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Abstract

Small protein fragments, and not just residues, can be used as basic building blocks to reconstruct networks of coevolved
amino acids in proteins. Fragments often enter in physical contact one with the other and play a major biological role in the
protein. The nature of these interactions might be multiple and spans beyond binding specificity, allosteric regulation and
folding constraints. Indeed, coevolving fragments are indicators of important information explaining folding intermediates,
peptide assembly, key mutations with known roles in genetic diseases, distinguished subfamily-dependent motifs and
differentiated evolutionary pressures on protein regions. Coevolution analysis detects networks of fragments interaction
and highlights a high order organization of fragments demonstrating the importance of studying at a deeper level this
structure. We demonstrate that it can be applied to protein families that are highly conserved or represented by few
sequences, enlarging in this manner, the class of proteins where coevolution analysis can be performed and making large-
scale coevolution studies a feasible goal.
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Introduction

Coevolving residues in a protein structure correspond to groups

of residues whose mutations have arisen simultaneously during the

evolution of different species, and this is due to several possible

reasons involving the three-dimensional shape of the protein:

functional interactions, conformational changes and folding.

Several studies addressed the problem of extracting signals of

coevolution between residues. Two classes of methods have been

developed to identify residue correlations. They exploit informa-

tion coming either from the protein structure [1–3] or from the

sequence alignment. The second class of methods investigates

evolutionary constraints in protein families via the analysis of

correlated distribution of amino acids in sequences and it is

characterized by statistical and combinatorial approaches. Statis-

tical methods use correlation coefficients [4,5], mutual information

[6–11] and deviance between marginal and conditional distribu-

tions to estimate the thermodynamic coupling between residues

[12–15]. Phylogenetic information has been integrated [16–18] to

help the treatment of sequences displaying the same level of co-

variation. These methods ask for high sequence divergence on

several positions of the sequence alignment, and require

sufficiently many sequences to belong to the alignment (to

guarantee statistical equilibrium [13]). In general, these constraints

limit the domain of applicability. A combinatorial approach based

on phylogenetic reconstructions of protein families was proposed

in [19] where no filtering of sequences was required to perform the

analysis and a variable divergence of protein families is accepted.

The method can detect residues that are both coevolving and

conserved.

All these methods provide sets of coevolved residues that are

usually close in the three-dimensional structure, form connected

networks covering roughly a third of the entire structure, and have

been demonstrated for a few protein complexes (for which

experimental data was available) to play a crucial role in allosteric

mechanisms [12,20], to maintain short paths in network commu-

nication and to mediate signaling [2,3].

All methods have been tested on a handful of divergent protein

sequences. An attempt to large-scale investigation of residue

networks has been made in [16] but the class of sequences handled

by the approach is filtered on criteria excluding positions that

contain a high number of gaps, that are highly conserved or that

are highly divergent. This brought the large-scale coevolution

analysis of the PFAM database to consider 196,198 position pairs

against the 8:29|107 existing ones and certain families to be

excluded by the analysis. In particular, 7719 Pfam domains over

12273 (version v25, where for each family of aligned sequences we

eliminated 100% identical sequences) show at least 50% of their

positions that are either highly gapped (w60% of gaps) or highly

conserved (w75% of sequences contain the same residue), and

5868 Pfam families contain less than 120 sequences, a rough lower

bound for applying statistical methods of co-evolution analysis [13]

(Text S1). The development of conceptually new approaches

treating non divergent sequences and protein families represented

by small sets of sequences reveals to be necessary for large-scale

calculations [21]. To overcome this difficulty, we propose a new
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combinatorial method, named Blocks In Sequences (BIS), that detects

similarities in the evolutionary behavior of alignment positions

within either small or conserved sets of sequences. Contrary to

statistical approaches and other combinatorial approaches, BIS

does not require sequence variability nor sequence divergence,

conditions that are not satisfied by the classes of sequences it

addresses. It uses a counting formula that captures positional

differences in aligned protein sequences and based on those it

evaluates whether two or more positions underwent simultaneous

mutations, that is whether they coevolved or not.

With BIS, we extend the search of coevolving positions to blocks

of contiguous positions in sequence alignments, where a block is

possibly constituted by a single position. Intuitively, blocks

represent protein fragments and we determine whether fragments

coevolve or not and at which strength. The concept of fragment as

an elementary unit was first introduced in [22] to study protein

folding, and it was exploited in several further studies [23–28].

Here we use the notion of fragment as an elementary unit to study

protein evolution, where structural conditions are a possible

evolutionary constraint. The basic observation is that coevolving

positions are usually not isolated along the sequence and that their

coevolution concerns their adjacent positions as well. Based on

fragments, new accurate structural and functional insights on

proteins can be provided. We demonstrate that coevolving

fragments are indicators of important information explaining

folding intermediates, distinguished subfamily-dependent func-

tional motifs, key mutations in genetic diseases, peptide assembly,

structural features and specific evolutionary pressures that have

been undergoing on non-overlapping regions of the protein

sequence. This suggests that the nature of coevolution signals

extends beyond the role of coevolving residues in interaction sites,

allosteric movements and folding as highlighted in seminal works.

To illustrate, in multiple ways, the importance of thinking about

fragments while studying protein evolution, we have chosen four

protein families. The Amyloid beta peptide presents predicted

coevolving fragments that correspond to high affinity regions

involved in peptide aggregation and predicted residues that

correspond to known key mutations in Alzheimer’s disease. The

B domain of Protein A displays predicted sites that strikingly

match fragments and residues known to play a major role in

intermediate folding states; these fragments have been previously

experimentally identified by w-analysis. The MukB family shows

that gap insertion within a protein family is an important event

that can be used to extract fragment information and to explain

the joint functional and structural role of different parts of a

protein sequence. It highlights the possibility to identify structural

features and specific evolutionary pressures undergoing non-

overlapping regions, named partitions, of the protein sequence.

Finally, the AATPase family shows that coevolution analysis can

fruitfully revisit already treated protein families and bring new

biological insights into play: it highlights distinguished subfamily-

dependent motifs, suggests extensions of known motifs, identifies

new motifs and provides evidence of a mutual evolution among

motifs. For these four protein families, the number of sequences is

quite restraint, varying between a few hundreds down to a dozen

(Table 1 and Text S10). The percentage of identity is high: greater

than 80% for the first three families and varying from 47% to 65%

for the AATPase family (Fig. S1). Because of the special

characteristics of the sequences, coevolution signals within these

protein families are expected to be particularly difficult to extract

with current methods. We begin by introducing the method on a

specific example and discuss afterwards the results obtained on the

four protein families.

Results

A Combinatorial Mapping of Fragments in Proteins
We study coevolution of blocks as we would study coevolution

of positions by analyzing words variability in adjacent alignment

positions instead of residues variability in a column alignment. A

block is defined by extending a position, called the hit of the block,

with adjacent positions on its right and on its left, by ensuring that

the word distribution for the block is the same as the amino acids

distribution for the hit. This means that, by looking at the columns

corresponding to the block within the alignment, the aligned

sequences where the same word appears should display the same

amino acid in the hit column, and vice versa, by looking at the hit

column, the aligned sequences where the same amino acid appears

should display the same words in the block columns. As an

example, take the alignment of the Amyloid beta (Ab) peptide

fragment 16–20 reported in Fig. 1A and consider position 16,

containing Arginines (K), Lysines (R) or indels (.). By extending

position 16 on the right to the fragment 16–20 we observe three

words KLVFF, RLMFL and ..VFF, extending K, R and. respec-

tively, that preserve the distribution of position 16. Positions 16–20

are such that by extending them further to the left or to the right,

we would increase the number of distinguished words (because of a

Glutamate in position 15 and of a Proline in position 21) and

change, in this way, the word distribution of the hit at position 16.

We say that the extension 16–20 is maximal and call it a block.

Coevolution analysis looks for blocks in the alignment that

coevolve with fragment 16–20. These blocks are identified along

the alignment by extension from a position as above. They can

have arbitrary size. For each block, we ask the words appearing on

it to have at least two occurrences in the record of the protein

family. Intuitively, we trust the analysis of coevolution signals for a

block only when it is issued from alignment sequences that contain

words witnessed by at least two sequences. But a block might have

d words that appear only once and in this case, we say that the

block has d exceptions. When considering blocks of d exceptions,

we will ignore from coevolution analysis the d sequences with only

one word occurrence. Notice that a block has d exceptions only

when its hit (that is, the position from which it is extended) has d
exceptions, and that the maximum value of d can be 21, that is the

number of different amino acids together with the indel. Also,

notice that blocks, possibly with the same number of exceptions,

can overlap each other.

As all blocks are defined, we look for coevolution signals

between pairs of blocks of at most ƒd exceptions, where d is a

family dependent value. The intuition is that divergent families will

have greater d than more conserved ones. For the Ab peptide, a

very conserved protein family, we consider all blocks with ƒ2
exceptions and compute coevolution scores between pairs of these

blocks. The approach is combinatorial in nature and it is based on

a counting argument that captures all changes in word distribution

between pairs of blocks: we check within sequences preserving a

word for a block, whether words vary for the other block or not.

Block 16–20 turns out to coevolve with blocks 11–12 and 14

(Fig. 1A), and this can easily be seen by observing that the word

EV in 11–12 changes in DV and. exactly when word H in 14

changes into D and. and when KLVFF changes into RLMLF and.

VFF. It is an example of perfect coevolution between blocks. To

study less regular word matching between blocks, the method

considers the evolutionary pressure involving the entire Ab
sequences, and not only the mutational process involving single

positions. For this, it uses the distance tree of sequences as a

representation of the evolutionary process, it extracts information

from the topology of the tree and it provides numerical values

Coevolution of Protein Fragments
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evaluating the strength of coevolution between blocks (Fig. 1B).

The counting argument occurring in the correlation formula (see

Methods) joins together the analysis of all subtrees of the distance

tree of sequences: for each subtree and each pair of blocks, the

word distributions associated to the pair of blocks are compared

and weighted by the size, that is the number of sequences, of the

subtree.

The set of coevolving scores among all pairs of blocks gives rise

to a coevolution score matrix (Fig. 1B left). We cluster this matrix

to identify those blocks that display the same evolutionary

behavior, that is the same maximal coevolution scores among

each other, as cluster C2 in Fig. 1B (right). Intuitively, clusters

should help to interpret blocks functional role. To further analyze

the functional relationships between blocks in the evolutionary

record of the Amyloid protein family, a mapping of clusters of

coevolving blocks in the three-dimensional structure helps to

display their spatial proximity, if any, and to detect their physical

interactions. Fragment 16–20 is physically connected in a pathway

of tight interactions with 11–12 and 14. The three blocks form a

network, where a very small atomic distance (v4Å) exist between

at least one atom in each block of the network (Fig. 1C).

