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Abstract

Motivation: Large-scale screenings of cancer cell lines with detailed molecular profiles against

libraries of pharmacological compounds are currently being performed in order to gain a better

understanding of the genetic component of drug response and to enhance our ability to recom-

mend therapies given a patient’s molecular profile. These comprehensive screens differ from the

clinical setting in which (i) medical records only contain the response of a patient to very few drugs,

(ii) drugs are recommended by doctors based on their expert judgment and (iii) selecting the most

promising therapy is often more important than accurately predicting the sensitivity to all potential

drugs. Current regression models for drug sensitivity prediction fail to account for these three

properties.

Results: We present a machine learning approach, named Kernelized Rank Learning (KRL), that

ranks drugs based on their predicted effect per cell line (patient), circumventing the difficult prob-

lem of precisely predicting the sensitivity to the given drug. Our approach outperforms several

state-of-the-art predictors in drug recommendation, particularly if the training dataset is sparse,

and generalizes to patient data. Our work phrases personalized drug recommendation as a new

type of machine learning problem with translational potential to the clinic.

Availability and implementation: The Python implementation of KRL and scripts for running our

experiments are available at https://github.com/BorgwardtLab/Kernelized-Rank-Learning.

Contact: lukas.folkman@bsse.ethz.ch or xiao.he@bsse.ethz.ch

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

One of the key goals of precision medicine is the ability to suggest

personalized therapies to patients based on their molecular profiles.

This approach is particularly interesting for cancer treatment given

the heterogeneous nature of this disease, with somatic alterations in

cancer genes shown to be the determinants of a patient’s response to

therapy (Chapman et al., 2011). For the development of targeted

treatments, large collections of patients with recorded clinical out-

comes and molecularly profiled tumor samples are needed.

However, the cost of such a medical records knowledge bank is cur-

rently prohibitive except for a few encouraging examples (Gerstung

et al., 2017). Therefore, pre-clinical biological models, such as cul-

tured human cancer cell lines, are a relatively inexpensive alternative

approach for finding biomarkers. Recently, several large-scale drug

sensitivity screens of genomically profiled cell lines ranging different

cancer (sub)types have been established (Barretina et al., 2012; Iorio

et al., 2016; Seashore-Ludlow et al., 2015). One of the current chal-

lenges lies in building accurate predictive models and translating

these models into the clinic.

A number of regression models (Costello et al., 2014; Jang et al.,

2014) have been proposed to predict drug sensitivity measured by

the half maximal inhibitory concentration (IC50) or the area under
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the fitted dose response curve (AUC). These methods typically build

a predictor for each drug individually (Aben et al., 2016; Barretina

et al., 2012; Iorio et al., 2016), use multi-task learning (Ammad-ud-

din et al., 2016; Gönen and Margolin, 2014) or combine genomic

profiles with information about the drug’s chemical structure

(Ammad-ud-din et al., 2014; Menden et al., 2013; Zhang et al.,

2015). However, there are three potential problems with these

approaches. Firstly, medical records knowledge banks are much

sparser than cell line panels, meaning that only a few therapies are

recorded for each patient compared to a comprehensive screen of

tens to hundreds of drugs for each cell line. Secondly, these therapies

are carefully selected by experienced doctors based on their expert

judgment. Finally, the regression-based methods are not directly

optimized for the prediction of the clinically relevant case in which a

clinician needs to know a few most-suited drugs for a given patient.

Here, we phrase the personalized drug recommendation as a

ranking problem (Section 2) and propose a method, named

Kernelized Rank Learning (KRL), that is directly optimized for the

clinically relevant scenario of personalized drug recommendation

illustrated above. To this end, we extend the approach of Weimer

et al. (2007) and Teo et al. (2010) in Section 3. The key difference

between KRL and the available regression approaches is that for a

given cell line (patient), KRL directly predicts the top ranking drugs

rather than the exact sensitivity values for all potential drugs. Our

experimental evaluation using a dataset of cancer cell lines (Section

4) shows that KRL outperforms competing approaches, particularly

in the realistic scenario when only a few training examples per cell

line are available. Next, using publicly available patient data and

the gene expression homogenization pipeline of Geeleher et al.

(2014, 2017), we show that even when KRL is trained on cell line

models, it can produce plausible recommendations for cancer pa-

tients. Finally, we summarize our findings and suggest potential dir-

ections for future work in Section 5.

2 Problem statement

We are given X 2 R
n�p, a set of n samples (cell lines or patients)

where each of them is represented with a molecular profile (e.g.

gene expression) with p variables. Furthermore, we are given

Y 2 R
n�m, a set of drug response measurements to m distinct

drugs. Importantly, the majority of values in Y might be missing

since the response of each individual sample is known only for a

few of all potential drugs. Given X and Y as described above, and

a molecular profile of a new sample, not present in X, our goal is

to rank drugs based on their efficacy so that the most effective

drug is ranked first. This goal is thus different from predicting the

exact value of the drug response (as done by drug sensitivity pre-

diction methods). Here we focus on the relative ordering (ranking)

of a few, most effective, drugs.

