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Abstract

Motivation: Ancestral haplotype maps provide useful information about genomic variation and insights into bio-
logical processes. Reconstructing the descendent haplotype structure of homologous chromosomes, particularly for
large numbers of individuals, can help with characterizing the recombination landscape, elucidating genotype-to-
phenotype relationships, improving genomic predictions and more. Inferring haplotype maps from sparse genotype
data is an efficient approach to whole-genome haplotyping, but this is a non-trivial problem. A standardized ap-
proach is needed to validate whether haplotype reconstruction software, conceived population designs and existing
data for a given population provides accurate haplotype information for further inference.

Results: We introduce SPEARS, a pipeline for the simulation-based appraisal of genome-wide haplotype maps con-
structed from sparse genotype data. Using a specified pedigree, the pipeline generates virtual genotypes (known
data) with genotyping errors and missing data structure. It then proceeds to mimic analysis in practice, capturing
sources of error due to genotyping, imputation and haplotype inference. Standard metrics allow researchers
to assess different population designs and which features of haplotype structure or regions of the genome are
sufficiently accurate for analysis. Haplotype maps for 1000 outcross progeny from a multi-parent population of
maize are used to demonstrate SPEARS.

Availabilityand implementation: SPEARS, the protocol and suite of scripts, are publicly available under an MIT Ii-
cense at GitHub (https://github.com/maizeatlas/spears).

Contact: rjiw@udel.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

(Zheng et al., 2015). Compared to current tools, it has shown the
highest accuracy for inbred lines from multi-parent pedigrees [includ-
ing the mouse CC design (Churchill et al., 2004) and Arabidopsis
thaliana MAGIC design (Kover et al., 2009)]. Here, tailored for
RABBIT but extensible for other tools, we present a pipeline for the
Standard  Performance Evaluation of Ancestral haplotype
Reconstruction through Simulation (SPEARS). SPEARS is designed to
determine expectations for the accuracy of haplotype reconstruction
software applied to user-defined populations. As proof-of-concept
and a new demonstration of RABBIT, we develop a detailed picture
on the variation in accuracy of genome-wide haplotype maps for pro-
geny from a multi-parent population of maize.

1 Introduction

The genome is a mosaic of haplotype blocks that capture the
evolutionary or breeding history of an individual. Reconstructing
ancestral haplotype maps for populations is important for imputing
untyped regions of the genome (Davies et al., 2016), mapping quan-
titative trait loci (Mott et al., 2000), investigating the recombination
landscape (Morgan et al., 2017) and inferring the evolutionary his-
tory and structure of haplotypes (Aylor et al., 2011; Gabriel et al.,
2002). Accurately inferring the descendent structure of haplotypes is
non-trivial, but several approaches for this have been developed:
HAPPY (Mott et al., 2000); MERLIN (Abecasis et al., 2002); GAIN
(Liu et al., 2010); DOQTL (Gatti et al., 2014); R/qtl2 (Broman
et al., 2019). These tools have been shown to perform well, but are
mostly limited to specific population types or breeding schemes and
can be computationally intensive with complex pedigrees or large
numbers of markers.

Reconstructing Ancestry Blocks BIT by bit (RABBIT) is a flexible

2 Materials and methods

2.1 Simulation data

tool that uses a Markovian model to reconstruct ancestral haplotype
maps for complex pedigrees involving various mating scenarios

©The Author(s) 2020. Published by Oxford University Press.

This study introduces SPEARS (Fig. 1) which incorporates SAEGUS
(https://github.com/maizeatlas/saegus) as a genome simulator to
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Fig. 1. Overview of SPEARS. (A) Steps in the pipeline, file inputs/outputs and standard metrics. This begins with the creation of a simulated population (7 virtual genotypes)
using SAEGUS based on a user-provided population design, genetic map and parental genotype data. Genotyping errors and missing data are induced in the simulated data,
which is then processed via MaCH (imputation) and RABBIT (ancestral haplotype reconstruction). Highlighted in gray are the main steps of the pipeline and files used to com-
pute SPEARS metrics. (B) The figure portrays diplotypes (phased genotypes) for a genomic segment to describe how each summary statistic is calculated. Each of the three col-

ors represents a distinct parent-of-origin. Heterozygous genotypes are shown in white text. The top diplotype represents known data that would be generated by simulation.
The bottom diplotype represents inferred data that would be generated by RABBIT as part of the SPEARS pipeline. The formulas and variables used to calculate each metric
are shown. CCC is computed as the correlation between known and inferred crossover events for all individuals and is therefore not shown for the example diplotype. The ex-

ample shows five crossovers for the known individual and four crossovers for the inferred individual

create known data. Custom R (R Core Team, 2017) scripts are used
for data processing, metric calculations and graphical output. For
proof-of-concept, we generated a virtual multi-parent outcross
population of 1000 progeny (Supplementary Fig. S1). Real genotype
data on inbred line parents of the population were used to initiate
the simulation using 47 078 markers combined from genotyping-by-
sequencing (GBS; Manching er al., 2017) and the MaizeSNP50
BeadChip (Ganal et al., 2011); filtered to remove residual heterozy-
gous sites in the parents for compatibility with MaCH imputation
(Li et al., 2010). We also examined the impact of using fewer
markers (23 584 GBS markers).