Genetic Signals and Functional Motifs Detected by
Fragments in Amyloid Beta Peptide

The complete calculation of block coevolution for the Ab
peptide provides many insights on this peptide known to be the

primary reason of extracellular deposits in Alzheimer’s disease

[29,30]: Ab is a 43 amino acids peptide formed after sequential

cleavage of the Amyloid Precursor Protein (APP) and is found in

the brain of patients. To see this, we consider residues (11 17 21

22) and peptide fragments (25–35, 18–20, 16–20, 14–23, 40–42)

that have been experimentally studied and highlighted to have

severe clinical implications:

1. mutations on residues 11 and 17 can lead to Alzheimer’s

disease by shifting the cleavage site in APP [31,32];

2. E22Q mutation (Dutch type) produces severe cerebral amyloid

angiopathy. It likely affects processing of APP, leading to the

formation of amyloid plaques in brain tissue and in walls of

blood vessels serving the brain [33]. It is associated to stroke

[34].

3. A21G mutation (Flemish type) produces cerebral amyloid

angiopathy with milder effects than E22Q [33,35]. It is

associated to stroke and dementia [34].

4. several in vitro studies showed that peptides containing the 25–

35 fragment induce neurotoxicity in neuronal cultures and self-

aggregate as Ab [36–39]. In vivo studies demonstrated that 25–

35 administration induces amnesia in rats [40].

5. fragment 25–38 is key for the APP transmembrane sequence

dimerization via the GxxxG motifs [41].

6. a study of several amnestic peptides showed that impairment

was dependent on the presence of the configuration VFF in

position 18–20 [42].

7. fragment 16–20 is the Ab region that most efficiently binds to

Ab, and this sequence is necessary for fibril formation [43].

The extension 14–23 was shown to be the minimal segment of

Ab that is sufficient for fibril formation [44].

8. fragment 40–42 is the site of c-secretase cleavage, either

between residues 40 and 41 or between 42 and 43; both forms

Ab42 and Ab40 are normally present, with Ab40 in great

excess of Ab42 [45].

We compared these residues and fragments with those detected

by coevolution analysis (run on 80 sequences). There are nine

coevolving clusters: C1 = (12 17), C2 = (11–12 14 16–20),

C3 = (19 26–38), C4 = (21 18–20), C5 = (12 18–20), C6 = (17 18–

20), C7 = (21–22 26–42), C8 = (40 41 42), C9 = (18 20) (Fig. 1D),

whose blocks form physically connected networks of interacting

residues. These clusters sharply agree with the experimental

observations reported above. Residues 11, 17, 21 and 22 are

detected as coevolving residues within several clusters and their

mutations are known to lead to Alzheimer’s disease (observations

1–3). Among fragments identified experimentally, C3 contains 26–

38 and C7 contains 26–42 that strongly overlap with 25–35 known

to be the site that best binds to Ab (observation 4) and with 25–38

involved in APP dimerization (observation 5). Fragment VFF

(observation 6) is found to coevolve with 12, 17 and 21 in C4, C5,

C6, and fragment 16–20 (observation 7) with residues 11, 12 and

Table 1. Performance of BIS coevolution analysis on AATPase families.

Seq API Pos #Exp #Coev TP Prob Sen* Spe* Acc* PPV*

Upf1 18 0.58 677 64 26 18 2.93 e214 0.28 0.99 0.92 0.69

RecD 6 0.51 642 55 73 32 1.63 e219 0.58 0.93 0.90 0.44

UvrD/Rep 8 0.53 661 62 38 30 1.89 e227 0.48 0.99 0.94 0.79

Rad3 9 0.52 592 55 62 28 3.53 e216 0.51 0.94 0.90 0.45

DEAD-box 67 0.61 624 66 16 16 4.11 e217 0.24 1 0.92 1

RecQ 9 0.61 514 65 42 31 1.26 e222 0.48 0.98 0.91 0.74

Ski2-like 13 0.51 686 62 35 22 1.47 e216 0.35 0.98 0.92 0.63

RigI-like 6 0.47 658 64 104 40 9.42 e220 0.63 0.89 0.87 0.38

DEAH-RHA 24 0.65 562 63 43 29 8.06 e221 0.46 0.97 0.91 0.67

NS3-NPH-II 11 0.6 479 62 101 36 4.83 e212 0.58 0.84 0.81 0.36

Swi2-Snf2 45 0.51 714 76 15 14 1.05 e213 0.18 1 0.91 0.93

Percentage of identity for the alignment (API), number of sequences (Seq), alignment length (where all gapped positions are eliminated; Pos), number of experimentally
confirmed residues (#Exp), number of residues identified by coevolution analysis (#Coev), number of true positives (TP) computed by intersecting #Exp and #Coev,
probability of predicting TP residues out of #Exp by selecting #Coev residues within Len residues (Prob), Sensitivity (Sen*), Specificity (Spe*), Accuracy (Acc*), Positive
Predictive Value (PPV*) are given (see Methods). Experimentally validated residues (#Exp) are those belonging to known motifs described in [56]. See Text S10.
doi:10.1371/journal.pone.0048124.t001
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14 in C2. Notice also that fragment 14–20 is identified as a block

of positions submitted to the same evolutionary pressure and this

supports that fragment 14–23 has been found to be the shortest

fibril-forming Ab-sequence containing 16–20 [46]. Finally,

residues in fragment 40–42 are found to coevolve together in a

cluster (observation 8). To statistically evaluate the accuracy of the

predictions, we computed the probability to find 22 (experimen-

tally validated predicted) residues over 25 (experimental residues)

by selecting 27 (predicted total) residues on a pool of 43 (that is, the

alignment length) and obtained p~7:79e{5 (p~1:52e{4, if the

length of the peptide structure, that is 42 residues, is considered

instead). The prediction has been realized with high accuracy

(0:81), specificity (0:72), sensitivity (0:88) and positive predictive

value (0:81). Notice that this evaluation underestimates the

prediction though since it neglects fragments organization that

matches well with experimental evidence.

Fragments, Gaps and Conserved Functional Motifs: The
Walker-A Motif

The explicit treatment of indels as residues discussed for the Ab
peptide, allows the sequence-based combinatorial method to

successfully analyze conserved blocks besides coevolving ones in a

highly accurate manner. As a challenging example, we consider an

alignment of 200 members of the 26 kDa N-terminal domain of

Figure 1. Amyloid fragment 16–20 and its coevolving blocks. A. Subset of the full sequence alignment (made of 80 members, with 87%
sequence identity) used in coevolution analysis of the Amyloid family. A block is highlighted by consecutive dots (top). It corresponds to cluster C2 in
BC. B. Matrix of coevolution scores between blocks of dimensions 0, 1, 2 (left) and coevolution score matrix of cluster C2 (right), where the color scale
for coevolution scores goes from dark red (maximal coevolution) to pale blue (no coevolution). For C2 coevolution score matrix, notice the high
coevolution scores between the three blocks in C2 (dark red) and the same coevolution scores of these blocks with all other blocks (rows are
uniformly colored). Observe that the three coevolving blocks display maximal coevolution scores with block 26–38 (dark red), but that 26–38 is not
claimed to coevolve with them because it displays different coevolution scores with the full set of blocks. C. Blocks 16–20, 11–12 and 14 form a
network of interacting residues in the structure (1aml). D. Clusterized matrix of coevolving blocks for the Amyloid beta peptide. The matrix is
computed from the unclustered matrix in B. Block dimension is indicated by a colored dot on the top: black (dimension 0), grey (dimension 1), white
(dimension 2). Clusters C1–C3, C8, C9 correspond to the highest coevolution scores as shown by the uniform behavior of the blocks within each
cluster. Clusters C8 and C9 are formed by the hits in blocks 40–42 and 18–20, that, by definition, display the same behavior with all other blocks.
Clusters C4 and C7 are formed by blocks detected in two dimensions. Notice that C2 in B (right) is included in this matrix.
doi:10.1371/journal.pone.0048124.g001
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the MukB family (see Methods) which features a mixed a=b-fold

with a central six-stranded anti-parallel b-sheet and a putative

Walker-A motif. The MukB protein family is highly conserved

(84% sequence identity) (Fig. 2A). From the alignment, fourteen

blocks are detected as being fully conserved, that is they are defined

by a single word and possibly several gaps (that is, words made of

indels only). By taking into consideration the location of gap

insertions (that for different blocks might involve different

sequences), the analysis discriminates eight of these blocks to

cluster within 3 distinct groups with highest scores (Fig. 2B right).

Among them, there are two blocks that characterize the 8-letters

Walker-A motif ½AG�(X )4GK ½ST �. They are identified by blocks

34–37 and 39–42 (in the pdb 1qhl), and they correspond to the

subsequences GGNG and GKS matching the Walker-A submotifs

½AG�(X )3 and GK ½ST �. These two blocks form a network of

spatially connected residues (C3 in Fig. 2C) and sharply identify

the Walker-A motif. The six remaining blocks are all located on

the left hand side of the Walker-A along the sequence, and form

two distinguished clusters of blocks, C1 and C2, belonging to the

dimerization site of the protein structure (Fig. 2BC).

The identification of the Walker-A motif challenged several

prediction systems based on conservation signals. The specificity of

these systems is usually not very high [47] compared to the one

reached by our analysis. When run on their own datasets of

homologous sequences, iJET [48] detects the Walker-A site within

29 predicted conserved residues, Consurf [49] detects it within 58,

siteFINDERD3D [47] within 45, and ET Viewer 2.0 [50,51] fails to

make a useful prediction. In fact, these systems output conserved

clustered patches that might have several functional activities, and

in particular, the residues lying in the same face of the molecule as

the Walker-A are suggested to be involved in dimerization of

MukB.

Taking into account that the Walker-A is predicted as forming a

separate cluster, its prediction is realized with p~9:16e{12,

accuracy 0:99, specificity 1, sensitivity 0:88 and positive predictive

value at 0:88.

Clusters of Fragments are Structurally Organized in MukB
Do clusters of coevolving blocks organize in a structure

providing evolutionary insights in fragment interactions? To

highlight the existence of such a structure, we look at contiguous

regions in both the sequence and the three-dimensional structure

that appear to have coevolved together in the record of MukB

sequences. The full MukB coevolution analysis identifies 8 clusters

with 1 exception (Text S2) that are slightly less conserved than the

Walker-A motif and the two clusters coevolving with it (C1 and

C2, detected with no exceptions) discussed above. Among them,

four are obtained by extending a non-fully conserved hit with fully

conserved positions and they overlap through their fully conserved

positions. The localization of all clusters along the sequence is

illustrated in Fig. 3C, where the corresponding intervals are

identified by arcs. Two intervals can overlap or be included one

into the other, and this might happen because either the clusters

share common residues or they are formed by blocks that are

intercalating. By constructing the associated interval graph

(Figs. 3B), we notice that the eleven clusters form five connected

components in the graph. We call the connected subgraphs

partitions of MukB: one is the Walker-A motif, one is located at the

right hand side of the Walker-A motif and the remaining three on

its left hand side. These partitions correspond to a spatial division

of the three-dimensional structure forming a sandwich-like

structural arrangement around the Walker-A motif (Fig. 3A and

Text S3). This suggests that the protein sequence underwent three

independent evolutionary processes: one for the Walker-A motif,

and the other two for the right and the left hand side, respectively.

