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Background: Gastric cancer (GC) has a high incidence and mortality rate with a poor prognosis, so it is 
crucial to search for new biomarkers. The role of NETosis, a newly identified type of programmed cell death, 
in GC and its underlying mechanisms have yet to be explored and still require thorough investigation. Our 
research seeks to enhance our comprehension of NETosis and may offer novel approaches for treating GC.
Methods: Utilizing The Cancer Genome Atlas-stomach adenocarcinoma (TCGA-STAD) dataset for 
training and the GSE84433 dataset for validation, our study delved into the associations between NETosis-
related genes and the clinical risk of GC. Through comprehensive clustering, enrichment, and immune 
infiltration analyses, we evaluated the prognostic relevance of these NETosis genes in vivo. Furthermore, 
we devised a NETosis-related risk signature (NRRS) to assess its implications in risk stratification, 
survival prognosis, immune infiltration, and drug sensitivity. The NRRS’s accuracy was validated by 
immunohistochemical staining. 
Results: By applying consensus clustering to data from 62 NETosis-related genes, we categorized patients 
into two distinct subgroups, C1 and C2. These subgroups demonstrated significant differences. Following 
this, we developed the NRRS using the least absolute shrinkage and selection operator (LASSO) regression 
analysis. This process involved the selection of the following genes: CXCR4, NRP1, PDCD1, CTLA4, 
AKR1B1, SERPINE1, RGS2, SLCO2A1, TNFAIP2, RNASE1, DOC2B, APOD, ENTPD2, and CCL24. High-
risk and low-risk groups can be accurately distinguished. We further verify in the verification set. These 
results suggest that NETosis is related to the microenvironment of GC. Our designed NRRS can predict the 
survival of patients with GC.
Conclusions: We emphasized the relationship between NETosis and GC. We built and validated the value 
of NRRS. This contributes to deepening our view of NETosis and potentially provides new strategies for 
GC treatment.
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Introduction

Gastric cancer (GC) is a widespread malignant tumor 
globally, ranking among the top five most common 
cancers. One of the challenges in managing GC is that 
its early clinical symptoms are often non-specific, which 
means patients may not experience significant discomfort 
or symptoms that clearly point to the disease. As a result, 
many patients are diagnosed at an advanced stage when 
the disease is already well-developed, leading to a less 
favorable prognosis (1-3). The primary treatment for GC 
continues to be surgical intervention, often supplemented 
by postoperative immunotherapy, chemotherapy, and other 
treatment modalities (4-6). Although recent advancements 
in medical technology have enhanced diagnostic and 
therapeutic options for GC, the mortality rate among 
patients remains high and continues to pose a significant 
challenge (7-9). Consequently, advancing the development 
of reliable biomarkers and disease models is essential for 
enhancing the prognosis of GC patients. These tools are 
vital for better patient outcomes, offering new avenues for 
therapeutic interventions (10-13).

Programmed cell death encompasses different types of 
cell death, such as pyroptosis, necroptosis, entosis, as well as 
ferroptosis and cuprotosis, which have been a hot research 
topic in recent years (14-18). NETosis is a newly defined 
mode of programmed cell death. Specifically, reticular 
DNA structures wrapped by histones, proteases, various 
antimicrobial proteins and cytoplasmic proteins are released 
by neutrophils to capture microorganisms and pathogens 

and are known as neutrophil extracellular traps (NETs) 
(19-21). NETs may be involved in various types of diseases 
such as autoimmune diseases, acute lung injury, sepsis and 
various processes of cancer (22-25).

Currently, NETosis is thought to play a crucial role 
in tumorigenesis (26), with prognostic features linked to 
certain malignancies (27-29). However, its specific function 
and mechanisms in GC remain unexplored, highlighting 
the need for further comprehensive research.

In our research, we constructed and validated a new 
NETosis-related risk signature (NRRS), evaluated the 
prognostic significance of NRRS in gastric cancer, and 
distinguished patients with varying degrees of sensitivity 
to immunotherapy, thereby laying the groundwork for 
enhanced patient-specific treatment strategies. We present 
this article in accordance with the TRIPOD reporting 
checklist (available at https://tcr.amegroups.com/article/
view/10.21037/tcr-24-377/rc).

