN and the LSTM during 
transfer learning, it was used to extract bottleneck features on which the 
LR, SVM, KNN and MLP classifiers were trained. 

Fig. 3. Feature extraction process for a breath audio. The frame overlap δ is calculated to ensure that the entire recording is divided into 𝒮 segments. For ℳ
MFCCs, for example, this results in a feature matrix with dimensions (3ℳ+ 2,𝒮). 

Table 3 
Primary feature (PF) extraction hyperparameters. We have used between 13 
and 65 MFCCs and between 40 and 200 linearly spaced filters to extract log 
energies.  

Hyperparameters Description Range 

MFCCs (ℳ)  lower order MFCCs to keep 13 × k, where k = 1, 2, 3, 
4, 5 

Linearly spaced filters 
(ℬ)  

used to extract log energies 40 to 200 in steps of 20 

Frame length (ℱ )  into which audio is 
segmented 

2k where k = 9, 10, 11, 
12 

Segments (𝒮)  number of frames extracted 
from audio 

10 × k, where k = 7, 10, 
12, 15, 20  

Table 4 
Hyperparameters of the pre-trained networks: Feature extraction hyper
parameters were adopted from the optimal values in previous related work [20], 
while classifier hyperparameters were optimised on the pre-training data using 
cross-validation.  

FEATURE EXTRACTION HYPERPARAMETERS 

Hyperparameters Values 

ℳ MFCCs 39 
ℱ Frame length 210 = 1024 
𝒮 Segments 150 

CLASSIFIER HYPERPARAMETERS 

Hyperparameters Classifier Values 

Convolutional filters CNN 256 & 128 & 64 
Kernel size CNN 2 
Dropout rate CNN, LSTM 0.2 
Dense layer (for pre-training) CNN, LSTM, Resnet50 512 & 64 & 4 
Dense layer (for fine-tuning) CNN, LSTM, Resnet50 32 & 2 
LSTM units LSTM 512 & 256 & 128 
Learning rate LSTM 10− 3 = 0.001 
Batch Size CNN, LSTM, Resnet50 27 = 128 
Epochs CNN, LSTM, Resnet50 70  
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6. Experimental method 

We have evaluated the effectiveness of transfer learning (Section 4) 
and bottleneck feature extraction (Section 5) using CNN, LSTM and 
Resnet50 architectures in improving the performance of COVID-19 
classification based on cough, breath and speech audio signals. In 
order to place these results in context, we provide two baselines.  

1. As a first baseline, we train the three deep architectures (CNN, LSTM 
and Resnet50) directly on the primary features extracted from data 
containing COVID-19 labels (as described in Section 2.2) and hence 
skip the pre-training. Some of these baseline results were developed 
in our previous work [20].  

2. As a second baseline, we train shallow classifiers (LR, SVM, KNN and 
MLP) on the primary input features (as described in Section 3), also 
extracted from the data containing COVID-19 labels (described in 
Section 2.2). 

The performance of these baseline systems will be compared against:  

1. Deep architectures (CNN, LSTM and Resnet50) trained by the 
transfer learning process. The respective deep architectures are pre- 
trained (as described in Section 4), after which the final two layers 
are fine-tuned on the data containing COVID-19 labels (as described 
in Section 2.2).  

2. Shallow architectures (LR, SVM, KNN and MLP) trained on the 
bottleneck features extracted from the pre-trained networks. 

6.1. Hyperparameter optimisation 

Hyperparameters for three pre-trained networks have already been 
described in Section 4 and are listed in Table 4. The remaining hyper
parameters are those of the baseline deep classifiers (CNN, LSTM and 
Resnet50 without pre-training), the four shallow classifiers (LR, SVM, 
KNN and MLP), and the dimensionality of the penultimate layer for the 
deep architectures during transfer learning. 

With the exception of Resnet50, all these hyperparameters optimi
sation and performance evaluation has been performed within the inner 
loops of nested k-fold cross-validation scheme [43]. Due to the excessive 
computational requirements of optimising Resnet50 metaparameters 
within the same cross-validation framework, we have used the standard 
50 skip layers in all experiments [39]. Classifier hyperparameters and 
the values considered during optimisation are listed in Table 5. A 
five-fold split, similar to that employed in Ref. [20], was used for the 
nested cross-validation. 