To support this hypothesis, it is worth noticing that the cluster (C3)

identifying the Walker-A, was determined because of the presence,

in the alignment, of two large gapped regions starting at the

opposite extremes of the alignment and overlapping the motif

(Fig 2A). More precisely, the sequences that do not contain the

motif, happen to be aligned either on its right hand side or on its

left hand side, and all sequences containing the motif, happen to

display both the left and the right hand side. No protein sequence,

which is homologous to one of the two regions at the right and left

of Walker-A, is found combined to the Walker-A only. Sequences

aligned either with the right hand side or with the left hand side

(from the Walker-A) of the MukB sequence, provide evidence 1. of

the evolutionary independence of these two regions in the MukB

sequence, 2. of the role of Walker-A as a structural link to combine

the two sequences together in three-dimensions, and 3. of the role

of Walker-A in the functional evolution of MukB.

The MukB protein shows how the notion of partition helps to

understand the complexity of the evolutionary process. It helps to

identify contiguous regions having coevolved together in both the

sequence and the three-dimensional structure and it does not

require clusters in a connected component to form a physically

connected network. In this sense, partitions highlight a high order

clusters organization. In particular, partitions do not correspond to

domains and we suggest them to characterize new evolutionary

units for the study of protein structures. The concept is reminiscent

of the notion of sector introduced in [15], with the basic difference

that it involves the organization of several clusters of coevolved

fragments and that it requires a proximity of these clusters on the

sequence.

Fragments Interaction and Structural Stability in Protein
A

Does the partition organization provide functional insights in

fragment interactions? We demonstrate, on the B domain of

Protein A, how partitions can help to identify stable subparts of the

protein sequence in the folding process. We do not expect

coevolution analysis to give any hint on the kinetics of a folding

process but rather on the actors (that is, residues, parts of

secondary structures, 3D interactions) of the kinetics process. The

level of importance of these actors is encoded within the strength

of the coevolution signal and in the three-dimensional interactions

identified by partitions.

The B domain of protein A is a three helix bundle protein of 57

residues that has been particularly studied because of its fast

kinetics [52]. This alpha protein structure is constituted by three

helices and two turns. The first helix (H1) spans residues 10–19,

the second helix (H2) 25–37, the third helix (H3) 42–56, the first

turn (T1) 20–24 and the second turn (T2) 38–41. Protein A turned

out to be particularly amenable to w-analysis [52] that proposed a

number of hotspots, 18 20 23 27 28 31 32 34 35 45 46 49 52, and

stated several experimental observations on the structure of the

transition states during folding:

1. H2 is the most structured helix;

2. H2 and H3 form a stable or marginally stable intermediate;

3. strong interaction between H1 and H2 during transition state;

4. residues 20, 23 and 27 are implied in a serious destabilization

of the protein;

5. H1 is docked in the rate limiting step;

6. no significant structure is found for T1 and T2 in transition

state;

7. H3 shows important residues at the N-terminus.

Coevolution of Protein Fragments
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Co-evolution analysis (run on a dataset of 452 sequences)

detected six coevolving clusters: C1 = (22–23 27 29), C2 = (29–40

42 46 48–49), C3 = (29–42 44), C4 = (51 52), C5 = (16 17) and

C6 = (11 13–15 18) (Fig. 4AEFG and Text S4), that are physically

connected networks and form three partitions (Fig. 4BC). It

sharply agrees with experimental observations, with ten over

thirteen w-analysis hotspots that are coevolving. Residues 20, 28

and 45 are missing. The partition constituted by networks C1, C2

and C3 (Fig. 4CD) highlights a high number of potential

constraints that are coded by the coevolution patterns of these

networks and indicates that H2, exhibiting a large overlapping of

the clusters, is the most structured helix (observation 1).

The important overlapping of networks C2 and C3 on blocks

29–40 (for C2) and 29–42 (for C3) highlights an evolutionary

pressure undergoing a long fragment crossing H2, T2 and H3.

It suggests a possible interaction of H2 and H3 in intermediate

folding (observation 2) and fits with the experimental evidence

that a long peptide fragment corresponding to residues 25–59

defining H2, T2, H3 has much larger helical circular dichroism

signals (at 222 nm) than individual fragments of H2 and H3.

This fragment turned out to have a much larger signal than the

full length model of the denatured state of protein A [52].

All residues at the interaction site of H1 with H2 (14, 17, 18, 32)

that have been shown to display high w-values and to have side-

chain interactions in the NMR structure are detected to be

coevolving (observation 3). In particular, 14, 17 and 18 coevolve

together in C6.

Residues 23 and 27 are detected to coevolve in network C1 and

they have been observed [52] to be both playing an important role

in the stabilization of the protein (observation 4): mutation on

residue 23 generates 90–95% unfolded structures and mutation of

residue 27 highly destabilizes the protein. Coevolution analysis

highlights that the two positions are not independently important

but that there is a strong coevolution pressure going on between

them, suggesting that, after mutation, protein destabilization might

be a consequence of their interaction.

Figure 2. The Walker-A motif in MukB proteins. Display of a subset of the full sequence alignment (made of 200 members, with 84% sequence
identity) used to analyze coevolution in the MukB family. Sequences are truncated on the right. Three clusters are indicated by colored dots (top). B.
Matrix of coevolution scores between blocks of dimension 0 (left) and clustered coevolution score matrix highlighting 3 resulting clusters (right). See
Text S15. C. Clusters C1–C3 are plot in the structure (1qhl:A). Walker-A (C3) is colored green.
doi:10.1371/journal.pone.0048124.g002

Figure 3. Partitions in protein MukB (Escherichia coli K12). Coevolution analysis, realized on a dataset of 200 sequences, detects 11 clusters at
dimensions ƒ1. The dataset is the same as the one used in Fig. 2. A: MukB structure (1qhl:A) with coevolving clusters: in green, the Walker-A motif; in
blue, clusters C1, C2 and C8 that sit on the left hand side of the Walker-A motif; in red, all clusters sitting on the right hand side of the Walker-A motif.
B: interval graph of C. It is constructed by setting each interval in C to be a node of the graph and by defining an edge between two nodes when the
corresponding intervals overlap or cross each other. A connected component (red) forms a partition located on the bottom of the structure in A. C:
protein sequence corresponding to the structure in A (SI Text S3 and Text S15); arcs highlight intervals along the sequence hosting clusters, where an
interval associated to a cluster is identified (with an arc) by using the smallest and the largest positions among all blocks in the cluster. Color code as
in A. The 11 clusters have been obtained by imposing very stringent parametric conditions to coevolution analysis. More relaxed analysis conditions
(with blocks defined for larger dimensions d~2,3, and clustering done with larger D values; see Methods) still detect the Walker-A and partitions
remain located on its left and right hand sides.
doi:10.1371/journal.pone.0048124.g003
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The two partitions, one constituted by networks C1, C2, C3,

and the other by C5, C6 (Fig. 4C), suggest a separation in the

folding process into two main independent events, one involving

H1, exhibiting a large overlapping with C5 and C6, and the

other involving H2 and H3 (and T1, T2) in agreement with

observation 5.

From the overlapping of C2 and C3, it seems that any

hypothesis on the potential role of T2 in transition state

(observation 6) should be analyzed in the context of the structure

of H2 and H3. Concerning T1, BIS highlights block 22–23 as

important and the coevolution (C1) of this block with residues 27

and 29 of H2 suggests analyzing the potential structure of T1 in

transition state (observation 6) by coupling it with the structure of

H2.

Consensus between simulation and experiments on the

structure of H3 is unsettled [52,53]. Coevolution analysis

highlights residues 42 44 46 48 49 as coevolving in C2 and

C3, and suggests that the helix might be partially stable due to

an evolutionary pressure involving only the first half of it. The

prediction on H3 N-terminus supports observation 7. The

second half of the helix interacts with T1, which potentially

might help H3 to stabilize; in fact, the H3-T1 interaction site

involves residues 22, 23 and 51, 52 which form two coevolving

fragments (22–23 coevolves in C1 and 51 52 coevolve together

as residues in C4).

To conclude, the analysis of partitions of coevolving clusters

suggests a strong evolutionary pressure affecting fragments in H2

as well as H1 and H3 to guarantee the stability of H2 and,

possibly, strong interactions between H2 and H1, H3 at the

transition state [52]. Our finding might suggest new possible

experimental mutations that could contribute to clarify the folding

pathway [52,54].

It is interesting to notice the intimate link between hits and

hotspots of w-analysis. In fact, 9 over 14 blocks in clusters are

defined by hits that are also hotspots of w-analysis. All clusters

contain several hotspots.

The probability to find 25 residues out of 36 experimentally

validated ones by choosing 30 alignment positions over 57 (that is,

the length of the alignment) is 0.0009. For a small protein with

complex interaction patterns like Protein A, this predictive power

(accuracy at 0:72, specificity at 0:76, sensitivity at 0:69 and positive

predictive value at 0:83) is highly accurate.

Fragments, Motifs Discovery and Motifs Interaction in the
AATPase Family

Fragments, along a protein sequence, might form functional

motifs. Along evolution, these motifs might degenerate with

sequence divergence and their identification might become a

difficult task. If functionally important sites should remain relevant

after evolutionary changes, it might be that coevolution analysis,

rather than conservation analysis, could help to localize motifs

along the sequence with high precision. In this respect, we show

that coevolution analysis can fruitfully revisit already treated

protein families to bring new biological insights into play. We

Figure 4. B domain of Protein A. Analysis realized on a dataset of 452 sequences. A: clustered correlated distribution score matrix showing
clusters C1–C6 (computed on blocks of dimensions d~0,1; Text S17). B: protein sequence associated to the structure in EFGH; arcs highlight intervals
along the sequence that host clusters C1–C6; positioning of helices H1, H2, H3 (grey) and turns T1, T2 is reported. C: interval graph of B; color codes as
in B. D: distribution of blocks (blue) with respect to their conservation; all coevolving blocks for d~0,1 are used. E: clusters C1-C6 are plot on the
structure (1bdd); color code as in BC. F: residues in physical contact between helix H3 and turn T1. G: residues 14, 17 (green) and fragment 25–59
(pink) are experimentally validated as important in intermediate folding [52]. H: hotspots from w-analysis [52].
doi:10.1371/journal.pone.0048124.g004
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carried out a complete coevolution analysis for helicases, that is

enzymes that use ATP to bind and unwind a double stranded

DNA into its component single-strand [55]. We considered eleven

SF1 and SF2 helicase subfamilies that are very diversified in

function and highly similar in structure, and for which a

classification was proposed based on the C and N-terminal

domains surrounding the structural core and on their associated

functions [56]. Coevolution analysis of the two core domains

highlights the coevolution of specific blocks within the domains

and indicates, in this way, regions along the sequence that are

susceptible to carry functional signals. Strikingly these blocks agree

with the motifs that have been manually identified in [56,57] and

that have been grouped together accordingly to their biochemical

function: ATP binding and hydrolysis (motifs are named Q, I, II,

IIIa, VI), nucleic acid binding (Ia, Ib, Ic, IV, IVa, V, Vb),

coordination between polynucleotide binding and ATPase activity

(III, Va). Some of these motifs were originally highlighted in [58]

(7 motifs were proposed) and extended in [59–62] (4 more motifs

were added). See Fig. 5.

