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Abstract

Constraint-based modeling is a powerful framework for studying cellular metabolism, with

applications ranging from predicting growth rates and optimizing production of high value

metabolites to identifying enzymes in pathogens that may be targeted for therapeutic inter-

ventions. Results from modeling experiments can be affected at least in part by the quality

of the metabolic models used. Reconstructing a metabolic network manually can produce a

high-quality metabolic model but is a time-consuming task. At the same time, current meth-

ods for automating the process typically transfer metabolic function based on sequence sim-

ilarity, a process known to produce many false positives. We created Architect, a pipeline for

automatic metabolic model reconstruction from protein sequences. First, it performs

enzyme annotation through an ensemble approach, whereby a likelihood score is computed

for an EC prediction based on predictions from existing tools; for this step, our method

shows both increased precision and recall compared to individual tools. Next, Architect uses

these annotations to construct a high-quality metabolic network which is then gap-filled

based on likelihood scores from the ensemble approach. The resulting metabolic model is

output in SBML format, suitable for constraints-based analyses. Through comparisons of

enzyme annotations and curated metabolic models, we demonstrate improved performance

of Architect over other state-of-the-art tools, notably with higher precision and recall on the

eukaryote C. elegans and when compared to UniProt annotations in two bacterial species.

Code for Architect is available at https://github.com/ParkinsonLab/Architect. For ease-of-

use, Architect can be readily set up and utilized using its Docker image, maintained on

Docker Hub.

Author summary

An organism’s growth and survival are largely guided by its ability to synthesize crucial

metabolites like amino acids and ribonucleotides from such compounds as water, glucose
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and nitrogenous molecules like ammonia. Accurate knowledge of such biochemical reac-

tions—catalyzed by enzymes encoded within the genome—can advance our understand-

ing of disease drivers as well as guide attempts at engineering strains of bacteria with

desired metabolic capacities. While biochemical experiments can accurately characterize

metabolism, these are time-consuming at genome-scale. Instead, genome-scale metabolic

models can be computationally built then iteratively refined through comparisons of in
silico simulation results and biochemical experiments. Here, we describe Architect, a

method for automatic enzyme annotation and metabolic model reconstruction. Our tool

leverages the strengths of existing enzyme annotation tools to predict the biochemical

capacities of an organism and then uses these predictions to build a simulation-ready met-

abolic model. We find that Architect produces more accurate enzyme annotations than

the individual tools, as well as higher-quality metabolic models compared to other auto-

matic metabolic model reconstruction tools. We provide Architect to the metabolic

modelling community in the hope that it may facilitate the transition from knowing an

organism’s encoded sequences to an understanding of its metabolic capacities.

This is a PLOS Computational Biology Methods paper.

1. Introduction

Metabolic modeling has been used for engineering strains of bacteria for bioremediation, for

understanding what drives parasite growth, as well as for shedding light on how disruptions in

the microbiome can lead to progression of various diseases [1–3]. In any of these applications,

the standard protocol is to first construct an initial draft of the metabolic model of the organ-

ism(s) (consisting of the biochemical reactions predicted present) followed by a gap-filling

procedure, whereby additional reactions are introduced to ensure that simulations can be per-

formed [4]. Importantly, errors introduced at any steps of model reconstruction can impact

downstream simulations and result interpretation [5]. For instance, false positive enzyme pre-

dictions may mask the essentiality of key pathways; on the other hand, the organism’s meta-

bolic abilities may be underestimated when metabolic enzymes and pathways are incorrectly

left out or under-predicted [6]. While these concerns can be addressed through dedicated

manual curation, such efforts tend to be extremely time-consuming. Instead, attention has

turned to the use of automated methods, such as PRIAM, CarveMe and ModelSEED, the for-

mer able to automatically annotate enzymes from sequence and the latter two capable of gen-

erating fully functional genome-scale metabolic models [7–9]. Given a genome of interest,

CarveMe uses sequence similarity searches to assign confidence scores to reactions within a

universal model of metabolism. Based on these scores, a genome-specific metabolic model is

then reconstructed by removing reactions that are either not identified or poorly supported,

and adding in reactions to fill gaps to construct functional pathways [7]. On the other hand,

ModelSEED relies on an initial annotation of sequences by RAST (Rapid Annotation using

Subsystem Technology) to produce a draft model, following which gap-filling is performed to

enable biomass production in either complete or user-defined media [9].

A key step in this process is the accurate identification of enzymes based on sequence data

alone and can be formally defined as follows: given an amino acid sequence, what are its asso-

ciated enzymatic function(s), if any? The problem is a multi-label classification problem; here
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we consider enzymatic functions as defined by the Enzyme Commission (EC), in which

enzymes are assigned to EC numbers representing a top-down hierarchy of function [10].

Enzyme annotation can be performed by inferring homology to known enzymes based on

sequence similarity searches using methods such as BLAST and DIAMOND [11,12]. However,

such methods do not consider the overlap of sequence similarity between enzyme classes and

are prone to an unacceptable rate of false positive predictions [13]. To overcome such errors, a

number of more specialized tools have been developed that take advantage of sequence fea-

tures or profiles specific to individual enzyme classes [8,13–15]. For example, DETECT (Den-

sity Estimation Tool for Enzyme ClassificaTion) considers the effect of sequence diversity

when predicting different enzyme classes [13,14], while PRIAM and EnzDP rely on searches of

sequence profiles constructed from families of enzymes [8,15]. Each tool provides different

advantages in terms of accuracy and coverage.

Here we present Architect, a tool capable of automatically constructing a functional meta-

bolic model for an organism of interest, based on its proteome. At its core, Architect exploits

an ensemble approach that combines the unique strengths of multiple enzyme annotation

tools to ensure high confidence enzyme predictions. Subsequently gap-filling is performed to

construct a functional metabolic model in Systems Biology Markup Language (SBML) Level 3

format [16] which can be readily analysed by existing constraints-based modeling software.

Commensurate with its name, Architect not only designs the metabolic model of an organism,

but it also coordinates the sequence of steps that go towards the SBML output given user speci-

fications, such as the definition of an objective function for gap-filling. We evaluate the perfor-

mance of Architect both in terms of its ability to perform accurate enzyme annotations,

relying on UniProt/SwissProt sequences as a gold standard [17] and, separately, as a metabolic

model reconstruction tool by focusing on 3 organisms for which curated metabolic models

have already been generated (Caenorhabditis elegans [18], Neisseria meningitidis [19] and E.

coli [20]). Compared to other state-of-the-art methods [7–9], Architect delivers improved per-

formance in terms of enzyme annotation and can predict phenotype with comparable accu-

racy with the top performers given a high quality reaction database. While Architect does not

predict cellular localization, an important aspect of eukaryotic metabolic models, its genera-

tion of a metabolic model with improved annotations may facilitate the modeler’s transition

from protein sequences to a functional metabolic model. Finally, to ease set-up and deploy-

ment, we maintain a Docker image encapsulating Architect’s numerous dependencies on

Docker Hub; Architect’s dedicated GitHub repository contains detailed instructions for run-

ning Architect using Docker [21,22].