6.2. Classifier evaluation 

Receiver operating characteristic (ROC) curves were calculated 
within both the inner and outer loops of the nested cross-validation 
scheme described in the previous section. The inner-loop ROC values 
were used for the hyperparameter optimisation, while the average of the 
outer-loop ROC values indicates final classifier performance on the in
dependent held-out test sets. The AUC score indicates how well the 
classifier performs over a range of decision thresholds [44]. The 
threshold that achieves an equal error rate (γEE) was computed from 
these curves. 

We note the mean per-frame probability that an event such as a 
cough is from a COVID-19 positive subject by P̂: 

P̂ =

∑K
i=1 P(Y = 1|Xi, θ)

𝒮
(1)  

where 𝒮 indicates the number of frames in an event and P(Y = 1|Xi, θ) is 
the output of the classifier for feature vector Xi and parameters θ for the 
ith frame. Now we define the indicator variable C as: 

C =

{
1 if P̂ ≥ γEE
0 otherwise

(2) 

We then define two COVID-19 index scores CI1 and CI2 in Equations 
(3) and (4) respectively, with N1 the number of events from the subject 
in the recording and N2 the total number of frames of the events gath
ered from the subject. Here, N2 = 𝒮× N1. 

Fig. 4. CNN Transfer Learning Architecture. Cross-validation on the pre-training data determined the optimal CNN architecture to have three convolutional layers 
with 256, 128 and 64 (2 × 2) kernels respectively, each followed by (2,2) max-pooling. The convolutional layers were followed by two dense layers with 512 and 64 
relu units each, and the network was terminated by a 4-dimensional softmax. To apply transfer learning, the final two layers were removed and replaced with a new 
dense layer and a terminating 2-dimensional softmax to account for COVID-19 positive and negative classes. Only this newly added portion of the network was 
trained for classification on the data with COVID-19 labels. In addition, the outputs of the third-last layer (512-dimensional dense relu) from the pre-trained network 
were used as bottleneck features. 

Table 5 
Classifier hyperparameters, optimised using leave-p-out nested cross- 
validation.  

Hyperparameters Classifier Range 

Regularisation Strength (α1) LR, SVM 10i where, i = − 7, − 6, …, 6, 7 
l1 penalty (α2) LR 0 to 1 in steps of 0.05 
l2 penalty (α3) LR, MLP 0 to 1 in steps of 0.05 
Kernel Coefficient (α4) SVM 10i where, i = − 7, − 6, …, 6, 7 
No. of neighbours (α5) KNN 10 to 100 in steps of 10 
Leaf size (α6) KNN 5 to 30 in steps of 5 
No. of neurons (α7) MLP 10 to 100 in steps of 10 
No. of convolutional filters (β1) CNN 3 × 2k where k = 3, 4, 5 
Kernel size (β2) CNN 2 and 3 
Dropout rate (β3) CNN, LSTM 0.1 to 0.5 in steps of 0.2 
Dense layer size (β4) CNN, LSTM 2k where k = 4, 5 
LSTM units (β5) LSTM 2k where k = 6, 7, 8 
Learning rate (β6) LSTM, MLP 10k where, k = − 2, − 3, − 4 
Batch Size (β7) CNN, LSTM 2k where k = 6, 7, 8 
Epochs (β8) CNN, LSTM 10 to 250 in steps of 20  
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CI1 =

∑N1
i=1 C
N1

(3)  

CI2 =

∑N2
i=1 P(Y = 1|Xi)

N2
(4) 

Hence Equation (1) computes a per-event average probability while 
Equation (4) computes a per-frame average probability. The use of one 
of Equations (3) and (4) was considered an additional hyperparameter 
during cross-validation, and it was found that taking the maximum 
value of the index scores consistently led to the best performance. 

The average specificity, sensitivity and accuracy, as well as the AUC 
together with its standard deviation (σAUC) are shown in Tables 6–8 for 
cough, breath and speech events respectively. These values have all been 
calculated over the outer folds during nested cross-validation. Hyper
parameters producing the highest AUC over the inner loops have been 
noted as the ‘best classifier hyperparameter’. 