The large alignment length (of about 600 amino acids) and the

small number of sequences associated to each protein subfamily

(varying from 6 up to 67) did not prevent an insightful coevolution

analysis. Motifs prediction based on coevolution is realized with a

high accuracy (varying between 0:81 and 0:92) in all 11 protein

subfamilies (Table 1). For each SF subfamily, the ratio between the

number of coevolving residues belonging to all known motifs [56]

and the total number of coevolving residues in the alignment vary

between 0:5 and 1 (Text S5 reports ratios and correlations

between motifs). This means that a large part of coevolving

residues of AATPase families is involved in known motifs but that

there are a number of them that might have been missed and it is

worth looking at their positions along the sequence to extend

known motifs and to localize new motifs. We analyzed all

subfamilies in SF1 and SF2. The SF2 families show ratios higher

than 0.79 (Text S5) and all their coevolving residues, which do not

already belong to a motif, are either located near to known motifs

or grouped together along the sequence. This suggests that motifs

can be extended and that new motifs can be defined. In the SF1

Figure 5. AATPase protein Upf1. A: Upf1 protein structure (2gjk) where all known motifs of the family appear in distinguished colors together
with their extensions (in red), one new motif (green, named NEWB) and two more coevolving residues (yellow, named COEVA and COEVB), not know
to play a functional role in Upf1, have been identified by BIS. Two domains (left) and their backside (right) are shown (Texts S8 and S15). B: protein
logos of all known motifs and their extensions. Residues belonging to the extensions are marked by a square and a star marks those that are
coevolving. BIS analysis detects 26 coevolved positions (20 for d~0 and 6 for d~1) over 677 alignment positions. C: protein logos of the new motif
and the two coevolved positions.
doi:10.1371/journal.pone.0048124.g005
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subfamily Upf1 illustrated in Fig. 5, we could extend motifs I, III,

IIIa, Va and VI, and identify a new motif as well as two more

residues as potentially playing some functional or structural role.

Some of these motifs extensions are obtained on the analysis of

other SF1 subfamilies and this supports their interest (Text S6).

The full list of extensions and new motifs is reported in Text S6 for

SF1 and SF2 subfamilies. Also, the alignment of all subfamilies

highlights motifs positions and new motifs appearing in several

subfamilies as, for instance, the SF2 subfamilies RecQ and Ski2-

like.

Across all AATPase subfamilies, we observed that coevolving

residues might appear as parts of known motifs suggesting that not

all residues in a motif might be functionally relevant. Also,

different motifs might overlap several coevolving clusters of blocs

suggesting an interaction among motifs. The Ski2-like family, for

instance, shows multiple correlations between residues in motifs V,

Va and VI (Fig. 6B) induced by three different clusters. One

cluster contains completely conserved residues but the other two

display simultaneous mutations (Fig. 6C). Spatial proximity

supports the hypothesis of their interaction. Correlation among

motifs belonging to different protein domains is also observed, for

motifs I and V (Fig. 6A). This means that residues belonging to

motifs involved in different biochemical functions affecting

AATPases might constitute clusters. (A full account of this

functional analysis is reported in Text S6 and Text S5.) In

conclusion, functional relations between motifs are traceable

through either coevolution signals or structural proximity, and

for proteins with unknown three-dimensional structure, coevolu-

tion analysis becomes the major pathway to access this informa-

tion.

Coevolution Analysis Based on Physico-chemical
Properties of Residues

Amino-acids changes in sequences are considered more or less

important if realized within the same physico-chemical class or not

[63]. We tested whether a coevolution analysis based on physico-

chemical properties of residues provides sharper information on

residue correlation. BIS based on physico-chemical classes, named

here BISpc, was run on the four protein families described above

(Text S7). Overall one notices that coevolving blocks predicted by

BISpc are essentially the same as those highlighted by BIS, but they

are detected with a stronger clustering score. Also, the number of

coevolving blocks has the tendency to augment for BISpc providing

predictions that should be experimentally confirmed. In fact, with

respect to the pools of residues that have been experimentally

confirmed to be relevant, one notices that BISpc performs slightly

more poorly than BIS (Text S7 and Table 2). It is worth noticing

that for MukB, BISpc detects the Walker-A motif with the same

precision as BIS. For Protein A and Ski2-like, BISpc performs

slightly better than BIS because of a few experimentally validated

residues that have been successfully identified by BISpc. On the

AATPase protein families, BISpc predicts most of the residues and

blocks predicted by BIS and some new ones. The new predictions

are usually not localized within nor close to known motifs contrary

to BIS detections (Text S7), and could not be proposed as possible

extensions of known motifs but rather as new potential motifs.

Comparison with Other Methods of Coevolution and
Conservation Analysis

The evaluation of predictive methods of coevolution analysis is

inherently difficult due to the very limited understanding of how

proteins fold, function, behave mechanically. Nonetheless, by

taking into consideration all residues that are experimentally

known to have some functional or structural importance, we might

be able to check, at some extent, the behavior of the system.

Instead of measuring the precise accuracy, specificity, sensibility

and positive predicted value of the predictions, which would

demand the knowledge of the exact pool of residues that are

structurally or functionally important for a protein, we attempt to

measure the capability of a method to predict those signals that

appear to be the easiest to detect by today’s experimental

approaches. There are intrinsic limits to this evaluation: on the

one hand, the set of validated residues might miss some important

ones, and on the other hand, a method might predict residues that

have never been experimentally highlighted before. Therefore, the

evaluation will possibly underestimate the performance of the

predictive system. Aware of these limits, we realize a test against

the set of proteins analyzed above, a rather well known set

supported by several experimental studies.

We considered five systems of coevolution analysis and three of

conservation analysis, and evaluated them on our 14 protein

families (Texts S2, S4, S5, S8 and S9; see Methods) generating, in

this manner, 112 experiments to be used for comparison. We

considered two main comparative criteria, the convergence of a

system and its performance. BIS answers on all 14 protein families

while Statistical Coupling Analysis (SCA-DB and SCA-TM)

[12,64], Maximal SubTree Method (MST) [19] and Mutual

Information (MI) [8,64] do not. Over the 112 experiments (Table 2

and Text S10), only 9 showed other systems to display a better

behavior than BIS and 4 experiments demonstrated a comparable

behavior between BIS and other methods (Table S1). The 9

experiments concern 5 different systems (SCA-DB, SCA-TM,

MST, ConSurf [49] and Rate4Site [65]) and 5 different AATPase

families, and the 4 experiments highlight a different protein family

for each system.

Compared to systems of coevolution analysis, BIS systematically

obtains high specificity and accuracy, and maximum positive

predictive values (Table 2). Statistical methods demonstrate

difficulties in dealing with highly conserved sets of sequences and

datasets made of few sequences while combinatorial methods

appear suitable for this purpose. Among all statistical methods,

ELSC [66] is the closest to BIS. It behaves a little less well than

BIS on all experiments, but the differences between the two

systems on each performance measure are almost always small

(that is ƒ0:1).

Even though designed to primarily consider co-evolution

signals, BIS has been evaluated against systems of conservation

analysis (Table 2, Text S10 and Text S11). With respect to these

systems, it outperforms on families of very conserved sequences,

that is, on Amyloid, Protein A and MukB (Table S1). In particular,

it detects the Walker-A motif in the MukB protein as a separate

coevolving cluster. The prediction of this motif has been an

important challenge for conservation analysis systems before and

BIS shows being highly specific and accurate on it. On AATPase

subfamilies, BIS is competitive, displaying much lower sensibility

(it detects fewer true positives) than these systems in many

experiments but a higher positive predictive value. It should be

noticed that coevolved pairs of fragments, as opposed to conserved

residues, bring to light relations between pairs of blocks within a

sequence, and in the case of the AATPase families they highlight

relations among specific motifs that cannot be detected by

conservation analysis.

It is important to observe that blocks that match experimentally

observed fragments have been ignored and this suggests an even

better performance of our method.

Finally, it is worth mentioning here that the comparative

analysis of the 14 protein families, highlighted a few false positives
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that are shared by several methods (Texts S2, S4, S8 and S9).

These residues are not known to play an important biological role

but appear as good candidates to be experimentally tested.

Discussion

Coevolution analysis highlights the combined functional or

structural role of groups of residues, possibly organized in

fragments, in a protein and can suggest complex combinations

(pairs, triplets or tuples) of amino acid mutations to be tested by

experiments studying protein structural stability or functional

activity. The whole space of combinations cannot be ap-

proached experimentally in a straightforward manner: an

exhaustive testing would be impossible because of the large

number of combinations, experimental difficulties and costs, and

a random selection would be useless because of the extremely

small chance to be successful. The existence of a predictive

method that can suggest a small subset of combinations to try is

of great help to biologists and structuralists. Based on BIS, hits

in a cluster or hits shared by several blocks could define

predicted pools of residues to try in mutagenesis experiments.

Similarly, blocks either containing specific hits (for instance, hits

with multiple occurrence) or appearing in several clusters could

be the first ones to study in circular dichroism experiments in

order to identify their individual role in folding.

It should be noticed that BIS does not analyze blocks of any

given length, but it selects a pool of them for coevolution analysis.

Such a selection, within the huge combinatorial space of

fragments, is based on the conservation of amino acids within

the block.

A Mathematical Framework to Define Coevolution
The definition of a precise mathematical framework to

analyze coevolution signals allowed us to demonstrate that

fragments, and not just isolated residues, are the coevolving

units for pools of conserved sequences. In vitro experiments

revealed that these fragments play important functional and

structural roles for protein families. For divergent pools of

sequences, these fragments degenerate into single residues. This

hints that accurate sequence evolution models might be based

on fragment evolution and not on residue evolution. Also, the

mathematical framework allowed us to define and automatize

new formal notions describing the structure of the coevolution

signal. Today, the biologist can investigate a fine structure of

the signal, this being associated to single residues, blocks or

clusters of blocks. Long and short distance correlations between

residues, between fragments or between clusters can be

evaluated.

Analysis of Fragments Versus Analysis of Residues
Our approach to coevolution analysis considers blocks of

positions corresponding to protein fragments. The basic observa-

tion is that, very often, fragments of consecutive residues display

very similar coevolution patterns and because of this, one can

directly address correlations between blocks instead of single

positions in an alignment and study correlations between distant

fragments in a sequence. As a consequence, one observes:

1. large protein fragments, known to display functional or

structural roles, which are detected as blocks. Such fragments

are formed by hits and by positions (typically conserved

positions) that do not disrupt the word distribution of the hits.