2. Results

2.1 Ensemble methods improve enzyme annotation

The motivation for developing an ensemble enzyme classifier is driven by the hypothesis that

different enzymes (as defined by EC numbers) may be better predicted by different tools and,

hence more accurate annotations may be obtained by combining predictions from individual

tools. Based on this hypothesis we developed a novel enzyme prediction and metabolic recon-

struction pipeline we term Architect (Fig 1). In brief, the pipeline begins with the prediction of

enzyme annotations from proteome data (Module 1) using an ensemble classifier that com-

bines predictions from five enzyme annotation tools (DETECT, EnzDP, Catfam, PRIAM and

EFICAz; [8,13–15,23,24]). Next, these predictions of enzyme classification numbers are used

to construct a functional metabolic model capable of generating biomass required for growth

(Module 2).
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To test our hypothesis, we compared the performance of individual tools of interest and of

various ensemble methods on a dataset of enzymatic sequences. Here we investigated three

methods (naïve Bayes, logistic regression and random forest) and employed five-fold cross-

validation in which ensemble methods were trained on 80% of the enzymes annotated in Swis-

sProt. Once trained, the performance of each classifier was tested on the remaining annotated

enzymes by evaluating their high-confidence predictions against the database’s annotations. In

addition to the classifiers and individual tools, we also examined the performance of a ‘major-

ity rule’ approach (in which we assign an EC label to a protein on the basis of voting among

the five tools), as well as an ‘EC-specific best tool’ approach (in which we assign an EC label to

a protein based on best performing tools for that EC as seen in training). The performance of

each dataset was computed using macro-averaged precision, recall and F1 to ensure that

smaller EC classes were equally represented; performance on the non-enzymatic dataset (i.e.

protein sequences not associated with either complete or partial EC annotations) is computed

using specificity (see S1 Text).

Overall, we found that, with the exception of the majority rule, ensemble methods outper-

formed individual tools, resulting in both higher precision and recall (Fig 2 and S1 Table). For

example, the highest precision and recall of the individual tools—obtained by DETECT and

PRIAM respectively—are lower than most of the ensemble methods applied. Indeed, except

for majority rule, most ensemble methods perform similarly on the entire test set, as well as on

subsets of test sequences with lower sequence similarity to training sequences (S1 Fig). Addi-

tionally, macro-recall on multifunctional proteins is decreased for the naïve Bayes, logistic

regression and random forest classifiers when applying a heuristic which filters out predicted

ECs other than the top-scoring EC and frequently co-occurring enzymes as seen in the train-

ing data (S2 and S3 Figs and S1 Text); therefore, henceforth, we evaluate performance of these

classifiers by considering all their high-confidence EC predictions.

Fig 1. Overview of Architect’s methodology. Given an organism’s protein sequences, Architect first runs 5 enzyme

annotation tools, then computes a likelihood score for each annotation using an ensemble approach (module 1). From

high-confidence EC predictions, Architect reconstructs a high-confidence metabolic model which it then gap-fills to

enable biomass production using the aforementioned confidence scores (module 2). In the illustrated example, 4 sets

of reactions are considered for gap-filling, with the solution highlighted in the blue box yielding the highest score.

https://doi.org/10.1371/journal.pcbi.1010452.g001

Fig 2. Performance of individual and ensemble enzyme annotation tools. (A) Precision/recall graph indicating performance of each method on the

enzymatic test set from SwissProt, (B) focus on the improved performance of the ensemble methods. Our results show that combining predictions using

almost any ensemble method gives better performance than using any individual tool.

https://doi.org/10.1371/journal.pcbi.1010452.g002
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Next, we consider the possibility that higher predictive range (defined as the number of

ECs that a tool can predict) primarily drives the increased performance of the ensemble meth-

ods. Indeed, the ensemble approaches are superior when quantifying performance on ECs pre-

dictable by at least 2 tools (S4 Fig) but have similar precision and recall as DETECT on

sequences annotated with ECs predictable by all tools (S2 Fig). However, when looking at

DETECT’s or PRIAM’s class-by-class performance on ECs that they can predict, the ensemble

method has higher precision and recall on more ECs than either DETECT (better precision on

176 versus 18 ECs and better recall on 116 versus 37 ECs) or PRIAM (better precision on 98

versus 38 ECs and better recall on 191 versus 41 ECs) (S5 Fig).

Given the main application of Architect is to annotate enzymes to an organism’s proteome,

we were interested in assessing the ability of the ensemble approaches to minimize false posi-

tives. Applied to a set of proteins without EC annotations in SwissProt, we found that only the

Naïve Bayes classifier gave comparable specificity as the individual tools (S6 Fig). Given the

slightly elevated performance in terms of precision (for the enzymatic dataset) and specificity

(for the non-enzymatic dataset), we chose the naïve Bayes classifier as the preferred method

for Architect. We next investigated the performance of Architect to annotate the proteomes of

three well-characterized organisms (C. elegans, N. meningitidis and E. coli; S7 Fig and S2

Table). We consider those annotations that feed into Architect’s model reconstruction module

and compare them against high-confidence predictions by DETECT, EnzDP and PRIAM

alone, these tools chosen due to their performance on the enzymatic dataset. For all three spe-

cies, Architect yields both higher precision and recall than DETECT, and higher recall than

EnzDP. In C. elegans, Architect gives higher recall than either PRIAM or EnzDP, albeit at the

expense of precision and specificity. Overall, these results demonstrate Architect’s wider appli-

cability to annotate specific organisms.

Finally, we investigated whether combining predictions from all 5 tools is required to

obtain improved performance with respect to the individual tools. To this effect, we built the

naïve Bayes-based method using predictions from fewer tools, then calculated performance

once again on the held-out test set (S8 Fig). We observe that this procedure has a greater

impact on macro-recall than macro-precision. In particular, leaving out predictions from both

tools with the highest predictive ranges (EnzDP and PRIAM) had the greatest impact, while

the F1-score decreased least when the tools with the lowest predictive ranges (CatFam and

DETECT) are not included in the classifier. We also find that different tools are complemen-

tary to each other. While performance is mostly unaffected by excluding predictions from any

single tool, combining predictions from at least 2 tools improves performance compared to

using any single tool’s predictions. Indeed, simply combining predictions from PRIAM and

any other tool yields better macro-precision than any tool in isolation. Intriguingly, training

on predictions from EnzDP and PRIAM results in the highest performance among pairs of

tools, with macro-precision showing only minimal increases with the inclusion of any other

tool’s predictions. These results suggest that a user may obtain reasonably improved perfor-

mance by combining predictions from fewer than 5 tools, for example, by excluding tools with

longer running times (e.g. EFICAz [25]).

2.2 Automated metabolic reconstruction using Architect

In addition to predicting suites of enzymes from an organism’s proteome, Architect utilizes

these predictions to automatically reconstruct a functional metabolic model capable of gener-

ating biomass required for growth (see Methods). The process begins by querying the set of

EC activities predicted by module 1, against a database of known reactions (either the Kyoto

Encyclopedia of Genes and Genomes; KEGG [26] or the Biochemical, Genetic and Genomic
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knowledgebase; BiGG [27], to construct an initial high confidence metabolic network). In

each case, the reaction databases have undergone some level of curation to ensure the appro-

priateness of the chemical reactions being modelled ([7] and section D of S1 Text). Next a gap

filling algorithm is applied to identify enzymes absent from the model (potentially arising

from uncharacterized enzymes or sequence diversity [28,29]) to ensure pathway functionality

and the ability of the model to generate biomass. Given that biomass functions are organism-

and possibly condition-specific [30], users are required to specify a biomass function for the

purposes of gap-filling.

To evaluate Architect as a reconstruction tool, metabolic models for the three species previ-

ously investigated (C. elegans, N. meningitidis and E. coli) were generated by Architect and

three similar tools, CarveMe [7], PRIAM [8] and ModelSEED [9]. CarveMe performs meta-

bolic model reconstruction in a top-down manner, retaining in a final functional model those

reactions from the BiGG database [27] predicted with higher confidence scores for the organ-

ism of interest and required for model functionality; the confidence score is by default com-

puted based on sequence similarity [12]. On the other hand, PRIAM uses its high-confidence

predictions to output a metabolic model based on KEGG; since the database is automatically

downloaded and thus devoid of any curation, PRIAM models are not simulation-ready. Last,

ModelSEED produces a draft model from annotations made using RAST, which it then gap-

fills to enable biomass production given specific substrate availabilities or under the assump-

tion of complete media. To account for differences that may be introduced from using differ-

ent databases of reactions, two versions of Architect models were predicted using either the

KEGG or the BiGG database. Furthermore, the same biomass reactions as used by CarveMe

were used for BiGG-based Architect reconstructions and individual BiGG identifiers trans-

lated to KEGG identifiers for KEGG-based reconstructions.