7. Experimental results 

COVID-19 classification performance based on cough, breath and 
speech is presented in Tables 6–8 respectively. These tables include the 

performance of baseline deep classifiers without pre-training, deep 
classifiers trained by transfer learning (TL), shallow classifiers using 
bottleneck features (BNF) and baseline shallow classifiers trained 
directly on the primary features (PF). The best performing classifiers 
appear first for each dataset and the baseline results are shown towards 
the end. Each system is identified by an ‘ID’. 

7.1. Coughs 

We have found in our previous work [20] that, when training a 
Resnet50 on only the Coswara dataset, an AUC of 0.976 (σAUC = 0.018) 
can be achieved for the binary classification problem of distinguishing 
COVID-19 coughs from healthy coughs. These results are reproduced as 
baseline systems C8, C9 and C10 in Table 6. The improved results ach
ieved by transfer learning are indicated by systems C1 to C7 in the same 
table. Specifically, system C1 shows that, by applying transfer learning 
as described in Section 4, the same Resnet50 architecture can achieve an 
AUC of 0.982 (σAUC = 0.002). The entries for systems C2 and C3 show 
that pre-training also improves the AUCs achieved by the deep CNN and 
LSTM classifiers from 0.953 (system C9) to 0.972 (system C2) and from 
0.942 (system C10) to 0.964 (system C3) respectively. Of particular note 

Table 6 
COVID-19 cough classification performance. For the Coswara, Sarcos and ComParE datasets the highest AUCs of 0.982, 0.961 and 0.944 respectively were achieved 
by a Resnet50 trained by transfer learning in the first two cases and a KNN classifier using 12 primary features determined by sequential forward selection (SFS) in the 
third. When Sarcos is used exclusively as a validation set for a classifier trained on the Coswara data, an AUC of 0.954 is achieved.  

Dataset ID Classifier Best Feature 
Hyperparameters 

Best Classifier Hyperparameters (Optimised inside 
nested cross-validation) 

Performance 

Spec Sens Acc AUC σAUC 

Coswara C1 Resnet50 + TL Table 4 Default Resnet50 (Table 1 in Ref. [39]) 97% 98% 97% 0.982 2 × 10− 3 

C2 CNN + TL ” Table 4 92% 98% 95% 0.972 3 × 10− 3 

C3 LSTM + TL ” ” 93% 95% 94% 0.964 3 × 10− 3 

C4 MLP + BNF ” α3 = 0.35, α7 = 50 92% 96% 94% 0.963 4 × 10− 3 

C5 SVM + BNF ” α1 = 104, α4 = 101 89% 93% 91% 0.942 3 × 10− 3 

C6 KNN + BNF ” α5 = 20, α6 = 15 88% 90% 89% 0.917 7 × 10− 3 

C7 LR + BNF ” α1 = 10− 1, α2 = 0.5, α3 = 0.5 84% 86% 85% 0.898 8 × 10− 3 

C8 Resnet50 + PF 
[20] 

Table 4 in [20] Default Resnet50 (Table 1 in Ref. [39]) 98% 93% 95% 0.976 18 × 10− 3 

C9 CNN + PF [20] ” Table 4 in [20] 99% 90% 95% 0.953 39 × 10− 3 

C10 LSTM + PF [20] ” ” 97% 91% 94% 0.942 43 × 10− 3 

Sarcos C11 Resnet50 + TL Table 4 Default Resnet50 (Table 1 in Ref. [39]) 92% 96% 94% 0.961 3 × 10− 3 

C12 LSTM + TL ” Table 4 92% 92% 92% 0.943 3 × 10− 3 

C13 CNN + TL ” ” 89% 91% 90% 0.917 4 × 10− 3 

C14 MLP + BNF ” α3 = 0.75, α7 = 70 88% 90% 89% 0.913 7 × 10− 3 

C15 SVM + BNF ” α1 = 10− 2, α4 = 104 88% 89% 89% 0.904 6 × 10− 3 

C16 KNN + BNF ” α5 = 40, α6 = 20 85% 87% 86% 0.883 8 × 10− 3 

C17 LR + BNF ” α1 = 10− 3, α2 = 0.4, α3 = 0.6 83% 86% 85% 0.867 9 × 10− 3 

Sarcos (val 
only) 

C18 Resnet50 + TL ” Default Resnet50 (Table 1 in Ref. [39]) 92% 96% 94% 0.954 – 
C19 LSTM + PF [20] Table 5 in [20] Table 5 in [20] 73% 75% 74% 0.779 – 
C20 LSTM + PF + SFS 