From a machine learning perspective, drug recommendation can

be framed into a problem of learning a weight matrix W 2 R
p�m

and then recommending drugs based on the predicted ranking vector

f ¼ xW . Here x 2 R
p is the molecular profile of a new sample, and

f 2 R
m is a ranking vector which entails the predicted ranking scores

for each of the m distinct drugs. Finally, the ranking of the drugs is

obtained as a permutation p which sorts the drugs in the decreasing

order of f (thus, p1 ¼ i such that max fð Þ ¼ f i, that is, p1 gives the

identity of the first recommended drug, the one with the largest

ranking score in f ).

The weight matrix W can be viewed as containing weights of all

molecular features towards each drug. Since we are interested in

relative ordering of the drugs, W needs to be learned jointly across

all drugs rather then for each drug individually. Learning W can be

formulated as the following minimization problem:

min
W
L XW ;Yð Þ þ kR Wð Þ (1)

where L XW ;Yð Þ is a loss function, R Wð Þ is a regularization term

with k controlling the effect of the regularization (regularization is

necessary to avoid over-fitting to the training set).

2.1 Normalized discounted cumulative gain (NDCG)
The key to our approach lies in employing a loss function based on

the Discounted Cumulative Gain (DCG) ranking metric (Järvelin

and Kekäläinen, 2002) as L XW ;Yð Þ in Equation (1). Given the

predicted ranking vector f 2 R
m and the true drug response vec-

tor y 2 R
m, DCG@k evaluates how well the order of the top k rec-

ommendations in f agrees with the order of the most effective

drugs in y:

DCG@k f ; yð Þ ¼
Xk

i¼1

2ypi � 1

log2 1þ ið Þ (2)

where p sorts f in decreasing order. DCG@k can be intuitively inter-

preted as follows: the numerator gives rewards proportional to the

true responses of the k recommended drugs, while the denominator

penalizes the incorrect ordering of these k recommendations. The

gains are maximized when the most effective k drugs are the top k

recommended drugs, ranked in the correct order.

The Normalized DCG (NDCG) is more practical:

NDCG@k f ; yð Þ ¼ DCG@k p; yð Þ
DCG@k r; yð Þ (3)

where p and r sort f and y in decreasing order, respectively.

Hence, NDCG@k ranges from 0 to 1 and is maximized (perfect rec-

ommendation) when pi ¼ ri; 1 � i � k.

Finally, we convert NDCG@k, a gain function, into a loss func-

tion by taking 1�NDCG@k f ; yð Þ, which allows us to rewrite

Equation (1) and state the drug recommendation problem formally:

min
W

Xn

i¼1

ð1�NDCG@kðX iW ;Y iÞÞ þ kjjW jj2Frob (4)

where X i (the i-th row of X) is the molecular profile of the i-th cell

line and Y i (the i-th row of Y) is the true response vector of the i-th

cell line to the m drugs. jjW jj2Frob is the squared Frobenius norm of

W for the purpose of regularization.

3 Materials and methods

We stated the drug recommendation as minimization of

1�NDCG@k. Unfortunately, it turns out that 1�NDCG@k is a

highly non-convex and non-smooth function which makes its direct

optimization difficult. Therefore, we minimize its convex upper

bound derived by Weimer et al. (2007) instead and extend the

Bundle Method for regularized Risk Minimization (BMRM) pro-

posed by Teo et al. (2010) for the joint optimization of W across all

drugs. Finally, Equation (4) employs a linear predictor (X iW ), which

does not take feature interactions into account. To boost prediction

performance by introducing non-linearity, we apply the well-known

kernel trick (Cortes and Vapnik, 1995). We thus refer to our ap-

proach as Kernelized Rank Learning (KRL).
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3.1 Convex upper bound of the loss function
Based on the work by Tsochantaridis et al. (2005), which describes

how to find convex upper bounds of non-convex optimization prob-

lems, Weimer et al. (2007) showed that the following loss function

is a convex upper bound of 1�NDCG@k f ; yð Þ:

‘ f ; yð Þ ¼ max
p
½1�NDCG@k f ; yð Þ þ hc; f p � f i� (5)

where c 2 R
m is a decreasing sequence, e.g. ci ¼ iþ 1ð Þ�0:25 as sug-

gested by the authors. Finding the permutation p is a linear assign-

ment problem which can be solved with the Hungarian Marriage

algorithm (Kuhn, 1955).

3.2 Kernelized rank learning (KRL)
Non-linear kernel methods have shown good performance in a drug

sensitivity collaborative competition (Costello et al., 2014).

Therefore, we decided to kernelize the objective function defined in

Equation (4).

Let W ¼ XTU, where U 2 R
n�m, the objective is rewritten as:

min
U

Xn

i

‘ X iX
T
i U ;Y i

� �
þ kTr UTXXTU

� �
(6)

where ‘ is the loss function defined in Equation (5), and Tr is the

trace of a square matrix. By replacing XXT with a kernel matrix

K on X, we get the KRL’s kernelized objective function:

min
U

Xn

i

‘ K iU ;Y ið Þ þ kTr UTKU
� �

(7)

The time complexity of evaluating KRL’s objective function

comes down to the complexity of the linear assignment algorithm,

which is O ~m3
� �

, where ~m is the number of non-missing drug re-

sponse measurements for the given sample, which is typically only a

few. Moreover, the KRL loss function can be decomposed and eval-

uated in parallel across all samples.