An example is the long fragment 29–42 of Protein A detected

as a unique coevolving block by extending hit 41 with 29–40

and 42. Left and right extensions are made of conserved

residues preserving word distribution at position 41. The

fragment was shown by w-analysis to be part of an even longer

fragment playing a role in protein stability [52]. Other

important examples are the fragments highlighted for the

Amyloid beta peptide, among which fragment 25–35 that is

known to best bind Ab.

2. residues that belong to different clusters. These residues might

play multiple roles in the functional and structural constraints

of the protein. This is the case for residue 29 in Protein A

which belongs to clusters C1 and C2, where in C1 is coevolving

with residues 23 and 27 both playing an important role on

protein stabilization [52] and in C2 is coevolving within a large

peptide fragment potentially involved in the formation of a

(marginally) stable H2-H3-intermediate [52].

3. a reduction of the computational time in coevolution analysis

with a very important effect in the treatment of very long

protein sequences.

Note that w-analysis strongly highlights the importance of

studying protein folding through protein fragments, the need of

identifying fragments and of measuring their stability. Similarly,

we expect to detect structural and functional insights through the

analysis of evolutionary signals coded within blocks of residues.

Some Remarks on the Definition of Blocks
A naive post-processing of coevolving residues simply combin-

ing adjacent residues together does not allow for the identification

of blocks. This is due to the fact that a block can be composed by

alignment positions having different amino acid distributions and

that not all residues in blocks coevolve together. In the Amyloid

beta peptide, for instance, BIS block analysis detects fragment 18–

20, known to correspond to motif VFF playing a crucial role in the

diagnosis of amnestic impairement, while BIS run on positions

identifies residues 18 and 20 missing residue 19. Fragment 18–20

could be reconstructed from the two isolated residues 18 and 20 by

a trivial pre-processing that puts together close coevolving

residues, but this suggestion, even if providing a suitable prediction

of the fragment 18–20, will not work correctly on other

circumstances. In fact, for the Amyloid fragment 16–20, known

to be the region that most efficiently binds to Ab, BIS analysis

based on positions detects cluster 11 14 16 while BIS block analysis

detects 11–12 14 16–20. A post-processing following the strategy

of filling up proximal coevolving residues with adjacent residues

could wrongly suggest the formation of the block 11–16 that is not

known to be biologically meaningful. Protein A provides another

Figure 6. AATPase protein Ski2-like. A: Ski2-like protein structure (2xgj) where four motifs of the family appear in distinguished colors: I (dark
red), V (violet), VA (yellow), VI (green). A pair of coevolving residues (172 and 505), belonging to motifs I and V, is highlighted by a blue link. These
residues are hits of two coevolving blocks whose atoms are in spherical representation. The blocks belong to different structural domains. B.
Coevolution analysis shows that motifs V, VA and VI are related by groups of coevolving residues (left). Residues are drawn in spherical representation
and their groupings are highlighted with red and black links. The backside of the domain (right) indicates motifs names. C: four parts of the alignment
of Ski2-like sequences describing the four motifs whose location is indicated by a black bar. Colored dots highlight positions with the same
coevolution or conservation signal: red dots are completely conserved; black and blue dots display parallel mutations. Note that dots not included in
a known motif (like the blue ones in I, V and the black one in Va) describe positions proposed as extensions of the motif. Color maps as in AB.
doi:10.1371/journal.pone.0048124.g006
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Table 2. Comparative analysis with co-evolution and conservation methods.

API Pos #Exp #CoRes TP FN FP TN Prob Sen* Spe* Acc* PPV*

Amyloid

BIS 0.87 43 25 27 22 3 5 13 7.79e25 0.88 0.72 0.81 0.81

MST 0.87 43 25 16 12 13 4 14 7.88e22 0.48 0.78 0.60 0.75

ELSC 0.87 43 25 28 20 5 8 10 1.82e22 0.80 0.56 0.70 0.71

MI 0.87 43 25 25 20 5 5 13 8.15e24 0.80 0.72 0.77 0.80

SCA-DB 0.87 43 25 – – – – – – – – – –

SCA-TM 0.87 43 25 – – – – – – – – – –

Rate4Site 0.87 43 25 26 21 4 5 13 2.75e24 0.84 0.72 0.79 0.81

ConSurf 0.87 43 25 17 13 12 4 14 4.77e22 0.52 0.78 0.63 0.76

ET 0.87 43 25 16 13 12 3 15 1.88e22 0.52 0.83 0.65 0.81

MukB: Walker-A

BIS 0.84 234 8 8 7 1 1 225 9.16e212 0.88 1 0.99 0.88

MST 0.84 234 8 – – – – – – – – – –

ELSC 0.84 234 8 13 7 1 6 220 1.93e29 0.88 0.97 0.97 0.54

MI 0.84 234 8 - - - - - - - - - -

SCA-DB 0.84 234 8 8 7 1 1 225 9.16e212 0.88 1 0.99 0.88

SCA-TM 0.84 234 8 8 7 1 1 225 9.16e212 0.88 1 0.99 0.88

Rate4Site 0.84 234 8 83 7 1 76 150 3.37e23 0.88 0.66 0.67 0.08

ConSurf 0.84 234 8 106 8 0 98 128 1.53e23 1 0.57 0.58 0.08

ET 0.84 234 8 109 8 0 101 125 1.92e23 1 0.55 0.57 0.07

Protein A – B domain

BIS 0.82 57 36 30 25 11 5 16 9.89e23 0.69 0.76 0.72 0.83

MST 0.82 57 36 17 7 29 10 11 0.99 0.19 0.52 0.32 0.41

ELSC 0.82 57 36 33 24 12 9 12 6.99e24 0.67 0.57 0.63 0.73

MI 0.82 57 36 14 10 26 4 17 0.34 0.28 0.81 0.47 0.71

SCA-DB 0.82 57 36 29 22 14 7 14 3.97e22 0.61 0.67 0.63 0.76

SCA-TM 0.82 57 36 28 21 15 7 14 6.06e22 0.58 0.67 0.61 0.75

Rate4Site 0.82 57 36 0 0 36 0 21 1 0 1 0.63 0

ConSurf 0.82 57 36 26 22 14 4 17 2.13e23 0.61 0.81 0.68 0.85

ET 0.82 57 36 37 26 10 11 10 0.11 0.72 0.48 0.63 0.70

AATPase: Upf1

BIS 0.58 677 64 26 18 46 8 605 2.93e214 0.28 0.99 0.92 0.69

MST 0.58 677 64 35 21 43 14 599 9.66e215 0.33 0.98 0.92 0.60

ELSC 0.58 677 64 22 14 50 8 605 2.00e210 0.22 0.99 0.91 0.64

MI 0.58 677 64 - - - - - - - - - -

SCA-DB 0.58 677 64 8 4 60 4 609 3.82e23 0.06 0.99 0.91 0.50

SCA-TM 0.58 677 64 5 2 62 3 610 7.29e23 0.03 0.99 0.90 0.40

Rate4Site 0.58 677 64 23 13 51 10 603 7.96e29 0.20 0.98 0.91 0.57

ConSurf 0.58 677 64 110 57 7 53 560 6.39e244 0.89 0.91 0.91 0.52

ET 0.58 677 64 135 54 10 81 532 2.19e232 0.84 0.87 0.87 0.40

AATPase: Ski2-Like

BIS 0.51 686 62 35 22 40 13 611 1.47e216 0.35 0.98 0.92 0.63

MST 0.51 686 62 53 32 30 21 603 5.15e224 0.52 0.97 0.93 0.60

ELSC 0.51 686 62 70 13 49 57 567 6.13e23 0.21 0.91 0.85 0.19

MI 0.51 686 62 - - - - - - - - - -

SCA-DB 0.51 686 62 6 3 59 3 621 1.16e22 0.05 0.99 0.91 0.50

SCA-TM 0.51 686 62 6 3 59 3 621 1.16e22 0.05 0.99 0.91 0.50

Rate4Site 0.51 686 62 36 20 42 16 608 1.49e213 0.32 0.97 0.92 0.56

ConSurf 0.51 686 62 134 62 0 72 552 7.85e251 1 0.88 0.90 0.46

ET 0.51 686 62 196 62 0 134 490 6.15e238 1 0.79 0.80 0.32
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example highlighting the importance of a careful definition of a

block: the overlapping of some coevolving blocks in Protein A,

involving helices H2 and H3, suggests a strong interacting role of

the two helices during intermediate folding. A naive post-

processing that would not produce blocks allowed to overlap

would not help to identify the interactive role of protein fragments.

These examples illustrate well potential ambiguities and simplifi-

cations introduced by a post-processing step that does not

explicitly use our definition of a block (where a few residues are

highlighted as hits and the ones around them, preserving the

distribution of words, are associated to them to play a joint role).

In particular, they highlight that coevolution analysis based on

positions cannot replace block analysis.

Other finer approaches could be suggested to the formation of

blocks based on coevolving positions. For instance, one could first

compute mutual information or conditional entropy as the

similarity between every two columns of the alignment, and then

group columns together in descending order of similarity values.

There are two main drawbacks to this proposition: 1. it demands

the introduction of a threshold for blocks identification and the

evaluation of this threshold, 2. it produces blocks that are not

overlapping. It is worth noticing that coevolving blocks can be

defined from coevolving alignment positions. This can be done by

considering these latter as hits and by applying BIS definition of

block to properly identify hit extensions. This way to generate

blocks guarantees the identification of overlapping blocks that we

showed to be important in protein analysis.

One could check whether other types of blocks in sequences,

used in other studies on proteins, could be of interest for

coevolution analysis. ‘‘Hydrophobic’’ blocks, that is blocks mainly

composed of hydrophobic amino-acids, have been used for several

purposes in the past as for guiding the folding process [67–70], the

detection of secondary structures [71], the alignments of very

diverged protein families [71,72], the detection of new homolo-

gous sequences [73]. The mathematical framework developed

here could be used to analyze coevolution of such blocks, but the

biological relevance of the results should be carefully evaluated.

Blocks definition is sensitive to the protein sequence alignment.

When wrong sequences are included by mistake in a sequence

alignment, they might generate undesired effects in block

identification. To avoid considering words included by ‘wrong’

sequences (in the distribution of words) in a block, we introduced

the notion of exception that allows excluding such sequences from

the analysis. The exclusion of these sequences does not affect signal

detection and we could successfully extract precise coevolution

signals even for families represented by less than a dozen

sequences, like the AATPase families.

For each block, the definition of an exception asks for a word to

be supported by at least 2 sequences in the alignment. The

number 2 is a minimal condition required to detect the persistency

of a signal and the smallest non trivial lower bound that one can

ask for: if a word in a block presents more than 2 occurrences, it

will be considered in the analysis. Ultimately, the evolutionary

interest of the block will be evaluated by BIS coevolution analysis.