[20] 
” ” 96% 91% 93% 0.938 – 

ComParE C21 Resnet50 + TL Table 4 Default Resnet50 (Table 1 in Ref. [39]) 89% 93% 91% 0.934 4 × 10− 3 

C22 LSTM + TL ” Table 4 88% 92% 90% 0.916 4 × 10− 3 

C23 CNN + TL ” ” 86% 90% 88% 0.898 4 × 10− 3 

C24 MLP + BNF ” α3 = 0.25, α7 = 20 85% 90% 88% 0.912 5 × 10− 3 

C25 SVM + BNF ” α1 = 10− 3, α4 = 102 85% 90% 88% 0.903 6 × 10− 3 

C26 KNN + BNF ” α5 = 70, α6 = 20 85% 86% 86% 0.882 8 × 10− 3 

C27 LR + BNF ” α1 = 104, α2 = 0.3, α3 = 0.7 84% 86% 85% 0.863 8 × 10− 3 

C28 KNN + PF + SFS ℬ = 60,ℱ = 211 ,𝒮 = 70  α5 = 60, α6 = 25 84% 90% 92% 0.944 9 × 10− 3 

C29 KNN + PF ℬ = 60,ℱ = 211 ,𝒮 = 70  α5 = 60, α6 = 25 78% 80% 80% 0.855 13 × 10− 3 

C30 MLP + PF ℳ = 13,ℱ = 210,𝒮 =

100  
α3 = 0.65, α7 = 40 76% 80% 78% 0.839 14 × 10− 3 

C31 SVM + PF ℬ = 80,ℱ = 29,𝒮 = 70  α1 = 10− 4, α4 = 10− 1 75% 78% 77% 0.814 12 × 10− 3 

C32 LR + PF ℬ = 140,ℱ = 211 ,𝒮 =

70  
α1 = 10− 2, α2 = 0.6, α3 = 0.4 69% 73% 71% 0.789 13 × 10− 3  
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Table 7 
COVID-19 breath classifier performance: For breaths, the best performance was achieved by an SVM using bottleneck features (AUC = 0.942). The Resnet50 
classifier trained by transfer learning achieves a similar AUC of 0.934.  

Dataset ID Classifier Best Feature 
Hyperparameters 

Best Classifier Hyperparameters (Optimised inside nested 
cross-validation) 

Performance 

Spec Sens Acc AUC σAUC 

Coswara B1 Resnet50 +
TL 

Table 4 Default Resnet50 (Table 1 in Ref. [39]) 87% 93% 90% 0.934 3 × 10− 3 

B2 LSTM + TL ” Table 4 86% 90% 88% 0.927 3 × 10− 3 

B3 CNN + TL ” ” 85% 89% 87% 0.914 3 × 10− 3 

B4 SVM + BNF ” α1 = 102, α4 = 10− 2 88% 94% 91% 0.942 4 × 10− 3 

B5 MLP + BNF ” α3 = 0.45, α7 = 50 87% 93% 90% 0.923 6 × 10− 3 

B6 KNN + BNF ” α5 = 70, α6 = 10 87% 93% 90% 0.922 9 × 10− 3 

B7 LR + BNF ” α1 = 10− 4, α2 = 0.8, α3 = 0.2 86% 90% 88% 0.891 8 × 10− 3 

B8 Resnet50 +
PF 

ℳ = 39,ℱ = 210 ,𝒮 = 150  Default Resnet50 (Table 1 in Ref. [39]) 92% 90% 91% 0.923 34 ×
10− 3 

B9 LSTM + PF ℳ = 26,ℱ = 211 ,𝒮 = 120  β3 = 0.1, β4 = 32, β5 = 128, β6 = 0.001, β7 = 256, β8 = 170 90% 86% 88% 0.917 41 ×
10− 3 

B10 CNN + PF ℳ = 52,ℱ = 210 ,𝒮 = 100  β1 = 48, β2 = 2, β3 = 0.3, β4 = 32, β7 = 256, β8 = 210 87% 85% 86% 0.898 42 ×
10− 3  

Table 8 
COVID-19 speech classifier performance: For the Coswara (fast and normal speech) and the ComParE speech the highest AUCs were 0.893, 0.861 and 0.923 
respectively and achieved by a Resnet50 trained by transfer learning in the first two cases and an SVM using with bottleneck features in the third case.  