Finally, to optimize Equation (7), we need the subgradient of the

loss function L KU;Yð Þ ¼
Pn

i ‘ K iU;Y ið Þ with regards to U:

@UL KU ;Yð Þ ¼ K@FL (8)

where F ¼ KU and @FLð Þi ¼ @Fi
‘ Fi;Y ið Þ ¼ c�p�1 � c where �p is the

permutation that maximizes ‘ f ; yð Þ; �p�1 is the inverse permutation

of �p, i.e. f �p

� �
�p�1 ¼ f , and c is defined as in Equation (5).

Supplementary Algorithm S1 details how to calculate the subgra-

dient @UL.

3.3 KRL optimization
The objective function in Equation (7) is convex but due to the

maximization problem in ‘ expensive to evaluate. The BMRM algo-

rithm proposed by Teo et al. (2010) has been shown to work well

on such problems. However, the authors introduced only a single-

task version of BMRM, which means it cannot be directly applied to

solve Equation (7). Therefore, we extended BMRM for KRL to

allow for the following differences when compared to the single-

task BMRM: (i) U is a matrix rather than a vector and (ii) the ob-

jective function includes regularization on a positive definite kernel

matrix, Tr UTKU
� �

, rather than an L2 norm of a weight vector.

Algorithm 1 describes BMRM for KRL. The general idea of the

BMRM algorithm is to improve the lower bound of the objective

function by its linearization (the first-order Taylor approximation) at

the subgradient @UL in different iterations. Lines 5 and 6 of

Algorithm 1 require finding U that minimizes the lower bound func-

tion J Uð Þ of the objective function defined in Equation (7). The

primal problem involves a maximization sub-problem, which is diffi-

cult to solve. The original BMRM algorithm solves the primal prob-

lem in its dual form, which is a quadratic program. In the following

we show that also in the case of KRL, with U being a matrix and

regularization on a kernel, the problem can be solved in its dual form.

Firstly, U is decomposed into m column vectors, and the object-

ive function is rewritten as:

min
U
L KU ;Yð Þ þ

Xn

i¼1

k U i
� �T

KU i (9)

where U i is the i-th column of U. Next, after introducing non-

negative Lagrange multipliers a, the dual function is also decom-

posed by column:

U i t½ � ¼ �K�1Aia t½ �=k (10)

a t½ � ¼ max
a2Rt
� 1

2k
aT

Xm
i¼1

Ai
� �T

K�1Ai

 !
aþ aTB

subject to a � 0 and jjajj1 ¼ 1

(11)

where Ai¼ Ai 1½ �; . . . ;Ai t½ �
� �

;B¼ B 1½ �; .. . ;B t½ �½ �, and a t½ �;U i t½ �;Ai t½ �,
and B t½ � represent a;U i; Ai, and B in iteration t, respectively. This

results in a quadratic program problem.

3.4 Datasets
3.4.1 Cancer cell lines

We designed, evaluated and trained our method using the Genomics

of Drug Sensitivity in Cancer (GDSC) release 6 dataset with drug sen-

sitivity measurements of 1 001 cancer cell lines (ranging 31 cancer

types) to 265 pharmacological compounds (Iorio et al., 2016).

Majority of the cell lines were characterized using gene expression,

whole-exome sequencing, copy number variation and DNA methyla-

tion. We evaluated our method with all four data types individually,

however, we focused our analysis on the predictions based on gene

expression since it has been shown previously as the most predictive

data type (Costello et al., 2014). To this end, we encoded each of the

962 profiled cell lines with the RMA-normalized (robust multi-array

average) basal expression of 17737 genes. Supplementary Table S1

lists the statistics regarding the number of profiled cell lines, features

and missing values for all four data types.

Genomics of Drug Sensitivity in Cancer reports the drug sensitivity

as the logarithm of half maximal inhibitory concentration (log IC50),

which denotes the concentration of the compound required to inhibit

the cell growth at 50%. The measured IC50 values are not, however,

comparable between different compounds. Therefore, Iorio et al. (2016)

Algorithm 1. BMRM for Kernelized Rank Learning

Data: U ½0�; K; Y ; k; � > 0; t ¼ 0

Result: U ½t�
1 repeat

2 t ¼ t þ 1;

3 A½t� ¼ @ULðKU ½t � 1�;YÞ;
4 B½t� ¼ LðKU ½t � 1�;YÞ � hU ½t � 1�;A½t�i;
5 J ðUÞ ¼ kTrðUTKUÞ þmax

1< i� t

ðhU ;A½i�i þ B½i�Þ;

6 U½t� ¼ min
U

J ðUÞ;
7 �½t� ¼ min

0� i� t

LðKU ½i�;YÞ þ kTrðU ½i�TKU ½i�Þ � J ðU ½t�Þ;

8 until �½t� � �;
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calculated drug-specific sensitivity (binarization) thresholds for each of

the 265 tested drugs. These thresholds were determined using a heuristic

outlier procedure (Knijnenburg et al., 2016) following a previous obser-

vation that the majority of cell lines are typically resistant to a given

drug (Garnett et al., 2012).

