
Data Descriptor: Dataset of eye
disease-related proteins analyzed
using the unfolding mutation screen
Caitlyn L. McCafferty1 & Yuri V. Sergeev1

A number of genetic diseases are a result of missense mutations in protein structure. These mutations
can lead to severe protein destabilization and misfolding. The unfolding mutation screen (UMS) is a
computational method that calculates unfolding propensities for every possible missense mutation in a
protein structure. The UMS validation demonstrated a good agreement with experimental and
phenotypical data. 15 protein structures (a combination of homology models and crystal structures) were
analyzed using UMS. The standard and clustered heat maps, and patterned protein structure from the
analysis were stored in a UMS library. The library is currently composed of 15 protein structures from
14 inherited eye diseases including retina degenerations, glaucoma, and cataracts, and contains data for
181,110 mutations. The UMS protein library introduces 13 new human models of eye disease related
proteins and is the first collection of the consistently calculated unfolding propensities, which could be used
as a tool for the express analysis of novel mutations in clinical practice, next generation sequencing, and
genotype-to-phenotype relationships in inherited eye disease.
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Background & Summary
For globular proteins, primary protein structure dictates the folds and interactions that occur between
amino acids in the structure1,2. Genetic mutations lead to protein misfolding and in many cases disease3.
Protein secondary structure is stabilized by hydrogen bonds from the amide and carboxyl groups of
amino acids4. The side chains of the amino acids interact in a variety of ways to create the protein tertiary
structure (hydrophobic and disulfide interactions). In folding, the protein structure goes through a series
of trails and errors to identify the most thermodynamically stable conformation4. Therefore, correctly
folded proteins have long term stability in biological systems.

The role of missense mutations in inherited disease is not well understood. Disease-causing missense
mutations occur when a change at the DNA level causes an amino acid in the protein sequence to be
substituted with another, changing the interactions between amino acids and occasionally lead to protein
misfolding. Currently, many inherited diseases are caused by missense mutations leading to misfolding of
proteins in the cell3–7.

UMS is an in-silico scan to evaluate the destabilizing effects of multiple point mutations derived from
the protein atomic model. It may be used as a tool to analyze the complicated relationship between
missense mutations, protein folding, and disease5. UMS reads a protein structure file (PDB file) and
predicts the unfolding effect for a list of every possible missense mutation that may occur in the protein
structure including an identity mutation. For each mutation, UMS calculates an unfolding propensity,
derived from the Gibbs free energy equation, to describe whether the mutation will lead to protein
misfolding. The output of UMS is a mutational matrix, standard heat map, clustered heat map, and
patterned structure. UMS has the ability identify critical residues in the protein structure, which give
insight into the most significant residues to protein stability and function. UMS also may explain
mutations that can lead to both increased and decreased enzymatic activity, identify trends of residues
relating to stability, and predict the severity of missense mutations in disease and their relation to disease
phenotype.

Currently there exist a number of protein stability predictors6–11. There are also programs that work to
predict the functional consequences of missense mutations12–16. UMS provides various benefits and
advances over current mutant screening techniques. Given that UMS is derived from the atomic structure
level and thermodynamics rather than sequence conservation, it has the ability to predict the effect of
de novo missense mutations17. The unfolding propensity is determined using the linear extrapolation
model from the normalized sigmoidal unfolding curve obtained experimentally18. This data classifies the
effects of the missense mutations and uses a universal value so that unfolding propensities from different
protein structures may be compared.

The 3 maps and mutation matrix are designed to make this large dataset readable for investigators
with different backgrounds such as geneticists, clinicians, biochemists, pharmacologists or protein
engineers, and those who may not have any preliminary experience in homology modeling and
calculations of protein stability.

Residue depth has been used to describe the protein interior and predict fold types19–21. It has been
hypothesized that the conservation of ‘deep’ residues is related to folding requirements and function20.
Relationships exist between highly conserved residues in structural neighbors of the same fold type, and
their mean residue depth in the reference structure21. There are programs that use residue depth as a
parameter to predict protein structural models using fold recognition19.

Here, we are reporting the library of 181,110 mutations from 15 proteins from inherited eye disease
analyzed with UMS. This analysis includes the preparation of 13 homology models of human proteins.
The UMS program has been subjected to intensive validation using the Protherm database and 3 proteins
from retinal disease (rhodopsin, complement factor H, and RPE65)5. We present 10 new homology
models for human proteins related to retinal diseases that have been verified using the internal control. In
addition, we provide new maps for each of the 15 proteins for prediction and express analysis of missense
mutations. Finally, this study targets a number of new diseases that have not yet been studied using UMS.