Dataset ID Classifier Best Feature 
Hyperparameters 

Best Classifier Hyperparameters (Optimised inside nested 
cross-validation) 

Performance 

Spec Sens Acc AUC σAUC 

Coswara S1 Resnet50 + TL Table 4 Default Resnet50 (Table 1 in Ref. [39]) 90% 85% 87% 0.893 3 × 10− 3 

normal S2 LSTM + TL ” Table 4 88% 82% 85% 0.877 4 × 10− 3 

speech S3 CNN + TL ” ” 88% 81% 85% 0.875 4 × 10− 3  

S4 MLP + BNF ” α3 = 0.25, α7 = 60 83% 85% 84% 0.871 8 × 10− 3  

S5 SVM + BNF ” α1 = 10− 6, α4 = 105 83% 85% 84% 0.867 7 × 10− 3  

S6 KNN + BNF ” α5 = 50, α6 = 10 80% 85% 83% 0.868 6 × 10− 3  

S7 LR + BNF ” α1 = 102, α2 = 0.6, α3 = 0.4 79% 83% 81% 0.852 7 × 10− 3  

S8 Resnet50 + PF ℳ = 26,ℱ = 210 ,𝒮 = 120  Default Resnet50 (Table 1 in Ref. [39]) 84% 80% 82% 0.864 51 ×
10− 3  

S9 LSTM + PF ℳ = 26,ℱ = 211 ,𝒮 = 150  β3 = 0.1, β4 = 32, β5 = 128, β6 = 0.001, β7 = 256, β8 = 170 84% 78% 81% 0.844 51 ×
10− 3  

S10 CNN + PF ℳ = 39,ℱ = 210 ,𝒮 = 120  β1 = 48, β2 = 2, β3 = 0.3, β4 = 32, β7 = 256, β8 = 210 82% 78% 80% 0.832 52 ×
10− 3 

Coswara S11 Resnet50 + TL Table 4 Default Resnet50 (Table 1 in Ref. [39]) 84% 78% 81% 0.861 2 × 10− 3 

fast S12 LSTM + TL ” Table 4 83% 78% 81% 0.860 3 × 10− 3 

speech S13 CNN + TL ” ” 82% 76% 79% 0.851 3 × 10− 3  

S14 MLP + BNF ” α3 = 0.55, α7 = 70 78% 83% 81% 0.858 7 × 10− 3  

S15 SVM + BNF ” α1 = 104, α4 = 10− 2 78% 83% 81% 0.856 8 × 10− 3  

S16 KNN + BNF ” α5 = 60, α6 = 15 77% 83% 81% 0.854 8 × 10− 3  

S17 LR + BNF ” α1 = 10− 3, α2 = 0.4, α3 = 0.6 77% 82% 80% 0.841 11 ×
10− 3  

S18 LSTM + PF ℳ = 26,ℱ = 211 ,𝒮 = 120  β3 = 0.1, β4 = 32, β5 = 128, β6 = 0.001, β7 = 256, β8 = 170 84% 80% 82% 0.856 47 ×
10− 3  

S19 Resnet50 + PF ℳ = 39,ℱ = 210 ,𝒮 = 150  Default Resnet50 (Table 1 in Ref. [39]) 82% 78% 80% 0.822 45 ×
10− 3  

S20 CNN + PF ℳ = 52,ℱ = 210 ,𝒮 = 100  β1 = 48, β2 = 2, β3 = 0.3, β4 = 32, β7 = 256, β8 = 210 79% 77% 78% 0.810 41 ×
10− 3 

ComParE S21 Resnet50 + TL Table 4 Default Resnet50 (Table 1 in Ref. [39]) 84% 90% 87% 0.914 4 × 10− 3  