We used these drug-specific sensitivity thresholds to normalize the

dataset. Furthermore, for compatibility with the ranking metric

(NDCG@k), we scaled the normalized dataset into the range of 0; v½ �,
where v 2 R

þ represents the strongest drug response in the dataset.

Thus, the sensitivity scores used in this work were equal to

�log IC50

thrd
þ a, where thrd is the sensitivity threshold of the given drug

and a is the maximum normalized log IC50 score across all drugs.

3.4.2 Clinical trials

Recently, Geeleher et al. (2014) showed that ridge regression models

trained on in vitro cell line models can predict drug response in vivo.

Their approach was particularly successful for the docetaxel breast

cancer (Chang et al., 2003) and bortezomib multiple myleoma

(Mulligan et al., 2007) clinical trials, yielding the area under the re-

ceiver operating characteristic curve (AUROC) scores of 0.81 and

0.71, respectively. The AUROC can be interpreted as the probability

that for a randomly selected responder and non-responder, the re-

sponder was predicted to respond better to the given therapy than

the non-responder. In Geeleher et al. (2014), the ridge regression

models were trained using the GDSC release 2 dataset, which com-

prised responses of 482 and 280 cell lines for docetaxel and bortezo-

mib, respectively. After re-running their analysis pipeline using the

GDSC release 6 containing 833 and 391 cell lines for docetaxel and

bortezomib, respectively, we found that while the performance for

bortezomib (AUROC of 0.70) was comparable to the GDSC release

2 results, the docetaxel model resulted in a random performance

(AUROC of 0.49). We conjecture that this could be attributed to ex-

perimental errors or unsuccessful homogenization of the expression

profiles for some of the GDSC release 6 cell lines. Therefore, to

avoid these potential outliers during training, we used the cell lines

in the intersection of the GDSC release 2 and release 6. This ap-

proach resulted in a reasonable performance for both docetaxel

(394 cell lines) and bortezomib (253 cell lines) with AUROCs of

0.74 and 0.71, respectively.

We used the docetaxel (24 patients) and bortezomib (169 pa-

tients) clinical trials to test if KRL’s recommendations can generalize

to cancer patients. To this end, KRL was trained using the 394

(docetaxel) and 253 (bortezomib) GDSC release 6 cell lines as ex-

plained above. We used the pipeline provided by Geeleher et al.

(2014) to download the clinical trials datasets and homogenize the

gene expression profiles of the cell lines, measured with Affymetrix

HG-U219 and tumor biopsies, measured with Affymetrix HG-U95-

v2 (docetaxel trial) and Affymetrix HG-U133B (bortezomib trial).

The homogenization was implemented using the ComBat method

(Johnson et al., 2007; Leek and Storey, 2007).

3.4.3 Breast cancer patients

We employed The Cancer Genome Atlas (TCGA) breast cancer co-

hort (BRCA, 1098 patients) to further evaluate how well KRL’s pre-

dictions generalize to cancer patients (The Cancer Genome Atlas

Network, 2012). We downloaded the Level 1 clinical annotations

and Level 3 reverse phase protein array (RPPA) data from the Broad

Institute TCGA Genome Data Analysis Center (2016), Firehose data

run 2016_01_28 (https://doi.org/10.7908/C11G0KM9). We used

the immunohistochemistry annotations to identify HER2-

overexpressed (HER2þ, 164 patients) and triple-negative breast

cancers (TNBCs, 116 patients), and RPPA z-scores to identify pa-

tients with normal-to-high expression of JAK2 (JAK2þ, z-score � 0,

421 patients). Furthermore, we defined the BRCA1/2-mutant

(mBRCA) patients using the list of 37 patients carrying germline

loss-of-function BRCA1/2 mutations (Maxwell et al., 2017).

Finally, we used the pipeline proposed by Geeleher et al. (2017) to

download and homogenize the Level 3 Illumina HiSeq RNA-seq v2

data (1 080 patients) from the Firehose data run 2015_08_21. The

homogenization approach was in part based on the Remove

Unwanted Variation (RUV) method (Risso et al., 2014).

3.5 Evaluation
To get an unbiased estimate of KRL’s prediction performance using

the GDSC cell lines dataset, we employed three-fold cross-valid-

ation, where each fold was used once for testing while the other two

folds were merged for training. Finally, we reported the mean per-

formance across the three test folds. For the experiments with sub-

sampled training datasets, we repeated the subsampling procedure

10 times, calculated standard deviations, and estimated statistical

significance of our results using paired Student t-test. For the experi-

ments with the full training dataset, standard deviations and statis-

tical significance were estimated from the three cross-validation

folds.