Methods

Data collection

In the training cohort, we obtained transcriptomic data 
from The Cancer Genome Atlas (TCGA, https://portal.gdc.
cancer.gov/) database’s stomach adenocarcinoma (STAD) 
dataset, encompassing 375 tumor samples and 32 normal 
tissue samples. For validation, we utilized microarray gene 
chip data from the GSE84433 dataset on the GPL6947 
platform from the Gene Expression Omnibus (GEO) 
database, including data from 357 patients. The study was 
conducted in accordance with the Declaration of Helsinki (as 
revised in 2013).

Consensus clustering analysis of NETosis-related subtypes

We selected 62 NETosis-related genes from previous 
studies, including BST1, CD93, CEACAM3, CREB5, 
CRISPLD2, CSF3R, CYP4F3, DYSF, CPPED1, G0S2, 
HPSE, CXCR1, CXCR2, KCNJ15, LILRB2, MGAM, 
PDE4B, S100A12, SIGLEC5, SLC22A4, SLC25A37, 
TECPR2, TNFRSF10C, VNN3, AKT1, AKT2, ATG7, CYBB, 
DNASE1, ENTPD4, HMGB1, IL1B, ITGAM, ITGB2, 
KCNN3, MAPK1, MAPK3, MMP9, MTOR, PTAFR, 
PIK3CA, RIPK1, RIPK3, SELP, SELPLG, SIGLEC14, 
TLR2, TLR4, TLR7, TLR8, CSF3, IL6, CTSG, MYD88, 
PLA2G7, GSDMD, CDK6, NOX4, AGER, MME, ALPL 
and CLEC6A.

Highlight box

Key findings 
•	 NETosis, a recently discovered programmed cell death process, is 

tightly linked to the immune microenvironment of gastric cancer 
(GC). The NETosis-related risk signature (NRRS) effectively 
predicts GC patient survival.  

What is known and what is new? 
•	 GC, a highly prevalent cancer with a poor prognosis, is 

significantly impacted by NETosis in tumor biology.
•	 We discovered a correlation between NETosis subtypes and 

the tumor immune microenvironment in GC. We developed a 
validated NRRS to predict survival, immune infiltration, and drug 
sensitivity.

What is the implication, and what should change now?
•	 Our research deepens knowledge of NETosis and proposes fresh 

therapeutic approaches for GC.

https://tcr.amegroups.com/article/view/10.21037/tcr-24-377/rc
https://tcr.amegroups.com/article/view/10.21037/tcr-24-377/rc
https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
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We used ConsensusClusterPlus for cluster analysis. And 
the ideal number of clusters was established by combining 
statistical methods, including the consistent cumulative 
distribution function (CDF), area under the curve (AUC), 
and K-value. These techniques were utilized to ensure the 
stability and reliability of the clustering results.

Differentially expressed genes (DEGs) identification and 
analysis

Limma, a screening method rooted in generalized linear 
models, was utilized in this study to identify DEGs between 
different groups using the R package limma (version 
3.40.6). Genes were considered significantly differentially 
expressed based on an adjusted P value <0.05 and a fold 
change >1.5. Furthermore, Gene Ontology (GO) and 
Kyoto Encyclopedia of Genes and Genomes (KEGG) 
analyses were conducted to compare the signaling pathways 
among NETosis clusters, employing statistical significance 
thresholds of P value and q-value <0.05.

Mutation landscape examination

Genetic mutations among STAD subtypes were explored 
using somatic mutation data from TCGA, visualized 
through waterfall plots. 

Construction and validation of the NRRS

The least absolute shrinkage and selection operator 
(LASSO), a popular analysis approach, integrates variable 
selection and regularization. The non-zero coefficients 
derived from the LASSO regression represent the weights 
assigned to each gene in the final risk score model. 
Furthermore, we developed nomograms to estimate the 
survival outcomes of GC patients.

Immune cell infiltration analysis

Using the CIBERSORT algorithm, we analyzed the relative 
abundances of 22 distinct immune cell types. Additionally, 
we utilized the ESTIMATE algorithm to assess variations 
in Immune Score, Stromal Score, and ESTIMATE Score. 
To determine the correlation between the risk score and 
immune cells, we employed the Spearman correlation 
test. The Immune Score is a quantification of immune 
cell infiltration in a tumor microenvironment derived 

from gene expression data analysis. The Stromal Score 
assesses the presence of stromal cells within the tumor 
microenvironment. Lastly, the ESTIMATE Score, an 
algorithm combining immune and stromal scores, provides 
an estimation of tumor purity.