In general, we observe that more genes are represented in models generated using Architect

with BiGG reaction definitions compared to those generated using KEGG reactions, or when

using CarveMe or ModelSEED (S3 Table). This difference in gene representation in Architect

models generated using the different reaction databases may be a consequence of the use of

sequence similarity to identify non-EC related reactions. At the same time, both Architect

models associate to reactions the most genes from C. elegans, highlighting the utility of the tool

for eukaryotic reconstructions. Next, we observe the high number of gap-filling reactions

added by CarveMe compared to Architect to enable growth of N. meningitidis and E. coli in

minimal media with [31,32] and without the presence of oxygen respectively. In particular,

this procedure introduced 2,774 and 1,510 reactions in N. meningitidis and E. coli, intriguingly

leading to the prediction of the same set of reactions in both (thus only differing in terms of

gene-protein-reaction associations). The prediction of the same set of reactions by CarveMe

may be due to its reaction database’s focus on primary metabolism [7], thereby possibly biasing

the algorithm towards selecting the same set of reactions. At the same time, CarveMe’s models

have the highest percentage of unblocked reactions. This is likely a consequence of CarveMe’s

top-down approach, emphasizing, prior to gap-filling, the creation of a gapless model unlike

the bottom-up nature of Architect and ModelSEED.

To validate Architect’s model reconstruction strategy, we next compared the output of the

reconstruction tools to previously curated metabolic models [18–20]. Focusing on the KEGG-

based reconstructions (Figs 3 and S9), Architect produced models of higher precision than

either PRIAM or CarveMe for C. elegans and N. meningitidis, and higher recall for C. elegans
alone. However, in E. coli, CarveMe and ModelSEED have significantly better precision and

CarveMe better recall than Architect, likely a result of the presence of curated E. coli-related

reactions in the BiGG and ModelSEED databases. Similarly, Nmb_iTM560 was based on the

iAF1260 E. coli model [33], again likely contributing to each tool’s higher recall when
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reconstructing a N. meningitidis metabolic model. At the same time, ModelSEED’s higher pre-

cision in N. meningitidis can also be attributed in part to a lower EC coverage of true positives

in the Architect model, with 33 of the 49 true positive annotations by ModelSEED alone con-

cerning ECs not covered by Architect’s KEGG database; this suggests that ModelSEED’s reac-

tion database may be useful for Architect reconstructions. Interestingly, when the models are

compared against organism-specific datasets retrieved from UniProt, Architect has higher pre-

cision and recall than either CarveMe or PRIAM for E. coli (as well as higher precision and

recall than CarveMe and ModelSEED for the other two species). This highlights differences in

annotations associated with the curated models and UniProt. We also note that higher EC cov-

erage in KEGG compared to BiGG (S10 Fig) may contribute towards higher recall by Archi-

tect and PRIAM compared to CarveMe, a factor we account for by next using the BiGG

database for Architect’s model reconstructions.

Fig 3. Performance of Architect as a model reconstruction tool versus CarveMe and PRIAM (as a model reconstruction tool). Quality of annotations is computed

against the curated models over the genes found in these models, and against UniProt/SwissProt when restricting to those sequences found in the database and with ECs

present in the KEGG reaction database. SwissProt was used for E. coli as the sequences were all present in the curated database. Error bars show the 95% confidence

interval for precision and recall, each considered as the estimate of a binomial parameter. P-values, computed using Fisher’s exact test, are calculated only between

Architect and either CarveMe or PRIAM (with �, �� and ��� representing p less than 0.05, 0.005 and 0.0005 respectively).

https://doi.org/10.1371/journal.pcbi.1010452.g003
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Turning to models constructed with the BiGG database, as for the KEGG-based models, we

find that Architect has higher precision for both C. elegans and N. meningitidis, and higher

recall for the former (S11 and S12 Figs). However, we now observe similar precision in E. coli,
consistent with the reliance on the BiGG database, which avoids the inclusion of ECs exclusive

to the KEGG database (and hence absent in iML1515). As expected from the lower coverage of

ECs provided by the BiGG database, recall differences in E. coli qualitatively remain

unchanged while in N. meningitidis, Architect’s recall, sacrificed for higher precision, is now

significantly lower. Again, to account for the construction of the BiGG database from previ-

ously curated metabolic reconstructions that include E. coli, we compared the protein-EC

annotations in the reconstructed models to those found in UniProt/SwissProt. Architect is

then perceived as having higher precision in both N. meningitidis and E. coli, and greater recall

in E. coli. Thus, our results indicate that Architect may be used to produce models with more

accurate EC annotations than either CarveMe, the PRIAM-reconstruction tool or Model-

SEED. Additionally, the choice of reaction database when running Architect may impact the

range of ECs covered. Indeed, it should be noted that the BiGG reaction database used here

contains reactions from bacterial models only; thus, use of KEGG for eukaryotic reconstruc-

tions is more appropriate, as evidenced by the better recall with the C. elegans metabolic

model.

Notwithstanding these findings, annotations made by Architect and PRIAM are based on

cutoffs; thus, high-confidence enzyme—and therefore—reaction predictions are dependent on

the threshold specified. To study the impact of such parameter specification, 20 Architect and

PRIAM models were reconstructed at several varying cutoffs (S13, S14 and S15 Figs). As

expected, more stringent cutoffs lead to predictions of gene-EC annotations with lower recall

but higher precision. However, these changes overall have little impact on the main findings of

this study, suggesting, in the case of Architect for instance, that most of its predictions are

already made with high-confidence.

In addition to these benchmarking studies, we assessed the quality of each reconstruction

using MEMOTE [34], a tool which runs a series of tests to score a metabolic model by such

metrics as the level of annotation of reactions and metabolites and stoichiometric consistency.

We find that Architect models reconstructed using KEGG reaction definitions achieve higher

overall MEMOTE scores than those reconstructed using either CarveMe, PRIAM or Model-

SEED largely due to the presence of additional information describing reactions and metabo-

lites (S4 Table and S1 Data). This indicates that models output by Architect may be more

interpretable to users, a helpful advantage especially when additional organism-specific data

need to be integrated to the output model.

2.3 Metabolic reconstructions benefit from annotation tools with high

predictive range

From the previous comparisons of metabolic reconstructions, it is clear from the difference in

precision and recall that there is a difference between Architect’s performance as an enzyme

annotation tool and as a tool for model reconstruction. This raises the question of whether

improvement in enzyme annotation is associated with a corresponding improvement in accu-

racy of model reconstruction. To address this, Architect’s model reconstruction module was

applied to high-confidence predictions from individual tools, rather than from the naïve

Bayes-based method (S16 and S17 Figs). Overall, models constructed from high-confidence

DETECT predictions resulted in significantly lower recall compared to either the curated

models or UniProt annotations. This is consistent with the idea that high predictive range is

an important attribute in an enzyme annotation tool used for model reconstruction;
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accordingly, when comparing against model annotations, using high-confidence predictions

from either EnzDP or PRIAM instead of DETECT resulted in models with higher recall. At

the same time, the resulting recall does not significantly differ from the recall obtained when

using predictions from the ensemble method. Furthermore, similar precision is obtained when

using EnzDP, PRIAM or the ensemble method when reconstructing C. elegans or N. meningi-
tidis models; in the case of E. coli, significantly better precision is obtained by using predictions

from EnzDP instead of the ensemble method (when using the KEGG database). Therefore,

based on comparisons of EC annotations derived from curated models, there appears to be no

benefit to substituting predictions from tools with high predictive range with those from the

ensemble approach. However, when comparing against annotations obtained from UniProt,

the ensemble method results in higher recall than EnzDP for all 3 organisms and higher recall

than PRIAM for C. elegans; similar precision is observed in all organisms, with the exception

of lower precision than EnzDP and PRIAM for C. elegans. These conflicting results reflect

inherent differences in the gold-standard datasets, which in turn may indicate that existing

curated models may have potential to be further expanded by using UniProt annotations.