To evaluate the accuracy of our approach, we quantified if the

top recommendations in f 2 R
m agree with the most effective drugs

in y 2 R
m, where f and y are the predicted ranking vector and the

true drug response vector, respectively. To this end, we used two dif-

ferent ranking metrics: Precision@k and NDCG@k. NDCG@k was

defined in Equation (3), Section 2.1. The main shortcoming of

NDCG@k is that there is no intuitive explanation of its values.

Therefore, we used also Precision@k, which measures precision be-

tween the k highest-ranked recommendations in f and the k most

effective drugs in y:

Precision@k f ; yð Þ ¼ 1

k

Xk

i¼1

Xk

j¼1

d pi; rj

� �
(12)

where p and r sort f and y in decreasing order, respectively, and

d a;bð Þ ¼ 1 if a ¼ b and 0 otherwise. The interpretation of

Precision@k is straightforward: Precision@5 ¼ 0:4 means that out

of five most effective drugs in y, two were among the top five recom-

mendations in f .

3.6 Baselines and related work
We compared the method proposed here, Kernelized Rank Learning

(KRL), with several state-of-the-art approaches for drug sensitivity

prediction including the Elastic Net (EN), Kernel Ridge Regression

(KRR), Random Forest (RF) regression and Kernelized Bayesian

Multi-Task Learning (KBMTL). EN (Zou and Hastie, 2005) and

KRR (Murphy, 2012) have been recommended as one of the best-

performing algorithms in a systematic survey (Jang et al., 2014).

Another survey identified KBMTL (Gönen and Margolin, 2014) and

RF (Breiman, 2001) as the two best-performing algorithms in a

challenge-based competition on a breast cancer dataset (Costello

et al., 2014). KBMTL is a multi-task approach, thus instead of train-

ing a model for each task (drug) separately as done by EN, KRR and

RF, it learns the relationship between different drugs during train-

ing. While there is an extension of the KBMTL method, which em-

ploys multiple kernel learning (MKL) to allow for the integration of

different molecular data types, we focused on prediction using a sin-

gle data type to facilitate a fair comparison of all compared
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methods. Finally, we compared two implementations of the pro-

posed method: with linear and Radial Basis Function (RBF) kernels

(LKRL and KRL, respectively).

We used the implementation of EN, KRR and RF from the

Python scikit-learn package (Pedregosa et al., 2011). For KBMTL,

we used the MATLAB implementation provided by the authors

(https://github.com/mehmetgonen/bmtmkl).

3.7 Hyper-parameter optimization
For each of the compared methods, we tuned the relevant hyper-

parameters with a grid search using nested three-fold cross-valid-

ation on the training set (Supplementary Table S2). That is, we split

the two training folds of the ‘outer’ cross-validation procedure into

three folds for hyper-parameter optimization. To simplify the hyper-

parameter optimization for the evaluation of KRL on the clinical tri-

als and TCGA-BRCA datasets, we heuristically determined the RBF

kernel width (c) using the ‘median trick’ which sets c to the inverse

of the median squared Euclidean distance of all training samples

pairs. Then, we tuned the regularization parameter k with a line

search, k 2 f1:0;0:1; . . . ; 1� 10�6g.

4 Results

As described in Section 1, our method (KRL) is motivated by the

clinically relevant scenario where (i) the training dataset in the form

of a medical records knowledge bank is much sparser than a typical

drug sensitivity screen of cultured cell lines, (ii) therapies recorded in

the knowledge bank were prescribed by experienced doctors based

on their expert judgment and (iii) only a few, accurate, recommen-

dations are needed (as opposed to predicting the exact values of

patient’s sensitivity to all drugs on the market). To show how KRL

performs under these three requirements, we conducted the follow-

ing experiments. First, for the sake of completeness, we evaluated

KRL on the full GDSC dataset. Second, to address (i), we randomly

subsampled the number of drugs a cell line was treated with to make

the training dataset sparse. Third, to address (ii), we extended the

subsampling procedure to account for doctor’s expert judgment by

sampling from a predefined proportion of the most effective drugs.

To address (iii) across all of the experiments, we evaluated our

method with NDCG@k and Precision@k ranking metrics for differ-

ent values of k, where k defines the number of top recommendations

considered in the evaluation. We performed all experiments using

the gene expression dataset (as it proved to be the most predictive

data type) and then employed the other data types in the final ana-

lysis using the most realistic subsampling strategy where, for each

cell line, only a few drugs were used for training. Finally, we eval-

uated how well KRL models trained on cell lines generalize to pa-

tient data using docetaxel and bortezomib clinical trials and TCGA

breast cancer cohort.

4.1 Prediction using the full training dataset
We used the full GDSC dataset, which due to missing values included

82% of the drug sensitivity measurements, to compare the perform-

ance of KRL with related work using different evaluation ranking

criteria. Figure 1 and Supplementary Figure S1 show the comparison

for Precision@k and NDCG@k, respectively, with

k 2 f1; 3; 5;10;15; 20g. KRL yielded comparable drug recommenda-

tions (paired Student t-test, P > 0:05) to the second best method,

KBMTL. Comparing KRL, which employs the RBF kernel, with the

linear kernel implementation of our method (LKRL), KRL either

outperformed (P < 0:05, Precision@k for k 2 f1;5; 15; 20g) or

performed comparably to LKRL. Overall, KRL’s performance was in

the range of 23–36% for Precision@k and 47–58% for NDCG@k.