Drug sensitivity analysis

The sensitivity to chemotherapy and immunotherapy 
drugs is assessed by analyzing half-maximal inhibitory 
concentration (IC50) values. Utilizing the R software 
“pRRophetic”, we determined the IC50 values of various 
drugs in GC samples, enabling us to evaluate the association 
between risk levels and drug sensitivity.

Validation of NETosis-associated prognostic genes via 
immunohistochemical staining

Immunohistochemical staining data of GC and normal 
tissues were retrieved from the Human Protein Atlas 
(HPA, http://www.proteinatlas.org/), validating the protein 
expression of NETosis-related prognostic genes. 

Statistical analysis

We identified genes differentially expressed between 
subtypes using Limma software. Kaplan-Meier curves 
evaluated overall survival (OS) across patient groups. 
LASSO regression was applied to pinpoint relevant 
prognostic genes. Correlation analysis examined the 
relationship between risk scores and immune cell 
infiltration, with statistical significance at P<0.05.

Results

Cluster analysis identified NETosis-related subtypes

Figure 1A illustrates that the majority of NETosis genes 
exhibited elevated expression levels in GC samples relative 
to normal tissues. Subsequent consistency clustering 
analysis revealed that the optimal clustering was achieved 
with K=2, as depicted in Figure 1B-1D. Additionally, the two 
identified subtypes exhibited distinct expression patterns 
of NETosis genes (Figure 1E,1F). Kaplan-Meier survival 
analysis indicated that patients in the C2 group had a more 
favorable prognosis (Figure 1G), with statistical significance 
at P=0.03.
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Differential expression analysis and enrichment profiling 
of NETosis-related subtypes

A comprehensive analysis of DEGs between the two 
NETosis subtypes yielded a total of 1,210 upregulated and 
47 downregulated genes (Figure 2A). These genes displayed 
distinct expression patterns between the subtypes (Figure 2B).  
Further GO and KEGG enrichment analyses revealed 
that the majority of DEGs were involved in immune-
related processes, including immune system regulation, cell 
migration, adaptive immune response, leukocyte migration, 
cytokine-cytokine receptor interaction, cancer-related 
pathways, and human papillomavirus infection (Figure 2C,2D). 

Comparison of somatic mutations, tumor 
microenvironment, and immune checkpoint across 
NETosis-related subtypes

Somatic mutations in patients from each category were 
examined, and a waterfall chart was generated (Figure 3A,3B).  
Within category C1, the genes most commonly affected by 
mutations were TTN, TP53, ARID1A, MUC16, and LRP1B. 
While in group C2, SYNE1 was the 5th most frequently 
mutated gene with a mutation frequency of 30.7%, which 
was higher than the mutation frequency of SYNE1 in group 
C1 (23.8%). In addition, TTN and TP53 also had much 
higher mutation frequencies in the C2 group (63.7%, 
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Figure 1 Identification of NETosis-related subtypes by consensus clustering. (A) Heatmap of expression of 62 NETosis-related genes 
in GC samples, including tumor and normal samples. (B,C) Cluster analysis of CDF indicating area under the curve at k=2–10 and delta 
decreasing trend. (D) Example cluster consistency plot showing the optimal consensus value when k=2. (E) Heatmap of NETosis-related 
gene expression in the 2 subtypes. (F) Consensus matrix for optimal k=2. (G) Kaplan-Meier curve of OS for the 2 subtypes (P=0.03). GC, 
gastric cancer; CDF, cumulative distribution function; HR, hazard ratio; CI, confidence interval; OS, overall survival.
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59.2%) than in the C1 group (47.6%, 40.2%).
Our ESTIMATE analysis demonstrated higher scores 

in all three categories for group C1 compared to group 
C2 (Figure 3C). The evaluation of immune checkpoints  
(Figure 3D) showed increased expression in group C1 
for most immune checkpoints. Furthermore, using 
CIBERSORT, we visualized the differences in immune cell 
infiltration between the two groups via a box-and-line plot 
(Figure 3E). The findings indicated greater infiltration of 
cells like activated CD4 memory T cells, resting dendritic 
cells, and neutrophils in the C1 group, while the C2 group 

exhibited higher infiltration of resting CD4 memory T cells 
and activated NK cells.