Interestingly, use of PRIAM’s high confidence EC predictions as input to Architect’s recon-

struction module results in more accurate annotations than models generated from PRIAM’s

reconstruction tool (Fig 3), highlighting methodological differences between the two tools.

Furthermore, unlike the PRIAM pipeline, models constructed by Architect are simulation-

ready.

2.4 Reaction database and predictive range impact models generated by

Architect

Beyond enzyme annotations, we were interested in comparing the performance of models gen-

erated by Architect, CarveMe and ModelSEED in terms of simulation results and quality (Fig

4). PRIAM-based reconstructions were excluded from these comparisons as they require addi-

tional refinements to be used as models of metabolic flux. Further, only models based on the

two bacterial species (N. meningitidis and E. coli) were examined to avoid the potentially con-

founding influence of assigning reactions to specific subcellular compartments. First, we calcu-

lated the performance of the models in terms of gene essentiality predictions. In the

subsequent comparisons, precision and recall were computed with reference to gene deletion

studies performed in vivo in minimal media and under aerobic conditions [19,20]. In general,

Architect reconstructions made using BiGG reaction definitions perform at least similarly to

models generated by other tools, notably with higher recall compared to CarveMe in N. menin-
gitidis and E. coli, and higher precision than ModelSEED in E. coli. Interestingly, using the

KEGG reaction database for Architect reconstructions does not necessarily produce the same

results, importantly with lower recall than ModelSEED in E. coli. This suggests that the reac-

tion database has an impact on models produced; in particular, the BiGG database consists of

reactions present in curated models [35], making it a higher-quality database than KEGG. At

the same time, Architect-BiGG’s better performance compared to CarveMe, despite their use

of the same reaction database, gives merit to Architect’s model reconstruction strategy. We

also note that, intriguingly, building the E. coli CarveMe model without specifying the need to

sustain growth in anaerobic conditions gives a model with similar performance to Architect-

BiGG (89.6% precision and 48.1% recall), suggesting that the CarveMe methodology may be

highly sensitive to the conditions of growth specified for the reconstruction, unlike Architect.

In addition to reaction database, the predictive range of the tools used for EC annotation in

Architect has some impact, as observed by the lower recall obtained when using high-confi-

dence DETECT predictions only (S16 and S17 Figs).
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Overall, it remains that all the tools generate models with low recall with respect to predict-

ing gene essentiality. This relatively high rate of false negatives may be explained by several fac-

tors including: 1) certain essential genes may have been excluded from reconstructed models

or misassigned function; 2) key Boolean relationships between multiple genes associated with

a single reaction—such as with heteromeric enzyme complexes [5]—may not be captured in

the models; or 3) the biomass equation used during model simulations may be incomplete.

Fig 4. Comparison of simulation results of Architect, CarveMe and ModelSEED in (a) N. meningitidis and (b) E. coli. Panel (i) shows the performance

of each tool in predicting essential genes in minimal media. Yield of ATP and biomass are shown in panels (ii) and (iii) given 1 mmol of glucose and

alternate carbon sources in N. meningitidis, and under presence and absence of oxygen in E. coli. Panel (iv) shows the performance of individual tools in

predicting the capacity to grow on alternate media. Error bars show the 95% confidence interval for individual performance measures, each considered as

the estimate of a binomial parameter. In those cases, p-values are computed using Fisher’s exact test and only between Architect-BiGG or Architect-KEGG

and other tools (with �, �� and ��� representing p less than 0.05, 0.005 and 0.0005 respectively).

https://doi.org/10.1371/journal.pcbi.1010452.g004
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Interestingly, of the genes experimentally found to be essential, 71.7% and 76.7% were incor-

porated into Architect models for N. meningitidis and E. coli respectively built using BiGG;

however, more than half (62.8% and 68.1% respectively) were not predicted to be essential (S5

Table), suggesting avenues for improving Architect by either limiting pathways predicted

from ECs (thereby reducing pathway redundancy and highlighting the essentiality of certain

genes), or through better representations of gene-protein-reaction relationships. Additionally,

given that 65 and 94 essential genes are not predicted as essential by Architect or any of the

tools in N. meningitidis and E. coli, despite 80% of the genes being found in the N. meningitidis
CarveMe model or at least 47% being found in any of the E. coli models (S18 Fig), all tools

may benefit from better predictions of gene-protein-reaction relationships.

2.5 Architect models predict growth of E. coli in alternate conditions with

similar accuracy as other tools

In addition to essential genes, models can be assessed on their predictions of an organism’s

capacity to grow on alternate media [7,20]. Here, we focussed on evaluating such predictions

for E. coli for which experimental data generated using the Biolog platform is available [33].

We found that, overall, on the conditions tested, all tools produce models with similar accu-

racy (Fig 4). At the same time, CarveMe achieves perfect recall at the expense of specificity, a

consequence of the model’s ability to predict growth in all conditions. We note that, unlike in

the case of gene essentiality predictions, the specificity remains low (4.3%) with an E. coli Car-

veMe model fitted to grow in aerobic conditions. At the same time, only 23 of the 90 condi-

tions tested via simulations were determined to be non-growth sustaining in vivo (S6 Table);

moreover, we limited our predictions to conditions which could be simulated in all models.

Differences in conditions being simulated may explain the inconsistency of our results with

those of Machado et al, notably the higher specificity and lower recall of E. coli’s CarveMe

model [7].

In the absence of large-scale phenotype data for N. meningitidis, the sufficiency of 6 carbon

sources assessed in vivo or in silico in Nmb_iTM560 to sustain growth was predicted [19,31].

Notably, given Nmb_iTM560’s prediction of no growth only on acetate, the CarveMe model is

most in agreement with the curated model, followed by Architect-KEGG, then ModelSEED.

Surprisingly, the Architect-BiGG model fails to predict growth on any other carbon source

than glucose. This may be partly due to Architect’s stringent cutoff for inclusion of non-EC

related reactions from the BiGG database. Indeed, all Architect-BiGG reactions are found in

the corresponding CarveMe model, and of the 2,723 reactions unique to the CarveMe model,

1,393 would only be included into the Architect model based on high sequence similarity. Not-

withstanding these factors, it is important to recall that the CarveMe model is larger than the

Architect-based model and comprises the same set of reactions as E. coli, which is inconsistent

with the findings of Mendum et al [19]. It is thus possible that, on a larger dataset, CarveMe’s

N. meningitidis model might demonstrate low specificity as it may over-predict growth-

enabling conditions of growth.

2.6 Elimination of energy-generating cycles in universal reaction databases

is key for realistic ATP and biomass yields

Next, model quality was assessed by computing the ATP and biomass yields of the N. meningi-
tidis and E. coli models in aerobic conditions and in both presence and absence of oxygen

respectively (Fig 4). Such tests are practically useful as unrealistic energy-generating cycles can

artificially inflate predicted growth rates [36]. Given literature values of 26 and 2.8–3.2 mmol

of ATP produced per mmol of glucose during aerobic and anaerobic growth [37], models
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using BiGG reaction definitions (Architect and CarveMe) have biologically realistic ATP yield,

with numerically comparable yield for Architect models and expected lower yield in anaerobic

conditions for both models. However, models generated using either ModelSEED or Architect

with KEGG reaction definitions produce thermodynamically unrealistic ATP yields. Indeed,

our simulations reveal that ATP is hydrolyzed even in the absence of glucose. These may be

caused in part by incorrect reaction reversibilities causing energy-generating cycles. For

instance, after setting as irreversible the reaction catalyzed by 6-phosphogluconolactonase

(EC:3.1.1.31 and R02035: D-Glucono-1,5-lactone 6-phosphate + H2O➔ 6-Phospho-D-gluco-

nate) in the N. meningitidis Architect model, only 11 mmol of ATP per mmol of glucose are

available to hydrolyze, moreover with no flux through the ATP hydrolysis reaction in the

absence of glucose. Additionally, examples of energy-generating cycles have previously been

identified in other ModelSEED models [36]. Interestingly, the absence of oxygen does not

impact the biomass yield in models reconstructed using ModelSEED and Architect-KEGG,

another likely consequence of biologically irrelevant cycles within the models. Overall, this

analysis supports the idea that such details as reaction reversibilities within the database used

for reconstruction need to be refined. Thus, CarveMe and Architect-BiGG directly benefit

from the high-level of curation their reaction database has undergone.