4.2 Prediction using sparse training datasets
To evaluate the compared methods in a more clinically relevant

scenario, in which only a few therapies can be recorded for each pa-

tient, we subsampled the training dataset (training folds) at sampling

rates of 50%, 20% and 10%. At the same time, we kept the test set

(test folds) unchanged. In the case of 10% sampling, this strategy re-

sulted in training on 22 drug responses per cell line on average.

Figure 2 and Supplementary Figure S2 show Precision@5 and

NDCG@5 as a function of the relative training dataset size, respect-

ively. As expected, the performance of all compared methods

decreased as the training dataset became sparser. Nonetheless, the

Precision@5 improvements of KRL compared to the second method,

KBMTL, were 1.1% (P ¼ 8:3� 10�6), 2.1% (P ¼ 2:5� 10�8) and

1.7% (P ¼ 5:2� 10�7) for the sampling rates of 50%, 20% and

10%, respectively, compared to 0.6% (P ¼ 0:138) for the full train-

ing dataset. Thus, KRL appears to be more robust to sparse data

than the regression approach. The same trend could also be

observed for NDCG@5. The Precision@5 improvements of KRL

compared to the other three methods using only 10% of the training

dataset were 2.7% (P ¼ 2:5� 10�7), 1.9% (P ¼ 2:4� 10�7), 2.7%

(P ¼ 4:9� 10�8) and 5.5% (P ¼ 1:6� 10�9) for LKRL, KRR, RF

and EN, respectively.

4.3 Prediction using sparse training datasets biased

towards effective therapies
As discussed in the previous section, KRL appears to be more robust

to missing data than related work. This is shown in Figure 2 where

Fig. 1. Comparison of KRL with related work (see Section 3.6 for details) in

terms of Precision@k using the full training dataset for different values of the

evaluation parameter k, which controls the number of predicted recommen-

dations that are compared with the true drug ranking. The error bars show

standard deviations from three cross-validation folds

Fig. 2. Comparison of KRL with related work (see Section 3.6 for details) in

terms of Precision@5 using the subsampled training datasets. The error bars

show standard deviations from 10 randomly subsampled training datasets
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random subsampling of the training dataset was used to induce

sparsity. Nonetheless, it can be argued that choosing a subset of

drugs for each cell line randomly does not simulate medical records

knowledge banks realistically. This is because clinicians do not pre-

scribe therapies randomly but rather based on their expert judg-

ment. Thus we employed another subsampling strategy: first, we

selected a predefined proportion r of the most effective drugs per

cell line and second, we randomly sampled q drugs per cell line from

this selection. After this procedure, there might not be enough train-

ing data left for some of the drugs, therefore, after subsampling, we

removed drugs with <6 cell lines. We evaluated KRL and related

work using training datasets generated with q 2 f3; 5; 10g (yielding

datasets with 143–199, 202–246, and 239–265 drugs in total, re-

spectively) and r 2 f100%;50%; 20%;10%g (where r ¼ 100% is

equivalent to sampling q drugs randomly). Here we analyze results

with q ¼ 5 for brevity. Results for q ¼ 3 and q ¼ 10 showed a simi-

lar trend and are summarized in Supplementary Figures S3 and S4.

Figure 3 and Supplementary Figure S3a show Precision@5 and

NDCG@5, respectively, as a function of the fraction of the most ef-

fective drugs (r) used for sampling five drugs (q) per cell line. We

found that as the training dataset was composed of more effective

drugs, the improvement of KRL compared to the second best

method, KBMTL, was gradually increasing from 0.7% to 6.2%

(Precision@5) and from 0.3% to 10.4% (NDCG@5).

Both Precision@k and NDCG@k improvements of KRL compared

to related work were statistically significant (P <0.05) for

r 2 f50%; 20%; 10%g across a wide range of k 2 f3; 5; 10;15; 20g.
KRL was also able to outperform LKRL (P < 0:05) across all eval-

uated values of r and k with the exception of r ¼ 100%, and

r ¼ 10% for k¼1, in which case KRL and LKRL performed compar-

ably. Figure 4 and Supplementary Figure S4a show Precision@k and

NDCG@k as a function of the evaluation parameter k for the case of

sampling five drugs from the 20% of the most effective drugs.

4.4 Evaluation of the single top drug recommendations
We found that KRL outperformed related work in terms of both

Precision@k and NDCG@k for a variety of settings. Arguably, the

most clinically relevant setting was presented in the previous section

where a few (q) drugs were sampled from a given proportion (r) of the

most effective drugs. We analyzed this set of results further by looking

at each cell line’s single top recommendation (i.e. the drug with the

highest predicted ranking score) and quantifying how close this rec-

ommendation was to the most effective drug (i.e. the ground truth).

To this end, we looked at the distribution of percentile ranks of the

recommended drugs.