Development and verification of the NETosis-associated 
risk signature (NRRS)

We used the LASSO Cox method for regression analysis. 
Specifically, we integrate survival time, status, and gene 
expression data together (Figure 4A,4B). We set the lambda 
value to 0.055467178709963 and obtained 14 prognostic 
genes related to NETosis: CXCR4, NRP1, PDCD1, CTLA4, 
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Figure 3 Somatic mutations and immune infiltration in 2 NETosis subtypes. (A,B) Mutation map waterfall plot showing the 15 most 
common mutated genes in gastric cancer differing between groups C1 and C2. (C) ESTIMATE box-and-line plot showing the Immune 
Score, Stromal Score and ESTIMATE Score of the different subtypes of the infiltration. (D) Box-and-line plot showing the expression of 
some of the immune checkpoints in the 2 NETosis subtypes. (E) CIBERSORT box-and-line plot showing the differences in the infiltration 
of 22 immune cells between the 2 NETosis subtypes. *, P<0.05; **, P<0.01; ***, P<0.001; ****, P<0.0001; -, not significant. Immune Score: 
the immune score is a measure derived from the analysis of gene expression data that quantifies the infiltration of immune cells in a 
tumor microenvironment. Stromal Score: the stromal score evaluates the presence of stromal cells within the tumor microenvironment. 
ESTIMATE Score: ESTIMATE (Estimation of STromal and Immune cells in MAlignant Tumor tissues using Expression data) is an 
algorithm that combines the immune and stromal scores to estimate the tumor purity. 

AKR1B1 ,  SERPINE1 ,  RGS2 ,  SLCO2A1 ,  TNFAIP2 , 
RNASE1, DOC2B, APOD, ENTPD2, and CCL24. The non-
zero coefficients from the LASSO regression represent the 
weights assigned to each gene in the final risk score model. 
The model formula for RiskScore is as follows: RiskScore = 
0.028993043781327 × CXCR4 + 0.0314706454214018 × NRP1− 
0.0941878557499203 × PDCD1 − 0.0610832396989102 × 
CTLA4 + 0.149627851386361 × AKR1B1 + 0.123843546915026 
×  S E R P I N E 1  +  0 . 0 0 8 1 2 0 1 8 3 8 8 6 9 3 5  ×  R G S 2  + 
0.00732963996657683 × SLCO2A1 − 0.00734132828114282 
× TNFAIP2  +  0 .0387613971398363 × RNASE1  − 

0.0548303763103828 × DOC2B + 0.0194583010341922 × APOD 
− 0.040210942582457 × ENTPD2 − 0.0107916247408867 × 
CCL24.

We were surprised to find that as the risk score increased, 
there was a significant decrease in the survival of patients. 
We found that CXCR4, NRP1, AKR1B1, SERPINE1, 
RGS2, SLCO2A1, RNASE1, APOD, and CCL24 were risk 
factors, their expression rose as the risk score increased. 
On the contrary, PDCD1, CTLA4, TNFAIP2, DOC2B, 
and ENTPD2 were protective factors, showing their 
expression decreased as the risk score increased (Figure 4C).  
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Figure 4 Construction and validation of the NRRS. (A,B) LASSO analysis of 14 NETosis-related prognostic genes extracted. (C) Prognostic 
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Furthermore, we employed Kaplan-Meier analysis to 
ascertain the prognostic significance of the NRRS in GC 
patients. In the training set, the low-risk group had a better 
prognosis (P=7.4×−17) (Figure 4D), GSE84433 survival 
of the validation set showed a similar result (P=5.0×10−6)  
(Figure 4E). 