Methods
Protein preparation
A library of 15 different inherited eye disease related proteins was created for analysis. Figure 1
demonstrates the outline of the stages of analysis used. The proteins included in the dataset, pdb names,
and their corresponding diseases are shown in Table 1. The human proteins were taken from the RCSB
database22 or prepared using homology modeling. CYP1B1, IRBP, LRAT, NYX, RDH5, RDH8, RDH12,
REP-1, RHO, RPE65, TIMP3, WDR36, and domains 4, 5, 14 and 17 from CFH are homology models.
While the remaining crystal structures of CFH domains, CRYAB, and CRYBB1 were obtained from the
protein data bank22. The pdb files used for the protein analysis are available on the server.

Internal control
After the homology models were created they were run through the internal control program. The
internal control program for the analysis of unfolding propensities is explained in depth in McCafferty &
Sergeev5. In this work the internal control was adjusted from UMS to calculate the difference in the free
energy of the side chain rotamers for the same amino acid. The output of the internal control program
was used to either select the best protein models or determine if more refinement of the structures was
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Figure 1. The schematic illustrates the design and testing process used in developing the dataset. The first

step was designing the program. The program was written in Python, R and Bash. The purpose of the program was to

calculate the unfolding propensity for each missense mutation in a proteins structure. Following, an effective display

of the data was pivotal. Next the program was validates using data for 16 proteins obtained from the Protherm

database. After the validation human models of proteins related to inherited eye disease were built using homology

model. The quality of the structures was tested using the internal control program. Finally UMS was applied to these

proteins to produce the mutation matrix, standard and clustered heat maps, and the patterned structure.

Protein PDB Mutations
Analyzed

Disease Standard HM
Size

Cluster HM
Size

Patterned Structure
Size

CFH CFH.pdb 24,320 Age-related Macula
Degeneration (AMD)

613 kB 780 kB 1.9 MB

RHO RHO.pdb 13,920 Retinitis Pigmentosa (RP) 426 kB 477 kB 1.2 MB

TIMP3 TIMP3.pdb 3,940 Sorsby’s fundus distrophy 401 kB 430 kB 334MB

REP-1 REP-1.pdb 12.54 Choroideremia 487 kB 576 kB 559 kB

LRAT LRAT.pdb 7,320 Leber’s Congenital Amaurosis
(LCA)

424 kB 478 kB 599 kB

RDH5 RDH5.pdb 12,700 Fundus Albipunctatus 464 kB 556 kB 1.1 MB

RDH8 RDH8.pdb 11,880 Myopia, AMD, LCA 453 kB 539 kB 967 kB

RDH12 RDH12.pdb 6,000 LCA, RP, Cone-Rod Dystrophy
(CRD)

408 kB 452 kB 499 kB

RPE65 RPE65.pdb 21,320 LCA 544.7 kB 702 kB 2.1 MB

IRBP (domain 1) IRBP-1.pdb 25,260 arRP 431 kB 477 kB 522 kB

CYP1B1 CYP1B1.pdb 10,160 Glaucoma 470 kB 541 kB 850 kB

CRYBB1 1oki.pdb 7,340 Cataracts 429 kB 481 kB 506 kB

CRYAB 3l1g.pdb 1,900 Cataracts 387 kB 402 kB 322 kB

NYX NYX.pdb 9,620 Congenital stationary night
blindness

463 kB 532 kB 772 kB

WDR36 WDR36.pdb 14,600 Primary Open Angle Glaucoma
(POAG)

514 kB 617 kB 1.4 MB

Table 1. UMS output for each protein. In the table each protein is listed with the PDB file name, the
mutations analyzed the inherited disease it is associated with, and the size of each of the map files. The files for
other 3 IRBP domains were similar in size (not shown in the Table). In total, 181,110 mutations were analyzed for
the 15 proteins.
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required. In selecting the best structure, we looked for models with statistically significant data (P value
o0.05) and then looked for the smallest confidence interval with average close to 0. For those that
required further refinement, structures were tested until they fit this requirement.