3. Discussion

Here, we present Architect, an approach for automatic metabolic model reconstruction. The

tool consists of two modules: first, enzyme predictions from multiple tools are combined

through a user-specified ensemble approach, yielding likelihood scores which are then lever-

aged to produce a simulation-ready metabolic model. Through the use of various gold-stan-

dard datasets, we have shown that Architect’s first module produces more accurate enzyme

annotations, and that its second module can be used to produce organism-specific metabolic

models with better annotations than similar state-of-the-art reconstruction tools, including

CarveMe and PRIAM. Our expectation is that these models serve as near-final drafts, requiring

users to perform only minimal curation to incorporate organism-specific data. For example,

models for eukaryotic organisms require the independent definition of cellular compartments,

currently not supported by Architect.

Improving annotations by combining EC predictions from multiple tools has been previ-

ously [38] investigated with performance tested against E. coli EC annotations from EcoCyc

[39] as gold-standard. Here, the performance when taking a simple union or intersection of

annotations from KEGG, RAST, EFICAz and BRENDA (BRaunschweig ENzyme DAtabase)

predictions [24,40–42] was evaluated. Either strategy was found to yield either increased preci-

sion or recall, but not at the same time. By contrast, when evaluating on E. coli EC annotations

in SwissProt (S7 Fig) and on a larger multi-species set of sequences also from the reference

database (Fig 2), most ensemble approaches implemented within Architect achieve both

increased precision and recall. At the same time, we note the EnzymeDetector, a well-main-

tained platform within BRENDA which, given the provenance of a sequence’s annotation,

computes an overall confidence score for enzyme annotations from database-specific weights

[43,44]. Significantly, the EnzymeDetector is updated every six months, an important aspect

considering that enzyme definitions and sequence information are ever evolving [44]. There-

fore, we anticipate that Architect may need to be regularly updated for its reconstructed mod-

els to remain relevant as new biochemical information is characterized.

Importantly, our quantitative comparisons of reconstructed metabolic models depend on

the quality of the manually reconstructed models being used as benchmark. Regarding organ-

isms challenging to culture, given that their metabolism is therefore difficult to investigate in

PLOS COMPUTATIONAL BIOLOGY Architect, an enzyme annotation and model reconstruction tool

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010452 September 8, 2022 13 / 26

https://doi.org/10.1371/journal.pcbi.1010452


vivo, it is likely that enzymatic functions have been largely computationally inferred during

manual reconstruction. On the other hand, while experimental characterization of sequence

function is actively being carried out for model organisms like E. coli, such organisms are

already well-represented in the ENZYME [10] or SwissProt databases [17], possibly biasing

Architect’s training. To strike a balance, we selected both model organisms as well as lesser

studied organisms for our comparison of performance of Architect as a model reconstruction

tool.

Interestingly, it is unclear whether improvements in enzyme annotation, other than in

terms of predictive range, lead to the construction of models with either improved annotations

or greater accuracy of simulations. Instead, we propose three improvements to the input and

the algorithm of the model reconstruction module that will likely yield better models. First, we

find that most essential genes also incorporated into the final models were not predicted to be

essential in silico (see S1 Text), suggesting that more accurate predictions of gene essentiality

may be obtained by better encoding gene-protein-reaction relationships or by limiting the

reactions included in the high-confidence model based on EC annotation. For example, while

multifunctional enzymes are biologically relevant, it has been suggested that certain ECs asso-

ciated with multiple reactions may need to be redefined to capture the diversity and specificity

of biochemical reactions [45]. Given the prevalence of multi-reaction ECs in databases used by

Architect (S19 Fig), its indiscriminate inclusion of all reactions associated with high-confi-

dence EC predictions may need to be revisited in a future iteration. Second, enabling the pre-

dictions of transport reactions is needed to define the accurate import or export of metabolites

which otherwise represent dead-ends in the initial network; in turn, this may lead to fewer

blocked or inactive reactions. The comparatively high proportion of blocked reactions in

Architect models (S4 Table and S1 Data) is also partially a consequence of the tool’s parsimo-

nious approach to gap-filling given that only reactions required for fulfilling an objective func-

tion are considered as gap-fillers; at the same time, the additional reaction and metabolite

annotations in Architect’s SBML output may guide users in finding other links between

blocked reactions and biomass production or other biological processes. Third, considerations

of thermodynamics have been absent from our reconstruction pipeline, whether in terms of

reaction reversibility, or in terms of gap-filling. Identifying thermodynamically likely solutions

for gap-filling is expected to result in more biologically realistic models [46].

Overall, while making any of these improvements, regular MEMOTE checks will also likely

be invaluable. For example, running MEMOTE on Architect’s SBML output enabled us to

identify missing descriptors for reactions, metabolites and genes. This issue could then be rela-

tively simply fixed so as to improve the descriptive quality of models (Methods and S4 Table).

At the same time, the magnitude of MEMOTE scores only partially describes a model’s quality.

Indeed, the failure of Architect models made using the KEGG database to capture realistic

ATP yields conflicts with their higher MEMOTE scores compared to those models made using

CarveMe. Therefore, in future, we expect application of such sanity checks as verifying the

yield of key metabolites—along with MEMOTE—to further help refine Architect’s automatic

model reconstruction process.

4. Methods

4.1 Sources of sequence data

Sequences were downloaded from the SwissProt database [17] and their corresponding anno-

tations from the ENZYME database [10] (downloaded on February 9th, 2021). The ENZYME

database is a dedicated database corresponding to enzymatic activity, and is regularly updated

mainly following recommendations from the Nomenclature Committee of the International
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Union of Biochemistry and Molecular Biology (IUBMB) [47]. Only complete EC numbers

were considered in building Architect’s ensemble classifiers. Further, ECs associated with

fewer than 10 protein sequences were removed to ensure sufficient training data. This filtering

resulted in a final collection of 1,670 ECs represented by 207,121 sequences (S20 Fig). A fur-

ther set of 294,067 protein sequences not associated with either complete or partial EC annota-

tions (subsequently referred to as “non-enzymes”) was retrieved from the same version of

SwissProt. For generation of test and training datasets for use in five-fold cross-validation

steps, ECs associated with multifunctional proteins, were divided into appropriate sets using a

previously published protocol [48].

4.2 Enzyme annotation using ensemble classifiers

For any given protein, EC predictions are generated through integrating the output from five

state-of-the-art enzyme annotation tools: EFICAz v2.5.1 [24], PRIAM version 2018 [8],

DETECT v2 [14], EnzDP [15] and CatFam [23]. In addition to examining the performance of

two relatively simple approaches, majority rule (in which we take the prediction supported by

the most tools) and EC-specific best tool (in which we take the prediction from the tool which

is found to perform best for a specific EC), we also investigated the performance of the follow-

ing three classifiers: (1) naïve Bayes, (2) logistic regression and (3) random forest. For training

each method, we first find, for each EC x, positive (proteins actually of class x) and negative

examples (other proteins predicted by any tool to have activity x). For each protein i, a feature

vector is then constructed consisting of the level of confidence in each tool’s prediction (based

on the confidence score output by the tool); the associated binary label yi indicates whether the

ith protein has activity x and thus has value 1 if and only if the protein has activity x. For any

EC predicted by all tools without false positives (that is without proteins of other classes mis-

classified with the EC), we apply a rule whereby we automatically assign the EC if made by any

of these tools. Otherwise, those predictions made by an ensemble method with a likelihood

score greater than 0.5 are considered to be of high-confidence.