The association of NRRS with prognosis

Our multivariate Cox regression analysis identified the 
NRRS as an independent prognostic factor for OS in GC 
patients (Figure 5A). We constructed nomograms and to 
improve survival predictions (Figure 5B,5C). In the receiver 
operating characteristic ROC analysis, the AUC values for 
the one-, three-, and five-year periods were 0.76, 0.81, and 
0.85 (Figure 5D). Therefore, these results indicate that the 
NRRS is an effective tool for predicting the survival rate of 
GC patients.

Exploration of NRRS correlation with drug sensitivity and 
tumor microenvironment

The risk score positively correlated with infiltrating 
monocytes and M2 macrophages while negatively 
correlating with activated CD4 memory T cells and T 

follicular helper cells in both the training (Figure 6A-6D) 
and validation sets (Figure 6E-6H). 

We screened compounds using predicted IC50 values, 
revealing drug sensitivities among patient groups (Figure 7).  
Low-risk patients exhibited greater sensitivity to Bcl-2 
inhibitors (ABT-263), veliparib (ABT-888), Chk inhibitors 
(AZD7762), camptothecin, lestaurtinib (CEP-701), ATM 
inhibitors (KU-55933), methotrexate, B-RafV600E 
inhibitors (PLX4720), sunitinib, and vinblastine. Conversely, 
high-risk patients were more responsive to Akt inhibitors 
such as A-443654, AKT inhibitor VIII, saracatinib (AZD-
0530), afatinib (BIBW2992), dasatinib, and elesclomol. 
These findings suggest that individualized drug selection 
may be beneficial for different groups of patients.

Validation of NETosis-related prognostic genes via protein 
levels reveals promising prognostic indicators

We examined the levels of crucial genes associated with 
NETosis in both GC and healthy tissues by utilizing data 
from HPA immunohistochemical staining (Figure 8). Our 
analysis revealed a notable increase in APOD levels in GC 
tissues, while ENTPD2 and PDCD1 showed a decrease in 
expression. Conversely, NRP1 and SERPINE1 displayed 
minimal variance between tumor and normal tissues. 
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Figure 5 Association of NRRS with GC prognosis. (A) Multivariate Cox analysis to assess the independent prognostic value of NRRS in 
patients with GC. (B-D) Nomo plots, calibration plots, and time-dependent ROC curve analyses used to predict 1-, 3-, and 5-year survival 
probabilities of patients. NRRS, NETosis-related risk signature; GC, gastric cancer; CI, confidence interval; ROC, receiver operating 
characteristic; AUC, area under the curve. 

Regrettably, data for additional genes was unavailable for 
our study. Collectively, our findings suggest that these 
specific markers could potentially serve as significant 
indicators in the context of GC progression. 

Discussion

GC remains a major threat to human health worldwide, 
especially in Asian countries, where morbidity and mortality 
remain high. Researchers are also constantly working to find 
tools that can help predict or improve outcomes for patients 
with GC. Encouragingly, various gene models related to 
programmed death have been developed, such as pyroptosis, 
necroptosis, entosis, as well as the popular ferroptosis and 
cuprotosis, etc. (14-18), which effectively accelerates the 
process of GC biological targets and potential therapies.

NETosis is a newly discovered novel mode of cell death 
that has been less studied. NETosis is morphologically 

different from apoptosis and autophagy, NETosis exhibits 
reticular DNA structures released by neutrophils to capture 
microorganisms and pathogens. There are fewer studies 
in this area, but the emergence of this death mechanism 
has provided new ideas for cancer treatment (25-29). The 
pathway and mechanism of its involvement in GC have not 
been reported. Researchers still need to study NETosis in 
depth. 

In our research, we have identified two distinct subtypes 
of NETosis by analyzing the expression of 62 NETosis-
related genes. Using advanced statistical methods such as 
limma and Cox-LASSO, we were able to pinpoint 14 genes 
that play a crucial role in these subtypes and constructed the 
NRRS. These genes are believed to be involved in cancer 
development and inflammation by affecting the body’s 
immune response. One of the key genes we identified, NRP1, 
has been shown to have contrasting effects on different 
types of cancer. Overexpression of NRP1 can enhance 
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the growth and movement of prostate cancer cells (30),  
while its downregulation may contribute to bladder cancer 
progression (31). Another important finding is the role of 
arachidonic acid (ARA) when bound to APOD in regulating 
inflammation and oxidative stress (32). The administration 
of antiplatelet therapy has been observed to elevate the levels 
of SERPINE1 in cancer cells, which in turn has been linked 
to an increase in cell motility and an enhanced propensity 
for colon cancer metastasis (33). Based on our analysis of 
these 14 genes, we found that the NRRS we developed 
showed a better prognosis for survival. In conclusion, our 
research suggests that NETosis could serve as a promising 
therapeutic target and potentially function as a diagnostic 
and prognostic biomarker for GC. By understanding the 
intricate mechanisms of these genes and their impact on 
cancer development, we may pave the way for more effective 
treatments and personalized medicine approaches in the 
future.