We calculated a percentile rank of a recommended drug as the

percentage of drugs to which the given cell line was less sensitive than

it was to the recommended drug. For instance, a percentile rank of 90

means that the recommended drug was in the top 10% of the most ef-

fective drugs for the given cell line. Figure 5a–d compares histograms

of percentile ranks for KRL and the second best method, KBMTL,

when trained using five drugs (q) per cell line sampled from the

100%, 50%, 20% and 10% of the most effective drugs (r), respect-

ively. The figure highlights that regardless of the sampling strategy,

49–56% of KRL’s recommendations were within the top 10% of

drugs to which the given cell line was most sensitive. While KRL and

KBMTL performed comparably for sampling from the full dataset

(Fig. 5a, P ¼ 0:50), the proportion of KRL’s recommendations with

Fig. 3 Comparison of KRL with related work (see Section 3.6 for details) in

terms of Precision@5 using the subsampled training datasets, keeping five

drugs (q) per cell line sampled from a predefined fraction (r) of the cell line’s

most effective drugs. The error bars show standard deviations from 10 ran-

domly subsampled training datasets

Fig. 4. Comparison of KRL with related work (see Section 3.6 for details) in

terms of Precision@k (for different values of the evaluation parameter k)

using the subsampled training datasets, keeping five drugs (q) per cell line

sampled from the 20% of the cell line’s most effective drugs (r). The error

bars show standard deviations from 10 randomly subsampled training

datasets

Fig. 5. Histograms comparing the distributions of percentile ranks of drugs

recommended by KRL and the second best method, KBMTL, using the sub-

sampled training datasets, keeping five drugs (q) per cell line sampled from a

predefined fraction (r) of the cell line’s most effective drugs. The figure high-

lights that regardless of the sampling strategy, 49–56% of KRL’s recommen-

dations were within the top 10% of drugs to which the given cell line was

most sensitive
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percentile ranks > 90 was higher by 4.5%, 18.6% and 24.4% for

sampling from the 50%, 20% and 10% of the most effective drugs,

respectively (Fig. 5b–d, P ¼ 7:3� 10�5; 7:2� 10�6 and 7:9� 10�8,

respectively). Supplementary Figure S5 shows a similar trend for sam-

pling three and 10 drugs per cell line.

4.5 Prediction with different data types
So far, all abovementioned results were based on representing a cell

line with its gene expression profile. It is of interest to evaluate KRL

and related work also for the other three available molecular pro-

files: whole-exome sequencing, copy number variation and DNA

methylation (see Supplementary Table S1 for a summary of features

derived from these data types). Figure 6 and Supplementary Figure

S6 compare Precision@5 and NDCG@5, respectively, for the six

compared methods across all four available data types. These results

are based on sampling five drugs (q) from the 100%, 50%, 20%

and 10% of the most effective drugs (r) per cell line (Fig. 6a–d, re-

spectively). In agreement with the findings from a drug sensitivity

collaborative competition (Costello et al., 2014), gene expression

was the most predictive data type regardless of the employed

method. Focusing on the other three data types, KRL yielded a

comparable performance to KBMTL (the second best method)

for r ¼ 100% and 50% and achieved Precision@5 improvements of

3–9% (P < 0:05) for r ¼ 20% and 10%. NDCG@5 improvements

were in the range of 7–15%.

4.6 Clinical trials prediction with KRL
Recently, Geeleher et al. (2014) showed that ridge regression models

trained on in vitro cell line models can predict drug response in vivo.

We were interested if KRL models can also generalize to patient

data. We used the pipeline provided by Geeleher et al. (2014) to

download and homogenize docetaxel breast cancer (Chang et al.,

2003) and bortezomib multiple myleoma (Mulligan et al., 2007)

clinical trials datasets.

First, for docetaxel, there were 10 patients labeled as sensitive

(S) and 14 as resistant (R). We used the predicted drug ranks to dis-

criminate between the sensitive and resistant patients. We found

that KRL had a tendency to rank docetaxel higher for the sensitive

than the resistant patients (Wilcoxon rank sum test, P ¼ 0:04) with

AUROC of 0.71 (Fig. 7a). Second, for bortezomib, there were 169

patients and their responses were classified as complete response

(CR), partial response (PR), minimal response (MR), no change

(NC), or progressive disease (PD). Comparably to the ridge regres-

sion approach (Geeleher et al., 2014), the medians of the predicted

drug ranks were able to sort the five categorical responses in the cor-

rect order (Fig. 7b). The bortezomib trial defined also another classi-

fication which grouped 85 CR, PR and MR patients as responders

and 84 NC and PD patients as non-responders. KRL was able to

rank bortezomib higher for responders than for non-responders

(Wilcoxon rank sum test, P ¼ 2:4� 10�5) with AUROC of 0.68.

4.7 TCGA breast cancer cohort prediction with KRL
We showed that drug ranks predicted with KRL trained on cell lines

correlate with patient response to treatment. However, the clinical

trials datasets do not allow for evaluating how well KRL ranks two

(or more) alternative drugs for a given patient. Therefore, we em-

ployed the TCGA-BRCA cohort (The Cancer Genome Atlas

Network, 2012) and analyzed different molecular breast cancer sub-

types to gauge if KRL’s drug recommendations for patients are

plausible.