For the naïve Bayes classifier trained on high-confidence predictions, given an EC predict-

able by k tools (1� k� 5 depending on the number of tools that can predict the EC), each pro-

tein sequence is assigned a corresponding feature vector F of length k, where Fi = 1 if the EC

was predicted with high-confidence by the ith tool, and Fi = 0 otherwise. The posterior proba-

bility of a new protein j having EC x (the aforementioned “likelihood score”) is then given by

the following equation, where each feature is assumed to follow a Bernouilli distribution:

p yj ¼ 1jF1 ¼ f1; . . . ; Fk ¼ fk

� �
¼

pðyj ¼ 1Þ �Pk
i¼1
pðFi ¼ f ijyj ¼ 1Þ

P
C2f0;1gpðyj ¼ CÞ �Pk

i¼1
pðFi ¼ f ijyj ¼ CÞ

ð1Þ

Other ensemble methods explicitly consider the level of confidence by each tool (see S1

Text). For example, our logistic regression classifiers train on feature vectors which use one-

hot encoding to denote the level of confidence in the EC prediction by each tool. In the case of

our random forest classifiers, each element of the feature vectors takes on a discrete value indi-

cating the level of confidence by each tool.

Given that those ECs associated with fewer than 10 protein sequences are filtered out of the

training data, some ECs may not be predictable by the classifier but may nevertheless be pre-

dicted by other tools; in particular, PRIAM consists of profiles specific to ECs associated with

as few as a single sequence. To ensure higher coverage of metabolic reactions and pathways,

EC predictions made with high-confidence by PRIAM are subsequently assigned as high-con-

fidence during downstream model reconstruction.
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4.3 Reconstruction of metabolic networks

From the set of high confidence enzyme annotations generated for the organism of interest

(using the naïve Bayes classifier by default), an initial metabolic model is constructed with ref-

erence to either the Kyoto Encyclopedia of Genes and Genomes (KEGG) resource [26] or the

Biochemical, Genetic and Genomic (BiGG) knowledgebase [27]. In brief, reaction identifiers

and equations corresponding to high-confidence EC predictions are collated, along with non-

enzymatic/spontaneous (as indicated in KEGG) and any user-specified reactions (see S1

Text). Amongst the latter reactions, an objective function (such as biomass production) is

required for downstream gap-filling. Furthermore, if BiGG is used as the reference reaction

database, we also include non-EC associated reactions (including transport reactions). This

step is performed through BLAST-based sequence similarity searches of the organism’s prote-

ome against a database of protein sequences representing these non-EC associated reactions,

collated from the BiGG resource, using an E-value cut-off of 10−20 [11,12].

Having generated an initial network, Architect next attempts to fill gaps within the network,

representing reactions required to complete pathways necessary for the production of essential

metabolites (as defined by the objective function). First a global set of candidate gap-filling

reactions (R) is constructed by combining: 1) reactions that were previously identified in the

enzyme annotation step at either low- or no-confidence; and 2) exchange reactions for dead-

end metabolites (whose presence otherwise results in inactive (blocked) reactions that can

inhibit biomass production [49]). From this global set, Architect attempts to identify a set of

reactions which, when supplemented to the initial network, is minimally sufficient for non-

zero flux through the aforementioned user-defined objective function. This process leverages

the mixed-integer linear programming (MILP) formulation employed by the CarveMe pipe-

line [7]. First, penalties are assigned for the addition of each gap-filling candidate as follows.

For the ith reaction associated with 1 or more ECs predicted with low-confidence by the

ensemble classifier (0.0001 < score� 0.5), we find the highest score si associated with any of

the corresponding EC annotations. Then, we scale the scores of the gap-filling candidates to

have a median of 1 (where sM is the median of the original scores):

s0i ¼
si

sM
ð2Þ

The penalty pi for adding the ith reaction is then inversely proportional to the normalized

score:

pi ¼
1

1þ s0 i
ð3Þ

Remaining candidate reactions for gap-filling (that is, those either not predicted with any

likelihood score or which are exchange reactions for dead-end metabolites) are each assigned

by default a penalty of 1. (Users are also able to specify a higher penalty for exchange reactions

for dead-end metabolites, for example, when wishing their model to use only user-specified

media.) The following MILP formulation then identifies a subset of reactions from the global

set of candidate gap-filling reactions that together have the smallest sum of penalties and

enable a minimum production of biomass (β = 0.1 h-1 by default).

Minimize
X

i2R

piyi ð4Þ

subject to : Sv ¼ 0
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vL � v � vU

yivL;i � vi � yivU;i; 8i 2 R

yi 2 f0; 1g; 8i 2 R

cTv � b

Here, the variables are the flux vector v and y. Each yi serves as an indicator variable: yi = 1

if and only if the ith candidate gap-filler (with flux vi) is included in the solution.

4.4 Comparisons of annotations and networks

Architect was used to annotate enzymes to the proteomes of three species: Caenorhabditis ele-
gans, Escherichia coli (strain K12) and Neisseria meningitidis (strain MC58) using sequences

collated from WormBase (WS235, [50]), SwissProt and the Ensembl database [51] respectively.

For each species, the naïve Bayes-based ensemble method was retrained by excluding

sequences from the respective organism. Architect predictions were evaluated against gold

standard datasets derived from UniProt for C. elegans and N. meningitidis, and SwissProt for

E. coli. Performance was reported in terms of specificity and micro-averaged precision and

recall (that is, irrespective of enzyme class size) [52].

For network comparisons, models were first generated by Architect, CarveMe v1.2.2,

PRIAM v2018 and ModelSEED [7,8]. For C. elegans, growth under no specific media was spec-

ified and CarveMe’s generic biomass function was used for the tool as well as by Architect

(with a penalty of 1 for the addition of exchange reactions for deadend metabolites); for Mod-

elSEED, the core template was specified. In the case of N. meningitidis and E. coli, CarveMe,

Architect-BiGG and ModelSEED reconstructions were made using the gram-negative universe

defined by each tool. Minimal media was specified, with aerobic and anaerobic conditions

specified for N. meningitidis and E. coli respectively, given the former’s inability to grow in

strictly oxygen-free conditions [31,32]. Architect reconstructions were made with a penalty of

10 for exchange for deadend metabolites so as to force the models to use the minimal media

specified.

These models were evaluated against two sets of gold-standard as described next. Perfor-

mance was computed using micro-averaged precision and recall first using as a gold-standard,

enzyme annotations assigned to genes in previously generated curated metabolic models: C.

elegans—WormJam [18], E. coli—iML1515 [20] and N. meningitidis—Nmb_iTM560 [19]. As

a second measure of performance, we compared the annotations included in the models fol-

lowing gap-filling against those in UniProt, here restricting the comparison to those ECs pres-

ent in the relevant reaction database.

4.5 Simulation experiments

For N. meningitidis and E. coli, in silico knockout experiments were performed using the mod-

els generated by Architect, CarveMe and ModelSEED. Genes predicted to be essential in these

in silico experiments were subsequently compared to the results of two genome-scale knockout

studies [19,20]. Since Architect, unlike CarveMe or ModelSEED, does not predict complex

gene-protein-reaction relationships [5], only those reactions associated with a single protein
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could be assessed through gene knockout experiments, where the flux through such reactions

corresponding to a single protein was constrained to be zero.

Additionally, phenotype array simulations were performed on the E. coli models recon-

structed using Architect (involving KEGG and BiGG reaction databases), CarveMe and Mod-

elSEED, as was done in [7]. Briefly, each model was first constrained for aerobic minimal

media conditions, with glucose, ammonium, sulphate and phosphate as default carbon, nitro-

gen, sulphur and phosphorus sources respectively. Alternate sources from available Biolog

data were selected from [33] based on whether they could be mapped to BiGG, KEGG and

ModelSEED compound identifiers and whether they were found in all models being tested.