S22 LSTM + TL ” Table 4 82% 88% 85% 0.897 5 × 10− 3  

S23 CNN + TL ” ” 80% 88% 84% 0.892 5 × 10− 3  

S24 SVM + BNF ” α1 = 10− 1, α4 = 103 84% 88% 86% 0.923 4 × 10− 3  

S25 MLP + BNF ” α3 = 0.3, α7 = 60 80% 88% 84% 0.905 6 × 10− 3  

S26 KNN + BNF ” α5 = 20, α6 = 15 80% 86% 83% 0.891 7 × 10− 3  

S27 LR + BNF ” α1 = 102, α2 = 0.45, α3 = 0.7 81% 85% 83% 0.890 7 × 10− 3  

S28 MLP + PF +
SFS 

ℳ = 26,ℱ = 211 ,𝒮 = 150  α3 = 0.35, α7 = 70 82% 88% 85% 0.912 11 ×
10− 3  

S29 MLP + PF ℳ = 26,ℱ = 211 ,𝒮 = 150  α3 = 0.35, α7 = 70 81% 85% 83% 0.893 14 ×
10− 3  

S30 KNN + PF ℬ = 100,ℱ = 210,𝒮 = 120  α5 = 70, α6 = 15 80% 84% 82% 0.847 16 ×
10− 3  

S31 SVM + PF ℬ = 80,ℱ = 211,𝒮 = 120  α1 = 10− 2, α4 = 10− 3 79% 81% 80% 0.836 15 ×
10− 3  

S32 LR + PF ℬ = 60,ℱ = 210,𝒮 = 100  α1 = 104, α2 = 0.35, α3 = 0.65 69% 72% 71% 0.776 18 ×
10− 3  
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in all these cases is the substantial decrease in the standard deviation of 
the AUC (σAUC) observed during cross-validation when implementing 
transfer learning. This indicates that pre-training leads to classifiers with 
more consistent performance on the unseen test data. 

The Sarcos dataset is much smaller than the Coswara dataset and too 
small to train a deep classifier directly. For this reason, it was used only 
as an independent validation dataset for classifiers trained on the Cos
wara data in our previous work [20]. It can however be used to fine-tune 
pre-trained classifiers during transfer learning, and the resulting per
formance is reflected by systems C11 to C17 in Table 6. Previously an 
AUC of 0.938 (system C20) was achieved when using Sarcos as an in
dependent validation data and applying sequential forward selection 
(SFS) [20]. Here, we find that transfer learning applied to the Resnet50 
model results in an AUC of 0.961 (system C11) and a lower standard 
deviation (σAUC = 0.003). As an additional experiment, we apply the 
Resnet50 classifier trained by transfer learning using the Coswara data 
to the Sarcos data, thus again using the latter exclusively as an inde
pendent validation set. The resulting performance is indicated by system 

C18, while the previous baselines are repeated as systems C19 and C20 
[20]. System C18 achieves an AUC of 0.954, which is only slightly below 
the 0.961, achieved by system C11 where the pre-trained model used the 
Sarcos data for fine-tuning, and slightly higher than the AUC of 0.938 
achieved by system C20 which is the baseline LSTM trained on Coswara 
without transfer learning but employing SFS [45]. This supports our 
earlier observation that transfer learning appears to lead to more robust 
classifiers that can generalise to other datasets. Due to the extreme 
computational load, we have not yet been able to evaluate SFS within 
the transfer learning framework. 

For the ComParE dataset, we have included shallow classifiers 
trained directly on the primary input features (KNN + PF, MLP + PF, 
SVM + PF and LR + PF). These are the baseline systems C29 to C32 in 
Table 6. The best-performing shallow classifier is C29, where a KNN 
used 60 linearly spaced filterbank log energies as features. System C28 is 
the result of applying SFS to system C29. In this case, SFS identifies the 
top 12 features based on the development sets used during nested cross- 
validation, and results in the best-performing shallow system with an 

Fig. 5. COVID-19 cough classification: A Resnet50 classifier with transfer learning achieved the highest AUC in classifying COVID-19 coughs for the Coswara and 
Sarcos datasets (0.982 and 0.961 respectively). For the ComParE dataset, AUCs of 0.944 and 0.934 were achieved by a KNN classifier using 12 features identified by 
SFS and by a Resnet50 classifier trained by transfer learning respectively. 