By varying the set of aligned sequences representing a protein

family, one might ask whether the blocks identified for the family

vary as well. It is simple to see that a set of aligned sequences S
increased by the addition of one more sequence, say S’, allows for

the identification of the same blocks, but that a block computed for

S and S’ might be detected for different numbers of exceptions.

To see this, one should observe that the definition of a block is

dependent on a fixed number of exceptions and that exceptions

count the number of sequences that support single words (words

with no repetition) within the block. This means that if the new

sequence in S’ contains a new word for the block, it will introduce

one more exception for the block. Hence, if the block was

identified in S with a number of exceptions d , it will be identified

in S’ for dz1 exceptions. In general, if S’ is a set of aligned

sequences containing a smallest set S’, then a block detected in S
with d exceptions will be detected in S’ with d ’ƒdz(DS’D{DSD)
(ƒ21) exceptions. Notice that BIS computes correlations between

blocks identified with a number of exceptions d , but also between

blocks identified with a number of exceptions ƒd, allowing for

correlation analysis between blocks identified with different

exceptions.

Coevolution Analysis of Families Represented by Few
Protein Sequences

Ideally, coevolution analysis is better realized over a large

number of sequences but certain families (or subfamilies) are

described by just a few sequences, and BIS tries to extract the

existing signals of coevolution from them. The request that a word

in a block should be repeated at least twice ensures that, in a block,

all distinguished words bring a meaningful proportion of the

signal. This proportion becomes less and less important with an

increase in the number of sequences (remember that BIS asks just

two sequences to support a word). But for a few sequences, it is

relevant that such a condition be respected. For a set of 6

sequences, for instance, two occurrences of a word correspond to a

contribution weight that is roughly a third of the signal.

Depending on the number of sequences, one might want to

estimate whether to trust or not the analysis. One way to do this,

would be to estimate precisely the probability of obtaining a fixed

distribution of M distinguished words over N ordered sequences

knowing the number of occurrences for each word. This is given

by the formula Pni1

N{
P

j~1...i{1 nj

ni

� �
where the values ni

represent the number of occurrences of the word i. We consider

only words with more than 1 occurrence and fix the values ni by

decreasing order. It is easy to see that for a small set of 6
sequences, a block formed by 3 distinguished words of 2

occurrences has a chance 1:11e{2 to be randomly generated. If

the set is made of 7 sequences, the distribution of 3 distinguished

words of 2 occurrences has probability 1:36e{3. Based on this

Columns are as in Table 1. Coevolution (white) and conservation (grey) analysis are realized on sets of 80 Amyloid sequences, 200 for MukB, 452 for Protein A, 18 for
Upf1 and 13 for Ski2-like. All conservation analysis systems, ConSurf [49] and Rate4Site [65] are run on our sets of sequences, while ET uses its own dataset. Best
performance is highlighted in bold; when neither a cluster nor a matrix could be constructed, the symbol - is used. For Amyloid, experimentally validated residues
(#Exp) have been obtained from the sources cited in the text; for Protein A we considered hotspots together with the large peptide fragment 25–59 and residues 14, 17
cited in [52] to have high w-value; MukB analysis is evaluated on Walker-A detection; Upf1 and Ski2-like are evaluated on known motifs described in [56]. The number of
(coevolving or conserved) residues detected by the methods are reported in column #CoRes. See SI Tables 3–4, 11, 19, 28, 36, 41–49. Sen, Spe, Acc, PPV have been
evaluated with respect to experimentally validated residues; they are marked with * to remind this. The same is true for Prob.
doi:10.1371/journal.pone.0048124.t002

Table 2. Cont.
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probability, one could decide to consider as statistically interesting

only those blocks that can be generated randomly with a

probability smaller than a certain threshold, say 1e{2. The user

should evaluate the parameters in his/her data analysis.

For our 14 families, we checked the effect of family size on block

size (Text S12), and observed that for small families (ƒ21
sequences, where 21 counts the number of amino-acids and a gap;

this threshold represents the case of maximal variability for a

position in a small set of sequences), BIS identifies many blocks of

small sizes and no large block (maximal size for a block is 6
residues and average size is ƒ2 residues). The detection of small

blocks rather than large ones is due to our requirement that blocks

be defined on exceptions. In fact, if the condition on exceptions is

dropped and all positions of an alignment are considered as hits,

block size can strongly increase (Text S12). In particular, the

chance of having positions with full variability is non negligeable

for small families, and for such positions the associated blocks

would have the size of the alignment length. Such blocks are

obviously uninteresting. On the contrary, based on exceptions, we

demonstrated BIS small blocks to overlap well known motifs on

the AATPase subfamilies (BIS being highly specific; see Table 2

and Text S10).

One should be warned that large blocks are not necessarily

uninteresting. In fact, BIS detected block 26–42 as coevolving with

two other residues 21 and 22, all known to play an important role

for Amyloid (see above). On the other hand, the B domain of

protein A shows to contain a block of length 16 (with hit in

alignment position 43 and terminating at position 44) that finally

does not co-evolve with other positions. Families represented by

conserved sequences might display a number of these blocks. BIS

coevolution analysis shows to filter them successfully.

Clusters Interaction
Coevolution analysis outputs one or several clusters of

correlated blocks. It identifies them automatically through an

unsupervised non-hierarchical clustering algorithm. This means

that a structure among coevolved clusters, if any, might be

identified. In fact, clustering predicts groups of residues possibly

sharing some amino acids, and the multiple role of a given amino

acid in several clusters can provide some explanation of its

interaction with different residues during (intermediate steps in)

folding or functional activation. BIS proposes two ways to

determine clusters relationships, either through shared residues

or through the overlapping between intervals hosting clusters

along the sequence (that is, partitions). BIS is the first bioinfor-

matics attempt to explore clusters interactions and it provides the

first evidence that such an analysis can actually be done. An

experimental and theoretical development going towards the same

direction was done first by w-analysis [52].

Large Scale Coevolution Analysis and Dataset
Dependencies

Our comparison between BIS and existing systems of coevo-

lution analysis (Table 2) highlights that the problem of a precise

identification of coevolution signals is neither obvious nor solved.

Predictions proposed by different methods highly depend on

datasets properties, as the number of sequences and their rate of

divergence. A summary of methods performances on different

datasets is reported in Text S10. When aiming at the development

of a large-scale system predicting coevolution signals for arbitrary

protein families, a precise analysis of these properties should be

realized to eventually run different coevolution approaches on

different protein families. Properties such as sequence conservation

or presence/absence of very divergent sequences determine the

possibility for a method to propose a prediction. Statistical

methods demonstrated systematic difficulties in dealing with

highly conserved sets of sequences and with datasets made of

few sequences while combinatorial methods appear suitable for

this purpose (see Table 2). We tested whether the removal of

highly similar (possibly identical) sequences from the datasets is

crucial or not for coevolution detection and found that variability

needs to be guaranteed for statistical methods, and that

combinatorial methods succeed to analyze both kinds of sets. On

the other hand, both types of methods seem to be highly affected

by the presence of few divergent sequences in conserved datasets.

BIS amenability to treat especially conserved sequences makes it

a favorable platform to search for coevolution signals between

protein binding sites of protein partners, these regions being

particularly conserved within a structure. Also, because of its

potential to treat sub-represented protein families, BIS is an ideal

approach to analyze specific signals of coevolution appearing in

protein subfamilies where very few sequences are available. At the

moment, we do not know of any method that can fill these

expectations and BIS becomes a good starting point for the

development of novel approaches to protein interaction and

protein subfamilies exploration.

Differentiation of the Functional and Structural Origins of
Coevolution Signals

A basic question to which coevolution analysis should answer is

about the functional and structural origin of the coevolution signal.

Functional interactions, conformational changes and folding

dynamics are reasons used to justify the presence of coevolving

fragments, and the problem of automatically distinguish these

complex evolutionary pressures is wide open today. For instance,

as already argued in [12,13], we observe that coevolving networks

are often made of residues that are localized in close three-

dimensional proximities. This is not always the case though since

we can observe complex interactions inducing coevolution of

different structural spots that become physically connected only

through interacting ligands or conformational changes. A better

understanding of the structural, that is physico-chemical and

geometrical, patterns of coevolving regions might help to

characterize and discriminate signals of structural origin. Another

example is given by coevolving fragments that are identified for

different protein subfamilies. Subfamilies might be characterized

by functional diversities, as it is the case for the AATPase family or

for sets of sequences that are phylogenetically proximal and within

which one might want to investigate functional evolution. Often,

coevolution analysis of subfamilies asks for analyzing a small

number of protein sequences and possibly families of sequences

that are rather conserved. It shows that coevolution analysis can be

successfully done under these stringent hypotheses and that the

structure between signals provides an important advancement

towards this difficult and challenging goal.

Towards a human map of coevolved residues. Mutation of coevolving

residues can have an important effect in structural destabilization

or in weakening the functional activity of the protein with

implications that are noticeable at the clinical level and that are

identified as genetic diseases. The Amyloid Precursor Protein

provides an example of this fact. The thorough study of

coevolution signals on the human proteome scale will furnish a

genetic map that can be of great interest for the geneticists

investigating mutations that could be the cause of observed

phenotypes or clinical pathologies. Using approaches like BIS, we

expect to be able to identify an ensemble of deleterious mutations

that are susceptible to be causing diseases. Typically, just a subset
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of these mutations is sufficient to imply deleterious effects and,

today, we have no way yet to sharply identify and characterize

such subsets.

Methods

To describe the sequence analysis, we consider a sequence S
with a known three-dimensional structure and H, a set of N
sequences that are homologous to S. We consider an alignment of

the sequences in H, where n is its length.

Exceptions for Consecutive Positions in an Alignment
Let us consider a group of m consecutive positions in the

alignment, where m§1. For each sequence in the alignment, there

is a uniquely identified subword in it that belongs to the group of

positions. There are N such subwords and we ask each of them to

have at least two occurrences, with the exception of d subwords, for

0ƒdvN. The value d is uniquely associated to the group of

subwords.

Hits
Each position of an alignment, a hit, is uniquely associated to a

number d representing the number of residues with no repetitions

along the alignment column. Notice that dƒ21, that is its value is

bound by the number of amino acids (where a gap is considered as

the 21st residue). Intuitively, the presence of several hits displaying

no exceptions (that is d~0), suggests the set of sequences in the

alignment to be well represented. In fact, one expects the

alignment of sequences that are homologous to S to have almost

all hits at d~0. At the contrary, the alignment of sequences that

are not homologous to S are expected to have almost all hits at

dw0. In particular, the presence of several hits with d§1
exceptions is an indicator either of sequences that are non-

homologous to S but erroneously occurring in H or of sequences

in H that are distantly related.