Geeleher et al. (2017) showed how to homogenize gene expres-

sion profiles measured with RNA-seq (TCGA) and micro-arrays

(GDSC), which in turn allowed them to train ridge regression mod-

els on the GDSC cell lines and use these models to ‘impute’ drug re-

sponse of the TCGA patients. In their evaluation, they showed that

HER2þ TCGA-BRCA patients were predicted to be more sensitive

to lapatinib, a first-line therapy for HER2þ patients (Gomez et al.,

2008), than patients without HER2 overexpression. Here we fol-

lowed the idea of using molecular subtypes for evaluating KRL’s

Fig. 6. Comparison of KRL with related work (see Section 3.6 for details)

across the four molecular data types: gene expression (GEX), whole-exome

sequencing (WES), copy number variation (CNV) and DNA methylation

(MET). The six compared methods were evaluated in terms of Precision@5

using the subsampled training datasets, keeping five drugs (q) per cell line

sampled from a predefined fraction (r) of the cell line’s most effective drugs.

The error bars show standard deviations from 10 randomly subsampled

training datasets

Fig. 7. Predicted drug ranks for the docetaxel (a) and bortezomib (b) clinical

trials. Docetaxel trial designated patients as sensitive (S) or resistant (R).

Bortezomib trial classified the response into five categories: complete re-

sponse (CR), partial response (PR), minimal response (MR), no change (NC)

and progressive disease (PD). Moreover, the patients were grouped as re-

sponders (CR, PR and MR) and non-responders (NC and PD)
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recommendations and compared lapatinib to emerging targeted

therapies for TNBCs (Kalimutho et al., 2015).

First, we compared lapatinib and four PARP1/2 inhibitors

(PARPi), veliparib, olaparib, talazoparib and rucaparib, some of

which have shown promising therapeutic response in BRCA1/2-mu-

tant (mBRCA) tumors (Tutt et al., 2010). Consistent with our hy-

pothesis, we found that lapatinib was ranked higher than all four

PARPi for 149 of the 163 HER2þ patients (91%). In contrast, lapa-

tinib was recommended over (ranked higher than) PARPi only for

one out of nine mBRCA TNBCs (11%). We re-trained KRL 10 times

with randomly selected 100 drugs to confirm that the results were

statistically different from a random recommendation rate of 50%

(unpaired Student t-test, P ¼ 8:2� 10�14 for HER2þ and

1:7� 10�138 for mBRCA TNBCs). Table 1 details lapatinib recom-

mendation rates for the individual PARPi. Upon randomly selecting

100 drugs, these results were also statistically different from random

(P� 0:05) except for rucaparib (P ¼ 0:15), for which a recent clin-

ical trial failed to report objective responses in breast cancer patients

(Drew et al., 2016).

Second, we considered ruxolitinib, a JAK1/2 inhibitor approved

for the treatment of myelofibrosis, currently being investigated in

several clinical trials as a treatment for TNBC (Kalimutho et al.,

2015). As expected, we found that lapatinib was ranked higher than

ruxolitinib for 140 of the 163 HER2þ patients (86%), whereas it

was recommended over ruxolitinib only for 16 of the 56 TNBC pa-

tients (29%) with normal-to-high JAK2 expression (JAK2þ). We re-

trained KRL 10 times with randomly selected 100 drugs to confirm

that these results were statistically different from random

(P ¼ 1:1� 10�11 for HER2þ and 7:7� 10�8 for JAK2þ TNBCs).

5 Conclusion and outlook

This work phrased personalized drug recommendation as a ranking

problem of choosing the most effective drugs. This follows from the

observation that in a clinical setting, we are interested in providing a

recommendation of a few, most effective, drugs rather than predict-

ing the exact response (sensitivity) to all drugs available on the mar-

ket. To this end, we proposed KRL, which directly optimizes a

ranking loss function.

In our empirical evaluation, we aimed to simulate a clinically

relevant scenario, in which only a few therapies are prescribed for

each patient, by subsampling the training cell lines dataset. We

found that KRL outperforms state-of-the-art predictors in drug rec-

ommendation with the improvements being largest when the

sampling was not random but biased towards effective therapies,

thus simulating a medical records knowledge bank in which clini-

cians’ prior knowledge is reflected.

In order to provide reliable and robust recommendations in a

clinical setting, KRL needs to be re-trained on patient data and treat-

ment outcomes. Unfortunately, there is currently no publicly avail-

able dataset of sufficient size to evaluate KRL in this setting directly.

Nevertheless, we were able to show that even when trained on cell

lines, KRL recommendations can generalize to patient data and pro-

vide plausible recommendations.

One potential direction for future work is extending KRL to

learn treatment histories, interdependence and combinations of pre-

scribed therapeutics. We envision that medical records knowledge

banks which are currently being gathered by various research con-

sortia will provide the opportunity to study these phenomena with a

machine learning approach.
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