Fig. 6. COVID-19 breath classification: An SVM classifier using bottleneck features (BNF) achieved the highest AUC of 0.942 when classifying COVID-19 breath. 
The Resnet50 with and without the transfer learning has achieved AUCs of 0.934 and 0.923 respectively, with higher σAUC for the latter (Table 7). 
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AUC of 0.944. This represents a substantial improvement over the AUC 
of 0.855 achieved by the same system without SFS (system C29). Sys
tems C21 to C27 in Table 6 are obtained by transfer learning using the 
ComParE dataset. These show improved performance over the shallow 
classifiers without SFS. In particular, after transfer learning, the 
Resnet50 achieves almost the same AUC as the best ComParE system 
(system C28) with a lower σAUC. 

When considering the performance of the shallow classifiers trained 
on the bottleneck features across all three datasets in Table 6, we see that 
a consistent improvement over the use of primary features with the same 
classifiers is observed. The ROC curves for the best-performing COVID- 
19 cough classifiers are shown in Fig. 5. 

7.2. Breath 

Table 7 demonstrates that COVID-19 classification is also possible on 
the basis of breath signals. The baseline systems B8, B9 and B10 are 
trained directly on the primary features, without pre-training. By 
comparing these baselines with B1, B2 and B3, we see that transfer 
learning leads to a small improvement in AUC for all three deep archi
tectures. Furthermore, systems B4 to B7 show that comparable perfor
mance can be achieved by shallow classifiers using the bottleneck 
features. The best overall performance (AUC = 0.942) was achieved by 
an SVM classifier trained on the bottleneck features (system B4). How
ever, the Resnet50 trained by transfer learning (system B1) performed 
almost equally well (AUC = 0.934). The ROC curves for the best- 
performing COVID-19 breath classifiers are shown in Fig. 6. As it was 
observed for coughs, the standard deviation of the AUC (σAUC) is 
consistently lower for the pre-trained networks. 

7.3. Speech 

Although not as informative as cough or breath audio, COVID-19 
classification can also be achieved on the basis of speech audio re
cordings. For Coswara, the best classification performance (AUC =
0.893) was achieved by a Resnet50 after applying transfer learning 
(system S1). For the ComParE data, the top performer (AUC = 0.923) 
was an SVM trained on the bottleneck features (system S24). However, 

the Resnet50 trained by transfer learning performed almost equally 
well, with an AUC of 0.914 (system S21). Furthermore, while good 
performance was also achieved when using the deep architectures 
without applying the transfer learning process (systems S8–S10, 
S18–S20 and S28–S32), this again was at the cost of a substantially 
higher standard deviation σAUC. Finally, for the Coswara data, perfor
mance was generally better when speech was uttered at a normal pace 
rather than a fast pace. The ROC curves for the best-performing COVID- 
19 speech classifiers are shown in Fig. 7. 

8. Discussion 

Previous studies have shown that it is possible to distinguish between 
the coughing sounds made by COVID-19 positive and COVID-19 nega
tive subjects by means of automatic classification and machine learning. 
However, the fairly small size of datasets with COVID-19 labels limits 
the effectiveness of these techniques. The results of the experiments we 
have presented in this study show that larger datasets of other vocal and 
respiratory audio that do not include COVID-19 labels can be leveraged 
to improve classification performance by applying transfer learning 
[46]. Specifically, we have shown that the accuracy of COVID-19 clas
sification based on coughs can be improved by transfer learning for two 
datasets (Coswara and Sarcos) while almost optimal performance is 
achieved on a third dataset (ComParE). A similar trend is seen when 
performing COVID-19 classification based on breath and speech audio. 
However, these two types of audio appear to contain less distinguishing 
information, since the achieved classification performance is a little 
lower than it is for cough. Our best cough classification system has an 
area under the ROC curve (AUC) of 0.982, despite being trained on what 
remains a fairly small COVID-19 dataset with 1171 participants (92 
COVID-19 positive and 1079 negative). Other research reports a similar 
AUC but using a much larger dataset with 8380 participants (2339 
positive and 6041 negative) [47]. While our experiments also show that 
shallow classifiers, when used in conjunction with feature selection, can 
in some cases match or surpass the performance of the deeper archi
tectures; a pre-trained Resnet50 architecture provides consistent 
optimal or near-optimal performance across all three types of audio 
signals and datasets. Due to the very high computational cost involved, 

Fig. 7. COVID-19 speech classification: An SVM classifier using bottleneck features (BNF) achieved the highest AUC of 0.923 when classifying COVID-19 speech in 
ComParE dataset. A Resnet50 trained by transfer learning achieves a slightly lower AUC of 0.914. Speech (normal and fast) in the Coswara dataset can be used to 
classify COVID-19 with AUCs of 0.893 and 0.861 respectively using a Resnet50 trained by transfer learning. 
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we have not yet applied such feature selection to the deep architectures 
themselves, and this remains part of our ongoing work. 