UMS program
A full description of the UMS program can be found in the methods section of McCafferty & Sergeev5. In
summary, the program is written in Python, R, and Bash programing languages. The architecture of the
program is designed to perform a full mutagenesis analysis as efficiently as possible by implementing a
quick and space sensitive procedure. Figure 2 outlines the order of the functions created within the
program. The unfolding propensity calculation is derived from the Gibbs free energy equation. The
standard and clustered heat maps are produced using the d3heatmap package for R. The maps are
interactive and allow specific rows or columns of interest to be selected. Specific region may also be
selective for zoomed in view. The clustered maps use an agglomerative, hierarchical clustering method.
The groupings are then mapped using a dendrogram. The final map used to convey UMS is the patterned
foldability structure. The 3D structures were colored using the foldability value of the residues5. These
foldability values can then be used to identify critical residues in the protein structure. The critical
residues are considered to be essential to proper protein folding.

Residue depth and informational entropy
In addition, two new descriptors, residue depth and informational entropy, were included as described
below. First descriptor, the residue depth of an amino acid in the protein structure, is described as the
distance of an atom from the solvent accessible surface23. The Biopython package was used to calculate
the residue depth for each of the wild type residues in the protein structure24. The Biopython package
uses the MSMS program for the surface calculation25, the residue depth is then presented as the average

Figure 2. The workflow diagram describes the process of the UMS program. Each function written in the

program to carry out the calculations is described. The orange squares represent the operations performed in

python, the green squares in R, and the purple in Chimera.
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Figure 3. The fragments of data types included for each protein. (a) The mutation matrix. The file is in the

text format and can be opened in Excel or a text editor. The wild type residues are along the Y-axis and the

mutations across the X-axis with the unfolding propensities listed in each box. (b) The set of data descriptors

for the protein. The first column denotes the wild type sequence, second column the average unfolding

propensity at the location, third the foldability, fourth the information entropy, fifth the residue depth. (c) The

standard heat map. Again, the wild type residues are along the Y-axis and the mutations across the X-axis. The

heat map is html file format and is interactive (specific rows/columns/regions may be selected) the red

represents the most severe mutations while the blue is the most stabilized. (d) The cluster heat map. The file is

also html format; here the data is grouped according to an agglomerative hierarchical clustering technique. (e)

The patterned structure. The structure is a python file that is opened in Chimera. The structure is colored

according the foldability values of the residues to highlight the critical residues in the structure.
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of the atom depth for each wild type residue in the native protein sequence. The other descriptor,
informational entropy, also known as Shannon entropy, quantifies the uncertainty of the source of the
information. Therefore, greater informational entropy relates to a greater degree of randomness amongst
the mutations for a certain location26. For example, if the average unfolding propensity for two locations
on the structure were both 0.5, the location where all unfolding propensities were 0.5 would have a lower
informational entropy that those that were split between 1.0 and 0. A script was created using Python to
calculate the informational entropy of the unfolding propensities. The equation of informational entropy
used was

P
P R ¼ xð Þ ´ log2ð 1

PðR¼xÞÞ. Both parameters were added to the library to aid the user in studying
the relationship between folding and depth within the structure and in analyzing the data provided by
UMS, respectively.

Code availability
The code is available on the Figshare (Data citation 1).

Data Records
The UMS library for 15 proteins from inherited eye disease is available on the Figshare (Data citation 1).
Table 1 presents the PDB file names for each of the proteins included in the study. For each of the
proteins analyzed there are five separate files available to describe the data. Figure 3 displays examples of
what each of these files looks like. The first is the mutation matrix.

The mutation matrix is available in the protein_matrix.txt format. This can be opened using a
standard text editor as well as in Microsoft Excel. The mutation matrix is ideal for an investigator who

Figure 4. The protein ribbon structures colored by predicted foldability. The structures of proteins related

to inherited eye disease. (a) REP-1, (b) TIMP3, (c) sushi domain of CFH, (d) rhodopsin, (e) RPE65, (f) RDH8,

(g) RDH5, (h) RDH12, (i) LRAT, (j) IRBP, (k) CRYBB1, (l) CRYAB, (m) CRY1B1, (n) NYX, (o) WDR36.
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wants access to the raw data. Since the file can be opened in a number of programs the user has the ability
to analyze and manipulate the data however he/she pleases.