Thus, 90 alternate sources were identified (S6 Table). Then, for each type of array, uptake of

the default source was blocked and uptake of the alternate source enabled with a maximum

bound of 10 mmol/gDW/h. We count a prediction as positive for growth when the maximum

flux through the biomass function is found to be at least 10−4 h-1. As was done in [33], condi-

tions with readings from the Biolog data marked as ‘weak’ or ‘positive’ were considered as pos-

itive for growth.

Next, we calculated the biomass yield by first constraining the uptake of glucose or alternate

carbon sources (where relevant) to 1 mmol/gDW/h. In anaerobic conditions, the uptake of oxy-

gen in each model was constrained to zero. The biomass yield was then obtained by optimizing

the flux through the biomass objective function using flux balance analysis. Similarly, the ATP

yield was calculated under glucose uptake conditions; the objective function was here set to be

the ATP hydrolysis reaction (ATP + H2O➔ ADP + phosphate + proton) as was done in [37].

4.6 Model output and MEMOTE tests

Simulation-ready Architect models are output in both Excel and SBML Level 3 [16] formats.

Following best practices in the systems biology community, expert-curated SBML models as

well as those output by Architect, CarveMe and PRIAM were run through the suite of stan-

dardized tests offered by MEMOTE v0.13.0 [34]. From these reports (S1 and S2 Data), we

improved Architect’s codebase by including Systems Biology Ontology terms to each gene,

reaction and species element (SBO: 0000243, SBO: 0000375 and SBO: 0000247 respectively).

Each Architect SBML model is available at https://github.com/ParkinsonLab/Architect and

other models are included in S1 Data.

4.7 Technical details regarding metabolic simulations

Architect’s MILP-based gap-filling is performed using the CPLEX solver (v12.9) and Python

v3.7.1. In this paper, other simulations were performed using the Gurobi solver (v6 and v9)

and the COBRA Toolbox (v1.3.4 and v3.3) in MATLAB [53].

Supporting information

S1 Fig. Performance of different ensemble methods on test set at different levels of

sequence identity to the training data. Comparison of macro-averaged (A) precision, (B)

recall, and (C) F1-score of ensemble methods at different MTTSIs—defined in S1 Text.

(EPS)

S2 Fig. Precision and recall of ensemble methods and individual tools for enzyme annota-

tion with respect to ECs predictable by all tools and on different sets of proteins. (i) Com-

parison of precision and recall of ensemble (with and without multi-EC filtering) and

individual tools on ECs predictable by all tools in (A) the entire test data set, (B) only proteins

with a single EC, and (C) only multifunctional proteins. The subscripts “all” and “high” reflect
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whether all or only high-confidence predictions from individual tools were considered, respec-

tively. (ii) Comparison of precision and recall of ensemble methods (with and without multi-

EC filtering) on ECs predictable by all tools in (A) the entire test data set, (B) only proteins

with a single EC, and (C) only multifunctional proteins.

(EPS)

S3 Fig. Precision and recall of ensemble methods and individual tools for enzyme annota-

tion with respect to ECs predictable by any tool and on different sets of proteins. (i) Com-

parison of precision and recall of ensemble (with and without multi-EC filtering) and

individual tools on ECs predictable by any tool in (A) the entire test data set, (B) only proteins

with a single EC, and (C) only multifunctional proteins. The subscripts “all” and “high” reflect

whether all or only high-confidence predictions from individual tools were considered, respec-

tively. (ii) Comparison of precision and recall of ensemble methods (with and without multi-

EC filtering) on ECs predictable by any tool in (A) the entire test data set, (B) only proteins

with a single EC, and (C) only multifunctional proteins.

(EPS)

S4 Fig. Performance of different ensemble methods on test set when considering ECs pre-

dictable by an increasing number of tools. Comparison of (A) macro-precision, (B) macro-

recall, and (C) F1-score of individual tools and ensemble methods on proteins with ECs pre-

dictable by at least 1, 2, 3, 4 tools and by all tools.

(EPS)

S5 Fig. Class-by-class comparison of performance of the naïve Bayes method and two

enzyme annotation tools, DETECT and PRIAM. (A): Class-by-class comparison of (i) preci-

sion and (ii) recall between the naïve Bayes-based ensemble method and DETECT (high-con-

fidence) when considering ECs predictable by DETECT. Each dot represents an EC class, and

those dots above the line correspond to EC classes for which the ensemble method performs

better. Only EC classes with defined precision from both DETECT and the ensemble classifier

are shown. (B) Same as (A), except that the class-by-class comparison is between the naïve

Bayes-based ensemble method and PRIAM (high-confidence predictions) and on ECs predict-

able by PRIAM. Again, only EC classes with defined precision from both PRIAM and the

ensemble classifier are shown.

(EPS)

S6 Fig. Specificity of individual tools (high-confidence) and ensemble approaches on non-

enzymatic dataset.

(EPS)

S7 Fig. Comparison of organism-specific performance of Architect’s enzyme annotation

tool using predictions by the naïve Bayes ensemble method and three individual tools,

DETECT, EnzDP and PRIAM. High-confidence PRIAM predictions were included to the

predictions of the naïve Bayes classifiers for those ECs outside of Architect’s predictive range.

The comparison was done over those proteins present in both the input protein sequence file

and those found in UniProt/SwissProt. Error bars show the 95% confidence interval for preci-

sion, recall and specificity, each considered as the estimate of a binomial parameter. P-values

are calculated using Fisher’s exact test and between Architect results and other tools only (with
�, �� and ��� representing p less than 0.05, 0.005 and 0.0005 respectively).

(EPS)

S8 Fig. Comparison of performance of the naïve Bayes method on the test set when train-

ing on predictions from combinations of fewer than 5 tools. In (A), the light green square in
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each row indicates when a tool’s predictions are being considered in a combination; this table

shows the combinations of tools ranked from highest F1-score to lowest amongst those involv-

ing 2, 3 and 4 tools respectively. In (B), the purple diamond indicates the performance when

the naïve Bayes-based method is trained on the entire set of predictions, whereas each green

circle indicates performance when considering a particular combination of tools (number cor-

responding to the rank in (A)).

(EPS)

S9 Fig. Overlap of annotations in models reconstructed with Architect (based on KEGG),

CarveMe, PRIAM’s reconstruction tool and ModelSEED using as gold-standard (i) curated

models, and (ii) UniProt/SwissProt. In comparison against model annotations (i), Architect’s

higher precision and recall in (A) C. elegans are due to having both more annotations in com-

mon with WormJam (that is, more true positives and fewer false negatives) and fewer predic-

tions unique to the tool (that is, false positives). In N. meningitidis (B)(i), Architect’s higher

precision against PRIAM and CarveMe are due to its lower ratio of false positives to true posi-

tives with Nmb_iTM560. ModelSEED however demonstrates better performance by virtue of

predicting more true positives and fewer false positives. CarveMe’s better performance in E.

coli (C)(i) can be attributed to its annotations intersecting more with those in iML1515 than

Architect; on the other hand, ModelSEED’s performance benefits from its fewer false positive

predictions. Either of these may be due to the presence of E. coli-relevant data in CarveMe and

ModelSEED databases. Interestingly, despite the use of PRIAM annotations by Architect—

explaining the high-level of commonality between annotations produced by both—the latter

in general has statistically higher performance due to higher ratios of true positives to false pos-

itives (in all 3 organisms) and to false negatives in C. elegans. In comparison against UniProt/

SwissProt (ii), more of Architect’s annotations constitute true positives versus in comparison

to the organism’s models, suggesting that the existing models for C. elegans, N. meningitidis
and E. coli may be improved through consideration of annotations from the database. Overall,

based on our comparisons, Architect shows itself to be complementary to the other tools, sup-

plementing annotations missed by them.

(EPS)

S10 Fig. Number of pathway-specific ECs present in Architect’s KEGG database versus in

CarveMe’s main BiGG database. Each dot represents a pathway in KEGG, and the diagonal

line indicates the points on the graph where a pathway is covered by the same number of ECs

through KEGG and BiGG.