Another important observation that we can make for all three types 
of audio signals is that transfer learning strongly reduces the variance in 
the AUC (σAUC) exhibited by the deep classifiers during cross-validation 
(Tables 6–8). This suggests that transfer learning leads to more consis
tent classifiers that are less prone to over-fitting and better able to 
generalise to unseen test data. This is important because robustness to 
variable testing conditions is essential in implementing COVID-19 
classification as a method of screening. 

An informal listening assessment of the Coswara and the ComParE 
data indicates that the former has greater variance and more noise than 
the latter. Our experimental results presented in Tables 6–8 found that, 
for speech classification on noisy data, fine-tuning a pre-trained net
works demonstrates better performance, while for cleaner data, 
extracting bottleneck features and then applying a shallow classifier 
exhibits better performance. It is interesting to note that MFCCs are 
always the features of choice for this noisier dataset, while the log en
ergies of linear filters are often preferred for the less noisy data. 
Although all other classifiers have shown the best performance when 
using these log-filterbank energy features, MLP classifiers performed 
best when using MFCCs and were best at classifying COVID-19 speech. A 
similar conclusion was drawn in Ref. [24], where coughs were recorded 
in a controlled environment with little environmental noise. A larger 
number of frames in the feature matrix also generally leads to better 
performance as it allows the classifier to find more detailed temporal 
patterns in the audio signal. 

Finally, we note that, for the shallow classifiers, hyperparameter 
optimisation selected a higher number of MFCCs and also a more 
densely populated filterbank than what is required to match the reso
lution of the human auditory system. This agrees with an observation 
already made in our previous work that the information used by the 
classifiers to detect COVID-19 signature is at least to some extent not 
perceivable by the human ear. 

9. Conclusions 

In this study, we have demonstrated that transfer learning can be 
used to improve the performance and robustness of the DNN classifiers 
for COVID-19 detection in vocal audio such as cough, breath and speech. 
We have used a 10.29 h audio data corpus, which does not have any 
COVID-19 labels, to pre-train a CNN, an LSTM and a Resnet50. This data 
contains four classes: cough, sneeze, speech and noise. In addition, we 
have used the same architectures to extract bottleneck features by 
removing the final layers from the pre-trained models. Three smaller 
datasets containing cough, breath and speech audio with COVID-19 la
bels were then used to fine-tune the pre-trained COVID-19 audio clas
sifiers using nested k-fold cross-validation. 

Our results show that a pre-trained Resnet50 classifier that is either 
fine-tuned or used as a bottleneck extractor delivers optimal or near- 
optimal performance across all datasets and all three audio classes. 
The results show that transfer learning using the larger dataset without 
COVID-19 labels led not only to improved performance, but also to a 
much smaller standard deviation of the classifier AUC, indicating better 
generalisation to unseen test data. The use of bottleneck features, which 
are extracted by the pre-trained deep models and therefore also a way of 
incorporating out-of-domain data, also provided a reduction in this 
standard deviation and near-optimal performance. Furthermore, we see 
that cough audio carries the strongest COVID-19 signatures, followed by 
breath and speech. The best-performing COVID-19 classifier achieved an 
area under the ROC curve (AUC) of 0.982 for cough, followed by an AUC 

of 0.942 for breath and 0.923 for speech. 
We conclude that successful classification is possible for all three 

classes of audio considered. However, deep transfer learning improves 
COVID-19 detection on the basis of cough, breath and speech signals, 
yielding automatic classifiers with higher accuracies and greater 
robustness. This is significant since such COVID-19 screening is inex
pensive, easily deployable, non-contact and does not require medical 
expertise or laboratory facilities. Therefore it has the potential to 
decrease the load on the health care systems. 

As a part of ongoing work, we are considering the application of 
feature selection in the deep architectures, the fusion of classifiers using 
various audio classes like cough, breath and speech, as well as the 
optimisation and adaptation necessary to allow deployment on a 
smartphone or similar mobile platform. 
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