In SPEARS, to mimic analysis in practice, a user-defined global
error rate is specified to induce genotyping errors and locus-specific
missingness rates are specified to induce missing data for the virtual
genotypes. SPEARS then uses MaCH for imputation (Li et al.,
2010), prior to reconstructing haplotype maps with RABBIT. For
our use case, a global genotyping error rate of 0.006 was used based
on trio analysis in prior work (Manching et al., 2017). Missingness
rates were also based on real data for the population that was simu-
lated (column ‘F_MISS’ in Dataset S1). SPEARS reports the fre-
quency of genotyping error and missing data per locus that is
realized for the virtual population (e.g., see Supplementary Fig. S2
for the example population). Following imputation of the virtual
genotypes, markers with imputation accuracy R?> < 0.8 were fil-
tered, resulting in 46 633 total markers (23 584 GBS markers)
retained for RABBIT (Zheng et al., 2015).

2.2 Reconstruction and evaluation of ancestral

haplotype maps

To build haplotype maps for the simulated population the joint
model of RABBIT is used to assign an optimal Viterbi path using the
‘origViterbiDecoding’ algorithm (Zheng et al., 2015).

Based on comparing known and inferred data per individual
(Supplementary Fig. S3), SPEARS uses four metrics to assess differ-
ent features of haplotype maps (Fig. 1B): (i) Ancestral Assignment
Accuracy (AAA); (ii) Genotype Assignment Accuracy (GAA); (iii)
Phase Assignment Accuracy (PAA); and (iv) Correlation between
Crossover Counts (CCC). AAA is calculated as the proportion of
markers that have the correct parent assigned on each homologue
(given as a percentage). To calculate GAA, genotypes are assigned

based on the inferred parent-of-origin and corresponding parental
genotype data used as input, from which the proportion of genotype
matches are calculated (given as a percentage). To assess phasing
accuracy, PAA is calculated as the proportion heterozygous sites
whose phase is correctly inferred relative to the previous heterozy-
gous site (Lin et al., 2002) and is calculated under the assumption
that there are no genotyping errors and only among markers with
correctly inferred genotype scores. AAA, GAA and PAA are aver-
aged across all samples. The CCC is calculated as the correlation co-
efficient for the total number of crossovers across both homologues
of all chromosomes per individual. Equations for each metric are
shown in Figure 1B. For additional analysis, we also calculated
parent certainty as the difference between the posterior probabilities
of the two most likely parents at each marker (obtained from the
‘origPosteriorDecoding’ algorithm within RABBIT).

3 Results

SPEARS is designed to assess expectations for the accuracy of
ancestral haplotype maps reconstructed with multiple software tools
(imputation using MaCH and haplotype inference using RABBIT)
for user-defined populations and genotype data (simulation using
SAEGUS). Comparing known (simulated) and inferred (recon-
structed) haplotype maps to compute the accuracy of different metrics
(Fig. 1), SPEARS facilitates both genome-wide and regional appraisal
of reconstructed haplotypes. Summary metrics reported by SPEARS
are semi-independent (Supplementary Table S1) and describe separate
features of common interest for haplotype analysis.

For demonstration, a use case was processed based on a real
multi-parent population with prior estimates of genotyping error
and missing data structure. Overall, SPEARS showed that highly ac-
curate genome-wide haplotype maps could be generated from sparse
genotype data (71 marker per 50 kb) on an admixed non-inbred
population (Supplementary Table S2). The average of genome-wide
AAA per sample was 97.0%. Genomic regions with lower accuracy
(minimum: 79.5%) showed decreases in parent certainty alone or in
combination with a lower density of markers (Supplementary Figs
S4 and S5), indicating identity-by-state among the parents and low
marker density, but neither RABBIT nor the Viterbi algorithm per
se, were main sources of error in the inference of parent-of-origin


https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa749#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa749#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa749#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa749#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa749#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa749#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa749#supplementary-data

870

H.Manching and R.J.Wisser

for haplotype blocks. Given the ancestral origin inferred at a marker
locus, the corresponding parent genotype data is used to score the
genotype for the inferred haplotype, to compute GAA. If the wrong
parent-of-origin is inferred at a marker, but that parent shares the
same genotype of the correct parent, GAA will be higher than
AAA. We observed this for our use case (Supplementary Table S2),
indicating that shared parental haplotypes contributed to inferring
the incorrect parent-of-origin at 2.3% of the markers on average.

RABBIT performed very well in haplotype phasing with an aver-
age PAA of 99.4% across all samples. There was a high-positive
CCC (r=0.87, P <2.2e-16) (Supplementary Fig. S6). However, the
number of crossover counts per sample was downward biased with
an average of 260 * 16 versus 227 = 14 for known and inferred
results, respectively.

SPEARS can be used to guide decision making. For instance, gen-
otyping platforms vary in cost and result in different marker den-
sities, error rates and missingness structure. For the example
population, reducing the marker density by half had essentially no
effect on the quality of haplotype reconstruction (Supplementary
Table S2). Genotyping error rates of 0.006 and 0.06 also showed lit-
tle impact on the overall performance of haplotype reconstruction;
however, for an error rate of 0.25 substantial reductions in perform-
ance were observed for AAA, GAA and CCC but not PAA
(Supplementary Table S3).

4. Conclusion

Reconstruction of ancestral haplotypes from genomic data is useful
for a number of applications. The use case presented here demon-
strates how SPEARS estimates expectations for accuracy of the
reconstruction process to guide investigators on the analysis of
haplotype structure in multi-parent populations. It enables explor-
ation of study designs before or after creating one. It can also be
used to determine if certain features of haplotype data should
be included/excluded in a study based on the accuracy of a corre-
sponding metric, and the expectations can be reported. Moreover,
one can assess whether specific chromosomes or regions of the
genome, but not others, are sufficiently accurate for downstream
analysis. Finally, as an extension, the genome simulator in SPEARS
can model genetic architectures in order to test downstream analysis
based on ancestral haplotype maps.
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