The standard and cluster heat maps are available in the protein_standard.html protein_cluster.html
format, respectively. The size of each of these maps for the proteins is shown in Table 1. The interactive
maps provide facilitated identification of the unfolding propensities even if the protein being studied is
large. The html file format allows for the maps to open as a webpage. From here rows and/or columns of
interest may be selected. Specific regions may also be highlighted for a zoomed in view. Dragging the
mouse over the mutation of interest will reveal the corresponding unfolding propensity. The unfolding
propensity ranges from 0–1, where 0 is the most thermodynamically stabile protein, 0.5 is folding-
unfolding equilibrium, and 1 is a completely unfolded protein. The standard heat maps are ideal for
situations where a specific mutation-unfolding propensity is desired, for example, a clinical setting. Here,
each unfolding propensity can be accessed easily. The map can be downloaded and saved for easy
reference for a specific patient mutation. The clustered heat map groups residues based on similarity and
may be used in studying trends in the protein structure. For example, in structures with disulfide bonds,
cysteine residues are clustered together based on the similar destabilization they undergo. This allows us
to see the residues that undergo a number of severe mutations or the mutations that have the most
harmful effects. A pharmacologist can use this map to identify stabilizing mutations to develop
new drugs.

The patterned structure is available as a python file, protein.py. This file is to be opened using UCSF
Chimera (http://www.cgl.ucsf.edu/chimera/). Once opened in Chimera, residues may be identified by
placing the mouse over the area of interest. Table 1 also displays the size of the python files to be read by

Figure 5. An example of the potential uses for the protein data descriptors. TIMP3 average unfolding

propensities and foldability are plotted against the information entropy and residue depth for each wild type

location.
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Chimera. This is a 3D map that shows the most critical residues in the protein structure to proper folding.
For the particular residue position, foldability could then be used to differentiate between areas that
experienced multiple severe mutations, those that experienced a few, and those that had none. Foldability
is a more descriptive parameter over simply finding the average in that it can successfully tally all severe
mutations that are occurring at a certain location without being influenced by those less severe. Figure 4
shows all of the patterned structures of the inherited eye disease related proteins that were analyzed.

Finally, the data descriptor file is again available in the protein_descriptor.txt format. In each column
this file contains the native protein sequence, average unfolding propensities, foldability, informational
entropy and residues depth (in this order). The descriptor file provides the user some innovation to
analyze the data as he/she pleases. Figure 5 shows an example of how one may use this file to analyze the
TIMP3 protein. The average unfolding propensity and foldability are plotted against the informational
entropy and residue depth.

Technical Validation
Validation set criterion (UMS reference)
The validation set for the UMS program was composed of 16 proteins. The proteins were selected from
the ProTherm database (http://www.abren.net/protherm/)27 based on available experimental thermo-
dynamic data. Proteins with single mutations whose ΔΔG values were determined using fluorescence
from denaturants and CD were selected. Specifically, tryptophan fluorescence data for chemical
unfolding/refolding in the presence of urea or Gdm-HCl. Proteins with a large number of mutations with
thermodynamic data were ideal for the validation. Finally, the proteins needed to have an available PDB
file on the Protein Data Bank (http://www.rcsb.org/pdb/)22. Based on this criteria the 16 proteins selected
for the validation set were: T4 Lysozome (PDB id: 2LZM), Staphylococcal Nuclease (1STN), Protein L
(1HZ6), Barnase (1BNI), Ribonuclease T1 Isozyme (1RN1), Gene V Protein (1VBQ), Chymotrypsin
Inhibitor 2 (2CI2), Acyl-Coenzyme A (2ABD), Tyrosine-Protein Kinase (1FMK), Acylphosphatase

Figure 6. Internal control data. The internal control mutates each residue to itself in order to test the stability

of the structure. It is expected that each of these mutations will have a ΔΔG of 0. For each protein the average

ΔΔG for all of the mutations is recorded as well as the standard deviation. The p-value is also calculated to

check to statistical relevance and finally a 95% confidence interval to show the range of the ΔΔG values.
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(1APS), Alpha Spectrin (1AJ3), Dihydrofolate Reductase (1RK4), Ribosomal Protein (1RIS), Tryptophan
synthase (1WQ5), ARC Repressor (1ARR), and Azurin (5AZU). From the ΔΔG values for each of the
experimental mutants from the Protherm database the unfolding propensity was calculated. The percent
matching and a Fit-Score were used to evaluate the quality of the output from UMS.

Homology model validation
As mentioned in the Methods section an internal control program was designed to validate the homology
models used. The results from the internal control are shown in Fig. 6. CFH and IRBP were divided in to
their 20 and 4 domains (respectively) in the analysis. The data for each of the proteins fit our criteria for
being statistically significant and having small confidence intervals with averages close to 0.

Usage Notes
All of the protein structures that are included in the dataset are human structures. The homology models,
while not crystal structures, have been thoroughly tested for stability and represent models of the human
proteins. We aim to eventually create a website of proteins that will constantly be updated and take
requests for proteins of interest.
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