Extension of a Hit Preserving the Number of Exceptions
Given a hit i with d exceptions, we extend it into a group of two

columns (by considering either the iz1 column or the i{1
column) of at most d exceptions whenever: 1. the number of

exceptions of the adjacent column is ƒd, 2. the exceptions of the

adjacent column (if any) occur in the same sequences collecting the

exceptions of column i, and 3. if two sequences have distinguished

words in columns i,iz1 (i{1,i), they must have different words in

column i. The three conditions ensure that the number of

exceptions does not increase after a valid extension. Following the

definition, whenever a column i can be extended both on the right

and on the left, we say that the group made of the three columns

i{1,i,iz1 has d exceptions. The conditions to extend a hit i can

be restated as conditions for extending a group of consecutive positions

instead, since a hit can be considered as a ‘‘group’’ made of one

position. The idea being that, given a column with d exceptions,

we can extend it (step by step by adding a position at a time) to a

group of consecutive positions from the left and the right until no

larger extensions are possible. We refer to the maximal extension

of a hit as a pseudo-block. Notice that different hits can generate

overlapping pseudo-blocks. See Fig. 7.

Handling of Gaps and Definition of a Block
Given a pseudo-block, we define a block out of it, possibly

several, depending on the gaps that occur in the aligned words of

the pseudo-block. Let us consider a pseudo-block with d
exceptions, defined from alignment position i up to position

izk included, and consider the N{d aligned words that, by

definition, occur at least twice in the pseudo-block alignment.

Based on this subset of aligned words we identify alignment

columns (within the interval i,izk) that contain less than 40% of

gapped entries. Intuitively, we want to exclude from a pseudo-

block, all positions that are significantly gapped. A block is the

maximal interval corresponding to consecutive positions that: 1.

satisfy the gap condition above, 2. preserve the number of

exceptions d of the hit, 3. localize the exceptions in the hit within

the same sequences, and 4. preserve the occurrences of

distinguished words within the same sequences as in the hit. The

last two conditions assure that the word distribution on a block is

the same as the one of its original pseudo-block. For instance,

consider the pseudo-block formed by several occurrences of the

aligned words PDSG::H and PDFG::K by an extension of hit at

position 7. Then we identify the first four consecutive positions as a

first block and the seventh position as forming a second block. If

the pseudo-block is formed by several occurrences of the words

PDSG::H and PDSG::K , then we shall only keep the block

formed by position 7 because the word distribution within the first

four consecutive positions changes compared to the hit. In

conclusion, a pseudo-block can generate one or more blocks with

a given number of exceptions.

The length of a block might vary from 1 up to n, that is the

length of the alignment. The length of a block depends on the

percentage of identity of the alignment and on the number of

exceptions d . Namely, if the sequence identity of the alignment is

high, the probability of having long blocks is also high. If the

number of exceptions is high, long blocks can be present even

though sequence identity is low. By increasing the number of

exceptions, blocks get larger or collapse with other blocks and, in

general, at some given number of exceptions, one expects a

collapse of all blocks.

A block of consecutive positions r1 . . . rn is denoted r1–rn, and a

cluster grouping blocks b1, . . . ,bn is denoted (b1 . . . bn).

Handling of Gaps on Hits
Coevolution can be computed directly on hits for a given

number of exceptions d (an option exists in BIS). For this, we select

those hits of d exceptions by filtering out those that are

significantly gapped, that is those containing at least 60% of gaps,

and compute coevolution only on the remaining ones. In this case,

we say that coevolution analysis is realized on alignment positions.

Pairing of Blocks/positions and Pairing Score
Let us consider two blocks or two alignment positions, say B1

and B2, one spanning from position i1 to i1zh1 and the other

from i2 to i2zh2 (h1,h2~0 when single positions are considered).

The two blocks/positions might have different number of

exceptions. Suppose that B1 contains the set of distinguished

words B1 and that B2 contains the set of distinguished words B2.

Then we define the score of comparison of B1 with respect to B2 as

Scomp(B1,B2)~
X

Y[B2

#(Y )

N
: 1

#(Y DDB1)
:
X

X[B1

#(Y DDX )

#X

where #(Y DDX ) is the number of sequences where the word Y[B2

co-exists with the word X[B1, #(X ) (#(Y )) is the number of

sequences where X[B1 (Y[B2), #(Y DDB1) is the number of

different words in B1 which co-exist with the word Y[B2, and N is

the number of sequences.

Scomp measures the regularity in the distribution of words in B2

with respect to words in B1. Ideally, in a perfect correlation signal,

a word Y[B2 pairs only one word X[B1, and Y is the only word
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in B2 that pairs with X[B1. If this is not the case, the formula

Scomp measures the amount of pairs associated to Y . To illustrate

the formula, let us consider the tree T in Fig. 8C top, where we

name T1 the black subtree of four leaves and T2 the blue subtree

of two leaves. It is instructive to look at the computation of the

comparison scores for the three trees, T , T1 and T2. For T1, the

word KL[B2 matches NJ[B1 and only NJ. This amounts to a

score of comparison ~1. For T2, the word ZZ[B2 pairs with RR

but it is not the only word in B2 that pairs with RR, in fact KL also

pairs with RR. The comparison score takes value 0:5 in this case.

For T , we can appreciate more explicitly the power of the formula.

In fact, for each Y[B2, the formula computes the proportion of

sequences that contain an X[B1 and Y[B2 (factor #(Y DDX )
#X

), and

weights the sum of these quantities in such a way that more

distinguished sequences in B1 pair with Y , less the contribution of

Y to the coevolution signal counts (factor 1
#(Y DDB1)

). All words Y[B2

make a contribution to the final score of comparison, but this

contribution is weighted by their frequency in the B2 distribution

(factor #(Y )
N

). The score of comparison for T is 0:71.

The set of sequences can be thought to be organized on a

distance tree T . In this case we refer to the score of comparison

with the symbol ST
comp(B1,B2). Given T , we assign a score of

correlated distribution of B1 with respect to B2 for the sequences of T

by recursion on the structure of T as follows. If T is a leaf,

ST
corr(B1,B2)~1. If T has immediate subtrees T1 and T2,

ST
corr(B1,B2) is defined as

ST
comp(B1,B2):(

#T1

#T
:S

T1
corr(B1,B2)z

#T2

#T
:S

T2
corr(B1,B2)):

See the examples in Fig. 8. Fig. 8B shows trees displaying a

perfect correlation between blocks, that is that distinguished words

in a block correspond to distinguished words in the other block

and vice-versa: ST ’
comp(B1,B2)~ST ’

comp(B2,B1)~1 and

ST ’
corr(B1,B2)~ST ’

corr(B2,B1)~1, for T ’[fT1,T2,Tg. Figs. 8AC

display examples of pairs of trees with the same scores of

comparison but where correlation scores differ. For instance, in

Fig. 8A, correlation scores are ST1
corr(B1,B2)~0:49 and

ST2
corr(B1,B2)~0:42 for the top (T1) and bottom (T2) trees. Notice

that minimal subtrees T ’ where ST ’
corr1 (colored blue in Fig. 8) are

such that ST ’
corr~ST ’

comp. Correlation scores might be non symmetric

while their associated comparison scores remain symmetric, as

shown with trees in Fig. 8A: ST
corr(B1,B2)=ST

corr(B2,B1), for

T[fT1,T2g. Fig. 8C shows trees whose comparison scores as well

as correlation scores are non symmetric. Several general properties

of ST
comp and ST

corr can be deduced. For instance, it can easily be

shown that 1. if ST
comp(B1,B2)~ST

comp(B2,B1)~1 then

ST
comp(B1,B3)~ST

comp(B2,B3) for all B3, and 2. if B1,B2 are blocks

with di,dj exceptions respectively, where i=j, then

ST
comp(B1,B2)=1 or ST

comp(B2,B1)=1.

Figure 7. Hits, pseudo-blocks and blocks. Left: Aligned sequences and associated distance tree. Among 13 aligned positions, 3 4 5 7 8 10 11 12
13 are hits of dimension 0, 6 9 are hits of dimension 1, and 1 2 are hits of dimension 4. Position 6 is a hit of dimension 1 because of a gap, which is
considered as a distinguished amino acid. Four hits can be extended to blocks of size 2: hit 3 extends to 3–4, 5 to 4–5, 8 to 7–8 in dimension 0, and 6
to 6–7 in dimension 1. Extensions are not symmetric (e.g. hit 7 does not extend to block 6–7). Hit 11 extends on the left and on the right to pseudo-
block 10–13 of size 4; the associated block is 12–13 due to more than 60% of gaps in positions 10 11. Hits 1 2 4 7 9 10 11 are considered blocks of size
1. Right: For some of the blocks, the exceptions, identifying their dimension, are circled. Exceptions might be single residues or words. All hits of
dimension 0, 1 or 2 are highlighted in color.
doi:10.1371/journal.pone.0048124.g007
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Clusters Identified with Respect to (at most) d Exceptions
Given the matrix of scores of correlated distribution, we define

clusters of coevolving blocks with d (at most d, denoted dz,)

exceptions by applying the automatic clustering algorithm CLAG

[74] with default parameters (D~0:05 and maximal environmen-

tal and symmetric scores; predictions remain unchanged when D
increases to 0:1,0:2) and no aggregation step. To these clusters, for

each block with d (dz) exceptions that does not appear in some

CLAG’s cluster already and that contains several hits, we add a

new cluster defined by the hits of the block. Notice that all hits in a

block display the same behavior with respect to other blocks, by

definition. For a given d , the set of blocks with d exceptions (also

called d- environment) is contained in the set of blocks with at most d
exceptions (dz- environment). Clusters identified for d and dz are

not identical and they might be specific to the number of

exceptions. This is due to two reasons: either to the combination of

blocks/positions of mixed number of exceptions (helping to

identify new clusters for dz), or to the reduction of the number

of blocks/positions at d (helping to identify new clusters for d).

Both conditions are illustrated in Text S3.

Algorithm
Given an alignment of protein sequences and an integer D

representing the maximal number of errors admitted for capturing

the coevolution signals, the BIS method iteratively computes

coevolution of either blocks or positions for all numbers of

exceptions dƒD. The successive steps of the algorithm are as

follows: 1. it either defines blocks from hits or it filters gapped hits

out to identify alignment positions. 2. it computes comparison

scores and correlation distribution scores for each pair of blocks/

positions at d (dz). 3. it constructs a matrix of correlated

distribution scores. 4. it analyzes the matrix issued in 3 and clusters

it with CLAG [74]. 5. it identifies clusters and networks of

coevolving blocks/hits. The algorithm outputs several files along

the different steps among which the clustered matrix of correlated

distribution scores, the list of networks and their numerical

properties, the annotated PDB files for network visualization (Text

S13). The code implementing BIS algorithm and sample datasets

are available at http://www.ihes.fr/~carbone/data10 for both

Linux and Mac OSX. Instructions on how to run it and install

it are provided in Text S13.

Percentage of Identity of an Alignment
Given N aligned sequences, the percentage of identity at a

position i (block i1–in) of the alignment, denoted PI(i) (PI(i1–in)),
is the number of identical pairs of residues (words) at position i (i1–

in) divided by the total number of pairs, that is N:(N{1)=2. The

percentage of identity for the alignment, denoted API , is the mean

of the percentage of identity of all alignment positions. See Table 2

and Fig. S1.