(EPS)

S11 Fig. Performance of Architect as a model reconstruction tool (using BiGG as the reac-

tion database) versus CarveMe in the case of the three organisms of interest. Quality of

annotations is computed against the curated models over the genes found in these models, and

against UniProt/SwissProt when restricting to those sequences found in the database and with

ECs present in the BiGG reaction database. Error bars show the 95% confidence interval for

precision and recall, each considered as the estimate of a binomial parameter. P-values are cal-

culated using Fisher’s exact test (with �, �� and ��� representing p less than 0.05, 0.005 and

0.0005 respectively).

(EPS)

S12 Fig. Overlap of annotations in models reconstructed with Architect (based on BiGG)

and CarveMe using as gold-standard (i) curated models, and (ii) UniProt/SwissProt. In

comparisons for C. elegans (A) and N. meningitidis (B), fewer predictions non-overlapping

with either gold-standard are made by Architect alone as compared to CarveMe. In E. coli (C),
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while more of CarveMe’s annotations intersect with those in iML1515, similar ratios of true

positive to false positive yield similar precision. However, in comparison against SwissProt (C)

(ii), higher ratios of true positive to false positive or false negative result in Architect having

better performance. As suggested in comparisons involving Architect models made with

KEGG reaction definitions, Architect annotations may be used to complement models made

using CarveMe.

(EPS)

S13 Fig. Performance of Architect at varying likelihood score cutoffs (using KEGG reac-

tion definitions). Average precision and recall over 20 models reconstructed with Architect

(using KEGG reaction definitions) when using the default cutoff of 0.5 for high-confidence

predictions are indicated, along with averaged performance when using cutoffs of 0.1, 0.3, 0.7

and 0.9. Precision and recall are calculated in terms of annotations (given curated metabolic

models of individual organisms and SwissProt/Uniprot) and essential genes predicted in mini-

mal media. Error bars indicate standard deviations.

(EPS)

S14 Fig. Performance of Architect at varying likelihood score cutoffs (using BiGG reaction

definitions). Average precision and recall over 20 models reconstructed with Architect (using

BiGG reaction definitions) when using the default cutoff of 0.5 for high-confidence predictions

are indicated, along with averaged performance when using cutoffs of 0.1, 0.3, 0.7 and 0.9. Pre-

cision and recall are calculated in terms of annotations (given curated metabolic models of

individual organisms and SwissProt/Uniprot) and essential genes predicted in minimal media.

Error bars indicate standard deviations.

(EPS)

S15 Fig. Performance of PRIAM for draft model reconstruction at varying probability cut-

offs. Precision and recall when using the default cutoff of 0.5 are indicated, along with results

of using cutoffs of 0.1, 0.2, 0.3, 0.7 and 0.9. Precision and recall are calculated in terms of anno-

tations (given curated metabolic models of individual organisms and SwissProt/Uniprot).

(EPS)

S16 Fig. Performance of Architect as a model reconstruction tool (with the KEGG reaction

database) when using as input high-confidence predictions from the naïve Bayes-based

method or from DETECT, EnzDP or PRIAM. Quality of annotations is computed against

the curated models over the genes found in these models, and against UniProt/SwissProt when

restricting to those sequences found in the database and with ECs present in the KEGG reac-

tion database. Genes determined essential in silico are compared against those whose knockout

was tested in vivo. Error bars show the 95% confidence interval for precision and recall, each

considered as the estimate of a binomial parameter. P-values, computed using Fisher’s exact

test, are calculated only between Architect run on the ensemble method and on Architect run

on any of the individual tools’ predictions (with �, �� and ��� representing p less than 0.05,

0.005 and 0.0005 respectively).

(EPS)

S17 Fig. Performance of Architect as a model reconstruction tool (with the BiGG reaction

database) when using as input high-confidence predictions from the naïve Bayes-based

method or from DETECT, EnzDP or PRIAM. Quality of annotations is computed against

the curated models over the genes found in these models, and against UniProt/SwissProt when

restricting to those sequences found in the database and with ECs present in the BiGG reaction

database. Genes determined essential in silico are compared against those whose knockout was
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tested in vivo. Error bars show the 95% confidence interval for precision and recall, each con-

sidered as the estimate of a binomial parameter. P-values, computed using Fisher’s exact test,

are calculated only between Architect run on the ensemble method and on Architect run on

any of the individual tools’ predictions (with �, �� and ��� representing p less than 0.05, 0.005

and 0.0005 respectively).

(EPS)

S18 Fig. Overlap with experimentally validated essential genes with those predicted

essential by Architect-KEGG, Architect-BiGG, CarveMe and ModelSEED for (a)

N. meningitidis and (b) E. coli in minimal media. For genes completely missed by all tools,

the numbers within brackets indicate how many are present in the Architect-KEGG,

Architect-BiGG, CarveMe and ModelSEED models respectively.

(EPS)

S19 Fig. Frequency of ECs associated with 1 or multiple reactions in the KEGG and main

BiGG reaction databases used by Architect.

(EPS)

S20 Fig. Properties of ECs and proteins included in Architect’s database. (A) Proportion of

ECs in Architect’s training and test datasets combined associated with different numbers of

proteins, with proportions relevant to the subset of those ECs predictable by all tools indicated

in grey. The percentages of ECs predictable by any tool and associated with different numbers

of proteins are indicated above the bars. (B) Intersection of ECs predictable by different tools,

when focussing on ECs (i) found in Architect’s training database and (ii) more generally.

These Venn diagrams were made using the interface at http://bioinformatics.psb.ugent.be/
webtools/Venn. (C) Number of proteins in the training and test sets combined associated with

1 or more ECs. The percentage of the proteins involved in each category is given above the

bars.

(EPS)

S1 Table. Breakdown of annotations of SwissProt sequences by individual and ensemble

methods into true positives, true negatives, false positives and false negatives.

(DOCX)

S2 Table. Breakdown of organism-specific annotations by ensemble and individual tool

into true positive, false positive and false negative.

(DOCX)

S3 Table. Comparisons of various aspects of model reconstruction for C. elegans, N.

meningitidis and E. coli.
(DOCX)

S4 Table. Summary of MEMOTE results for models reconstructed using Architect (KEGG

and BiGG universes), CarveMe, PRIAM and ModelSEED and those manually recon-

structed.

(DOCX)

S5 Table. Overlap of in silico determined essential genes with those found essential in vivo.

(DOCX)

S6 Table. Details of E. coli phenotypes tested in silico.

(DOCX)
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S1 Data. SBML models of C. elegans, E. coli and N. meningitidis built using various recon-

struction tools. Architect models built using BiGG and KEGG reaction definitions are found

in the folders named Architect_BiGG and Architect_KEGG respectively, and those built using

CarveMe, ModelSEED and PRIAM are similarly found in the folders thus named. Where

applicable, additional settings had to be specified as follows. C. elegans models were built using

undefined/complete media and ModelSEED’s core template and BiGG’s main reaction data-

base (in the case of CarveMe and Architect-BiGG reconstructions). E. coli and N. meningitidis
models were built under specifications of anaerobic and aerobic (respectively) minimal media

conditions and with the specification that a gram-negative organism’s sequences had been

input.

(ZIP)

S2 Data. MEMOTE reports for SBML files corresponding to manually curated and auto-

matically reconstructed models of C. elegans, E. coli and N. meningitidis. The reports of the

manually curated models are found in the folder named Benchmarks, and those reports detail-

ing statistics of the automatically generated models are located in the folders named according

to the tool utilized. MEMOTE v0.13.0 was used to generate the reports.

(ZIP)

S1 Text. Additional details about Architect. Individual sections concern (A) individual

enzyme annotation tools, (B) ensemble approaches used to combine predictions from multiple

tools, (C) details of performance metrics, (D) metabolic model reconstruction and simulation

details, (E) specific parameters specified for metabolic reconstruction by different tools, and

(F) additional results about a heuristic for filtering multifunctional enzyme predictions.

(DOCX)
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