The GO and KEGG analyses highlighted distinct 
immune-related processes that the different groups were 
engaged in. These included the regulation of immune 
system processes, cell migration, leukocyte activation, 
adaptive immune responses, leukocyte migration, and 
cytokine-cytokine receptor interactions. Furthermore, 
pathways in cancer, human papillomavirus infection, Th17 
cell differentiation, and Th1 and Th2 cell differentiation 

were also identified. These findings shed light on the 
reasons behind the improved survival rates of GC patients 
in group C2, showcasing the importance of immune 
responses in patient outcomes.

The analysis of CIBERSORT results revealed a notable 
disparity in immune cell infiltration between group C1 and 
group C2. Specifically, group C1 exhibited increased levels 
of activated CD4 memory T cells, resting dendritic cells, and 
neutrophils, while group C2 showcased higher amounts of 
resting CD4 memory T cells and activated NK cells. Natural 
killer cells, known for their potent anti-cancer function in 
immunotherapy (34,35), were found to be more prevalent 
in the C2 group, emphasizing their significance in targeting 
cancerous cells. Memory CD4 T cells, on the other hand, 
play a crucial role in mounting a swift and efficient secondary 
immune response, thus accelerating the systemic immune 
reaction (36). Additionally, dendritic cells, renowned for 
their capacity to activate naïve T cells and facilitate effector 
differentiation (37,38), were also more abundant in the C2 
group. This disparity in immune cell composition likely 
contributes to the superior survival outcomes observed in 
group C2. Further analysis uncovered higher expression 
levels of immune checkpoints in the C1 group compared to 
the C2 group. This suggests that immunotherapy may yield 
more favorable results for patients in the C1 group, aligning 
with previous research findings. These insights underscore 
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the importance of understanding and leveraging the distinct 
immune cell profiles in guiding personalized treatment 
strategies for cancer patients. 

Moreover, we also selected a variety of drugs based on 
the IC50 prediction, and the high- and low-risk groups had 
different sensitivities to some of these drugs, which may help 
patients in different groups to choose more effective and 
personalised drug regimens. Finally, we queried the HPA 
database and in turn assessed the immunohistochemical 
staining of NETosis-associated prognostic genes in normal 
tissues and GCs. It is clear that these markers are likely to 
play a role in GC. Taken together, the NRRS we developed 
can more accurately predict the survival prognosis of 
GC patients in advance, and has a better guiding role for 

diagnostic and therapeutic markers of GC.
It is acknowledged that this study is not without its 

limitations. Firstly, Bioinformatics analysis methods have a 
wide range of applications, including but not limited to drug 
design and screening, protein structure prediction, genome-
wide chain analysis, and so on. It plays an important role 
in various aspects of the medical field. Nevertheless, it 
is our hope that in the future, we will be able to apply 
western blot, polymerase chain reaction (PCR), and other 
experiments to validate the results in this paper. Secondly, 
our findings are in need of further validation in an external 
GC queue. In conclusion, this paper presents the findings 
of a retrospective study. To confirm the results, further 
prospective, multicentre studies are required. 
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Protein Atlas. The links to the individual normal and tumor tissues of each protein are provided for APOD (https://www.proteinatlas.
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Conclusions

In conclusion, our study highlights the association of 
NETosis subtypes with GC. NRRS were also established 
and their effects were validated in other cohorts. This 
model is of great significance with GC. The aforementioned 
results may facilitate a more profound comprehension of 
NETosis and offer novel avenues for tailored therapeutic 
interventions. 
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appropriately investigated and resolved. The study was 
conducted in accordance with the Declaration of Helsinki (as 
revised in 2013). 
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