Sequence Alignments
Aligned sequences for all protein families (Table 1) were

retrieved from PFAM database v23 (very divergent sequences were

manually eliminated; see Text S14) and from [56]. The helicases

family is made of the SF1 and SF2 core families [56]. We analyzed

Figure 8. Pairs of blocks within trees. Distance trees describe distinct pairs of blocks B1,B2 , thought to belong to two fixed positions in an
alignment. Minimal subtrees where correlation between blocks is not perfect, that is Scorr(B1,B2)=1, are highlighted in blue. In ABC, trees have the
same topology and are characterized by a different labelling of the leaves with the same pairs of words. We call T1 the trees on the top and T2 the
trees on the bottom. A: the correlation score of T1 is greater than the correlation score of T2 and this because for T1 perfect correlation is disrupted
on a larger subtree. B: both trees display scores of comparison and correlation ~1. Notice that the method does not distinguish the existence of a
single mutational event transforming NJ in EF and KL in GH (top) versus a double mutational event realizing the same transformation (bottom). C: the
size of subtrees displaying no perfect correlation has an impact in the correlation score of the full tree. T1 displays a greater correlation score than T2 ,
while scores of comparison are the same.
doi:10.1371/journal.pone.0048124.g008
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all subfamilies with the exception of four SF2 subfamilies that were

made of only 2 or 3 sequences. The core alignment considered in

our analysis was taken from [56], it puts together SF1 and SF2

families and its length is 864aa. For each subfamily, we extracted

the alignment of the corresponding set of sequences. All

alignments are available for download at http://www.ihes.fr/

~carbone/data10.

Alignment Positions Versus PDB Positions for Describing
Coevolved Residues

In Texts S2, S4, S7, S8, S9, S11, S15 and S16, coevolving

blocks are described through residue positions in the PDB

structure for the Amyloid, MukB and Protein A families. For the

AATPase subfamilies, we considered alignment positions. The

mapping between PDB positions and alignment positions is

reported in Text S15.

Tree Construction
Trees were constructed from alignments with PHYML [75].

They have been rooted manually by combining the pair of rooted

subtrees with smaller distance that is issued by PHYML.

Motifs Extension and New Motifs
Given a known motif, we extend it on the left and on the right

by identifying residues that are coevolving and lie at ƒ5 positions

away from the original motif. All coevolving positions that are

adjacent to the ones already detected will be included in the

extension. New motifs are defined similarly by grouping coevolv-

ing residues lying at ƒ5 positions away from each other. All

adjacent coevolving positions will be included as above. Notice

that the handmade alignment of [56] is realized on subdomains

(obtained by removing large insertions; subdomains are separated

by fully gapped positions in Text S6). Motifs extension and novel

identification are realized within each subdomain.

BIS Based on Physico-chemical Properties
BIS analysis, either based on blocks or on residues, can be

realized by considering physico-chemical amino acid properties.

To do this, BIS transforms protein sequences into a simplified

language of 8 letters VDKYNCGP, where each letter corresponds

to a distinguished class: hydrophobic (VILMFWA), negatively

charged (DE), positively charged (KR), aromatic (YH), polar

(NSTQ), and C, G, P are considered as special. The amino acid

classification is suggested in [63] according to biochemical

similarities. BIS is then applied to protein families defined in the

simplified language.

Evaluation of Performance
To evaluate BIS (and other systems) performance on a given

protein we rely on the following quantities: the number of residues

correctly predicted as (structurally or functionally) important (true

positives, TP), the number of residues correctly predicted as non-

important (true negatives, TN), the number of non-important

residues predicted as important (false positives, FP) and the number

of important residues predicted as non-important (false negatives,

FN). All experimentally validated residues known to play a structural

or functional role for the protein constitute the set of important

residues. Since the set is likely not to be complete, the evaluation likely

underestimates the performance of the predictive system. Aware of

this, we use four standard measures of performance: sensitivity

Sen�~TP=(TPzFN), specificity Spe�~TN=(TNzFP), accura-

cy Acc�~(TPzTN)=(TPzFNzTNzFP) and positive

predictive value PPV�~TP=(TPzFP), where the * symbol

highlights the fact that important residues are the experimentally

identified ones.

To compute the probability of predicting TP residues out of the

set of experimentally confirmed residues (#Exp) by selecting the

number of residues identified by coevolution analysis (#Coev) for

an alignment length Pos, we used the following formula:

P#Exp
i~#Exp\Coev

#Exp

i

� �
: Pos{i

#Coev{#Exp

� �

Pos

#Coev

� �

where #Exp\Coev is the number of residues that are both

predicted as coevolving and experimentally identified.

Comparison with Other Systems
BIS is compared to several coevolution analysis systems:

Statistical Coupling Analysis (SCA) [12] (we used the SCA

implementation in [64], downloaded at http://coevolution.

gersteinlab.org/coevolution/) where two functions (DB and TM)

are proposed to compute a ‘‘symmetric score’’ and we compared

to both of them; Explicit Likelihood of Subset Variation (ELSC)

[66] (implementation in [64]); Mutual Information (MI) [8]

(implementation in [64]); Maximal SubTree method (MST) [19]

(downloaded at http://www.ihes.fr/~carbone/data7/MaxSub-

Tree.tgz and run with default values for its parameters). The

large-scale analysis CTMP method [16] was also run (Text S16).

For comparison, coevolution score matrices issued by the methods

were clustered with CLAG [74]. For MukB, Protein A and

AATPase proteins analysis, CLAG clusters were obtained by

setting stringent parameter values, D~0:05 and environmental

and symmetric scores ~1. For the Amyloid analysis, CLAG

parameters were D~0:05 and environmental and symmetric

scores w0. The same parameters have been used for all

coevolution analysis methods.

Comparison with systems for conservation analysis is done

online with: ET Viewer 2.0.

(http://mammoth.bcm.tmc.edu/) [50,51], Consurf (http://

consurf.tau.ac.il/; conserved residues have rank 8 and 9) [49]

and Rate4Site (http://www.tau.ac.il/itaymay/cp/rate4site.html

with score for conserved positions ƒ0:12) [65].

Performance of BIS and the systems above has been evaluated

by using Sen*, Spe*, Acc*, PPV*. We say that a system is better

than another when it performs better over at least three of the four

performance measures. If BIS performs better over only two such

measures, then we compute the sum of the differences for all

measures (that is

(Sen � BISð Þ{Sen � Sð Þ)z(Spe � BISð Þ

{Spe � Sð Þ)z(Acc � BISð Þ{Acc � Sð Þ)

z(PPV � BISð Þ{PPV � Sð Þ),

where S is one of the 8 systems) and evaluate BIS as successful only

if the sum is positive. We say that two systems have comparable

performance if the absolute value of the sum of the differences and

of each difference is ƒ0:1.

Supporting Information

Figure S1 Information content of proteins considered in
the article. The value 0 corresponds to maximal conservation.

The color scales are normalized on IC min and max values, where
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the maximum value varies from protein to protein. Amino-acids

that are not considered in BIS analysis are colored black on the

structure. Top: Amyloid beta peptide (for the alignment of 80

sequences); middle left: MukB protein (for the alignment of 200

sequences); middle right: protein A - B domain (for the alignment

of 452 sequences); bottom left: Upf1 helicase subfamily; bottom

right: Ski2-like helicase subfamily. We recall that given an

alignment for a protein family and a position k, the Information

Content of k is defined as IC(k)~{
P20

i~1 pk(ai)log20(pk(ai))

where pk is the frequency of amino acid ai at position k. IC values

span from 0 to at most 1, where 0 corresponds to a fully conserved

position and 1 to a uniform amino-acids occurrence.

(TIF)

Table S1 Summary of BIS performance compared to
other methods. A summary of the BIS performance with

respect to all other methods for co-evolution and conservation

analysis considered in the article. For each method, we evaluate

whether BIS performs better than another system with respect to

criteria that combine Sensibility, Specificity, Accuracy and Positive

Predictive Value of the performance. The criteria are introduced

in the article. The symbol ‘‘ = ’’ denotes equal performance and

the symbol ‘‘.’’ denotes that the system performs better than BIS.

No symbol indicates BIS better performance.

(TEX)

Text S1 Analysis of conserved and gapped positions in Pfam

families.

(PDF)

Text S2 Comparison of coevolution analysis methods on aligned

sets of sequences representing the MukB protein family.

(PDF)

Text S3 MukB supplementary figures.

(PDF)

Text S4 Comparison of coevolution analysis methods on aligned

sets of sequences representing the Protein A - B domain protein

family.

(PDF)

Text S5 Analysis of SF motifs and extended SF motifs after

coevolution analysis of the AATPase families.

(PDF)

Text S6 AATPase supplementary figures.

(PDF)

Text S7 BIS coevolution analysis based on physico-chemical

properties.

(PDF)

Text S8 Comparison of coevolution analysis methods on aligned

sets of sequences representing AATPase families.

(PDF)

Text S9 Comparison of coevolution analysis methods on aligned

sets of sequences representing the Amyloid b-peptide.

(PDF)

Text S10 Validation of performance of different coevolution

analysis methods.

(PDF)

Text S11 Conservation analysis of the protein families analyzed
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(PDF)

Text S12 Comparison between BIS analysis based on exceptions

and BIS analysis on all hits.

(PDF)

Text S13 Instructions for running BIS.

(PDF)
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43. Tjernberg LO, Näslund J, Lindqvist F, Johansson J, Karlström AR, et al (1996)
Arrest of beta-amyloid fibril formation by a pentapeptide ligand. J. Biol. Chem.,

271: 8545–8548.
44. Bu Z, Shi Y, Callaway DJE, Tyckoz R (2007) Molecular alignment within b-

sheets in Ab14–23 fibrils: solid-state NMR experiments and theoretical

predictions. Biophysical Journal, 92: 594–602.
45. Kosik KS (1999) A notable cleavage: Winding up with b-amyloid. Proc. Natl.

Acad. Sci. U S A., 96: 2574–2576.
46. Tjernberg L, Callaway D, Tjernberg A, Hahne S, Lilliehook C, et al (1999) A

molecular model of Alzheimer amyloid b-peptide fibril formation. J. Biol.
Chem., 274: 12619–12625.

47. Innis CA (2007) siteFiNDER–3D: a web-based tool for predicting the location of

functional sites in proteins. Nucleic Acids Res, 35: W489–W494.

48. Engelen S, Trojan LA, Sacquin-Mora S, Lavery R, Carbone A (2009) JET:

detection and analysis of protein interfaces based on evolution. PLoS

Computational Biology, 5(1): e1000267: 1–17.

49. Armon A, Graur D, Ben-Tal N (2001) ConSurf: an algorithmic tool for the

identification of functional regions in proteins by surface mapping of

phylogenetic information. J Mol Biol, 307: 447–463.

50. Lichtarge O, Bourne HR, Cohen FE (1996) An evolutionary trace method

defines binding surfaces common to protein families. J Mol Biol, 257: 342–358.
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